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Shape and stability of a floating liquid zone between two solids
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The shape and stability of a floating liquid zone between two solids are analytically investigated
using the principle of variation. The formulas for its shape and stability are obtained. © 1997
American Institute of Physics. [S0021-8979(97)07324-6]

The stable surface shape of liquid such as a hanging drop
has been investigated by Freund and Harkins.! They derived
a special form applicable to the hanging drop from the fa-
miliar equation of Laplace. Through the numerical solution
of it, they obtained a family of curves which express the
surface shapes of the drops. Moreover, some investigations
have been made into the shapes of floating liquid zones?
between two solid rods>* since the crystal growth needs the
control of the geometrical configuration of the liquid zone.
Keck et al.,> and Heywang and Ziegler* determined the sur-
face shapes of the floating liquid zones from the curves of
the surface shape of the hanging drop. According to their
views, the curves of Freund and Harkins can be applied to
the case of the floating liquid zone because the hanging drop
and the floating liquid zone are both satisfied by the same
Laplace equation. However, it is noted that the boundary
conditions for the floating liquid zone are obviously different
from those for the hanging drop. Hence, it is incorrect in
making direct use of the curves, except for the hanging drop.
In addition, Keck ez al.® assumed the values of the tangent of
the liquid surface at the solid-liquid interface, which are
generally unknown. Using the floating zone method, we re-
ported experimental results of bubbles in ruby single
crystals® and recognized the importance of the control of the
geometrical configuration of the liquid zone. The purpose of
this article is to solve analytically the shape of the floating
liquid zone between two solids and to display its stabilit
diagram. :

Figure 1 shows a schema of the floating liquid zone be-
tween two solids; here 2a and h indicate the width and height
of the floating liquid zone. The problem in this study is to
find the smallest free energy under a given area §. We have
an interest in the case that the characteristic length of the
system is larger than the capillary constant, C=(2%/pg) 1n
where v is the surface tension, p the density of the liquid,
and g the gravitational constant. The free energy, F, and the
area, S, are given by

F=]pdS+2'yj dl, (1
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S=2.jxdy, | B 73]

where p is the pressure and d! the line element of the liquid
surface. The integration range is given as [0,h]. It is conve-
nient to modify Egs. (1) and (2) to dimensionless forms. We
shall let x, y and x' stand for the coordinates and derivative
in the new unit of C, where x' =dx/dy. Equations (1} and
(2) become BT

FIC3pg=fxydy+(l+x'2)m’dy, 3)
sc?= [ xdy. @
The procedure of the principle of variation leads
dflox—d(af/ox' )idy=0, &)
F=xy+(1+x"2)24+ \x, ©)

where X is a constant. Integrating Eq. (5) over y, we have
X' =2 (Y22+ Ny + Col/[1—-(y* 2+ Ay +Co)* 1Y%, (D)

whete Cy is an integral constant. If Eq. (7) has some solu-
tion, Eq. (7) should satisfy the following condition:

[y?24+ My + Col<1. (8)

This equation gives the stability condition for the floating
liquid zone. As seen in Fig. 1, taking the symmetry into

FIG. 1. Schema of floating liquid zone between two solids.
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FIG. 2. Floating silicon shapes with three kinds of height when n<1.

consideration, we choose a plus sign of Eq. (7). Using Eq.
(8) and integrating Eq. (7) over y, we have approximately

x~y3 16+ Ay 2+ Coy+C,. )

The integral constants, C, and C;, and X are determined by
the values of x at y=0 and y=a, and Eq. (4), for example,
Co=h*12+6(n—1)alh, where n is a positive real number.
Here the dimensionless area, S, is given as nah. Conse-
quently, we have :

x=y36+ Ay 12— h(y2+hi6)y+a,

where A= —h/2+ 12a(1 —n)/h.

Figure 2 shows the surface shapes of the floating silicon
zone in the case of n<1. We use 0.79[cm]? as the capillary
constant of silicon. The narrow necks in Fig. 2 are seen when
the floating zone is first formed between two solids in the
floating zone technique.? If the amount of liquid is insuffi-
cient to support the liquid zone, the liquid zone will break
apart. Figure 3 shows the surface shapes of the floating sili-
con zone in the case of n=1. Though Keck ef al® set the
tangents of the liquid surface to zero at the liquid-solid in-
terface, these figures indicate that x’ at the liquid—solid in-
terface is always unequal to zero.

Here we consider the upward movement of the liquid
zone. If one wants to grow solids with the larger width, one
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. FIG. 3. Floating silicon shapes with three kinds of height when n3>1,
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FIG. 4. Suability diagram for floating liquid zone.

should bulge out the liquid zone near the lower solid. If the
volume of the bulge is beyond the limit expressed by Eq. (8),
the liquid zone cannot support itself and will drop.

We can derive the stability condition for the floating
liquid from Eq. (8). Letting g(y)=y*2+\y+Cy, in the
case of n= 1, we obtain

Co>0,
g(=\)>=Cy if 12a(n—1)/h<hl2,
g(0)>g(h) if 12a(n—1)/h=h12. an

Hence when n=1, the necessary condition for Eq. (8) is
Co< 1. This leads

h*/12+6a(n—1)/h<1. (12)
In a similar way, in the case of n<<l, we can obtain
h*/12—6a(n~1)/h<1. (13)

Therefore, the stability condition for the floating liquid sur-
face is given by

a<h(l1—-h¥12)t6|n—1|. 14

Figure 4 shows the stability diagram for the floating liquid
zone when n # 1. In the case of n=1, the stable condition is
given as h2<12. Equation (14) can be rewritten in the di-
mension form

RM2C?*+6aln—1|/h<1. (15)

a=h(h2/4-1) /6|n-1]

la=h (1-n2/12) /6| n-1

FIG. 5. Stable condition for quasi-static crystal growth. P: decrease in the
width of grown crystal, Q: increase in the width of grown crystal.
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Equation (15) represents the obvious conclusion that the long
liquid zone holds stable if the capillary constant of the liquid
has a large value.

Here we consider the quasi-static growth of the lower
solid when the liquid zone moves upward. In the process,
part of the upper solid melts and the liquid zone crystallizes
on the lower solid side. This method for growth of single
crystals is known as the floating zone technique.? First, con-
sider the condition for the growth of crystals with a fixed
width. We assume that the shape of crystals is dependent on
the angle of the liquid at the lower liquid—solid interface.
Letting x’ at y=0 be equal to zero, we have

h*la=72(1-n) provided that n<1. (16)

This is the condition for crystal growth with a fixed width.
Second, in the case of increase in the width of the grown
crystals, we can lead a condition for the stable surface shape
added to Eq. (14). Using Eq. (14), we have
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a<h(1—-h%4)/6(n—1) provided that n>1, 17

On the other hand, in the case of a decrease in the width of
grown crystals, in a similar way, we obtain

a>h(h*/4—1)/6(1—n), provided that n<1. (18)

Figure 5 shows the stable surface condition for the quasi-
static growth. The area of the letter P or Q corresponds to
Egs. (14) and (18), or to Egs. (14) and (17).

Thus, we obtain the formulas for the shape and stability
of the floating liquid zone between two solids.
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