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GAUSS SUMS RELATED TO THE HILBERT SYMBOL

TosHIAKI SUZUKI

1. Introduction
Let F be a finite extension of Q, such that Card.u,(F) = n where

n(F)={ze F:2" =1}.

Let (, )r : F*X X F* = p,(F) be the n-th order Hilbert symbol of F. In [S2]
we showed (under certain conditions) the existence of a maximal isotropic subring
Rp of F with respect to (, )F ;

{xe F*:(z,y)r =1 foralye R§}=(F*)"R5.

In this paper we consider ”Gauss Sums” on Rp.
Let | | be a normalized valuation on F and = be a uniformizer of F. For
z € F* define ordpx € Z by

|zle = |mlFem=.

If we write n = ngp™ where (ng, p) = 1, then the ramification index ordpp of F is
given by

e=ep™ (p-1).
For the sake of simplicity we assume that

(1) p#2,
(2) e, is odd.

We choose and fix an injective character € of u,(F) and a non-trivial character
ep of F (which we specify in (2.2)) ; then we define

MEa) = [ cl&vrerziy

Rp

for £,z € F*. Here dy is a Haar measure on F so that

/ dy = 1.
Rp
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Let Pr be the maximal ideal of the integer ring O and set gr = Card.Op/Pr.
Let 6 the integer so that

1+PS 1 c (14 Pp)® and 14 PL ¢ (1+ Pp)™.

We see that § = e;p™ + e(m — 1) ; this number relates to the structure of Rp.
541
The maximal ideal I'r of Ry contains P,,Tg— . We have

RE=M-(1+IF)
where M = p,._;(F) the group of gr — 1-th roots of unity in Op; and
[FX : (F*)"R}] = n[Pr : Ig] = ng?/>.

Let Rr, Ir and (P5!Y be the dual lattice of Ry, Ir and PE*! in F with respect
to ep.
It is easy to see that
(1) T(£¢', z2') = €(§,2")7'T(€, z) for £ € (F*)"Rj and 2’ € R}.
(2) If = ¢ (PE+'Y, then I'(€,2) = O for any £ € FX.
(3) If z € Rp, then ['(€,z) = 0 unless £ € (F*)"R} in which case we have

P(&az) =1~ q;l.
(4) Ifze iF - I'ABF, then P({,z) = 0 unless fe (FX)p"‘R‘); in which case we
have
P@m‘{z“”«mﬁ”@mﬁimgwﬂma
’ —qu ifee (Fx)"R;.

(5) Iz € (PF*'y— I and € € (F*)P" R, then T'(£,z) = 0.
Hence the calculation of I'(¢, z) is reduced to the case where

£ (F*)*" R}

For such £ we can define an ideal Ir(€) of Rr which satisfies
1
(61- t)r = ep(z 31) for t€ In(6)

where % is a formal derivative of £ with respect to 7 .

Theorem 1. Let £ ¢ (FX)P" RE. Then T'(£,z) # 0 if and only if there exists
a € RE such that

5“5 =az mod [z(£)
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in which case

r(fv :L‘) = E(f, a)FeF(ax)IIF(é)l'
Here |Ip(§)| = Card.Rp/Ir(£).

The next problem, which is motivated from the theory of Whittaker models of
metaplectic forms, is that: for a given v € F*, determine the set

D(v)={£ € F*/R} :T(&, €6 W) # 0,6 v ¢ Rr}.

Note that D(v) essentially depends only the class v(F*)*Rp. We can classify
elements v € F*/(F*)"R} into three types : singular, p-singular and regular
ones. Then we obtain the followings.

(1) X v is singular, D(v) consists a single element ¢ € (F*)"Rg such that
D¢ 'y) = g5
(2) If v is p-singular, D(v) consists a single element
€ (F*)" R; — (F*)"R}

such that |T(£,€71v)|2 = ¢zl
Theorem 2 describes the structure of D(v) for all other regular elements v. As a
collorary we obtain that if » is not singular

Y I, g)F =gpl.
EGD(u)

2. The ring Rp
Let Fr be the maximal unramified extension in F and Or be its integer ring.
Then Or is identified with the ring Or[[7]] which consists of power series

oo
E a,-7r‘
=0

where a; € Or (or a; € M). The subring Or[[x*']] (1 < £ < m) also plays a role.
We define

Ig(0) = {.'B €O0F:6/2< Ol‘dpzt},

Ir(€) = {z € O7[[n"']) : & ‘2"’6
(1<€<m-1) and

Ip(m) = {z € O7[[x""]] : 0 < ordrz} + Ir(m — 1).

<ordpz} + Ip(f - 1)

We set
(2 1) Rp=0r+1Ip



with Ir = Ir(m). Then Rr is a local ring with a maximal ideal Ir such that
Rp/Ir = Of/Pr.
We note that the mapping
t—e(m,l1—t)p
defines a character on Ir(0). We take eg so that
22) e(m 1~ t)r = ep(Z) forall e Ir(0)
By the definition of 6 we see that ‘
er(PE) =1 and ep(Pi!)#1

If Ais a Op-lattice of F, define the dual lattice A by

(23) A={zeF:ep(zy)=1 for ye A}

Proposition 1.
1) Ir(0) =77 Ip(0). )
(2) Ip(€ - 1) = Or < ipta'P 1,85t < gpt < &=lete (,p) =1 > +Ip(f)
1<e<m-1).
(3) Ir(m —1) = O < 7f~#"-1,0 < ip™ < &=l (5 ) = 1> +]p.
4 Ir=0r< w1 > +Rp.
Here Or < #* > denote the Or-submodule generated by n*.
Proof. Since ep(P§) =1 and ep(P3™!) # 1 we have

(Pg) = OF.
Hence

ir(0) = (PF'y

L -1
= Pp? (PRY
= ‘A’_IIP(O).
By definition we have
e §—12 -
Ir(®) = Op < w7 2228 < ipt < ”T”e (i,p) = 1> +Ip(¢ - 1).

Since L, . i
ep(7r5‘"’ -1 Ip(f—-1)=1 and ep(rr""” 1. giP Y#1

we have ad—ir e Ir(8—1)—Ir(£). Considering the dimensions of Ir(£)/Ir(£—1)
and Ip(¢ —1)/Ip(£) over Ot /(p), we obtain the result.
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Corollary.
(1) Ifti,t2 € Ir(E), then ep(Etyty) = 1.
(2) Ift1 € vo[[n*']] and ep(Etit) = 1 for all t € Ip(£), then t, € Ip(f).

Proof. If t) € Ip(f), then %‘tl € Ir(£) by Proposition 1. Hence
o
ep(;tltz) =1 forall ¢, € Ip(f).
Conversely, if ex(2-4,t) = 1 for all ¢ € Ir(£), then
P
;tl € Ip(e).

Since t; € Or[[x*']] we have t; € Ir(¢).
3. The ideal Ir(¢)

Lemma 1. Let i be an integer prime to p and 0 < £ <m —1.
(1) Ift € Ip(0), then

4

e(x® 1 - t)p = er(% ).
(2) If tn'? € Ip(L) and t € Ip, then
sl ipf—1
) —ip°m
6(1 — 7P ,1 - t)p = BF(Wt).

Proof. By (1.2) we have

e(mi,1~t)p = ep(:—rt) fort € Ir(0).
We prove (1) by the induction on £. If £ = 0, we have done. Assume that if

te Ip(f - 1), then

,‘-pl—l
s

1

e(7ri”t— t).

,1—t)p=ep(

Ifte Ip(l)—Ir(€~1), then

¢
pt € Ip(€—1) and ep(%t2)=1
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by Corollary to Proposition 1 ; hence
@, 1= t)p = e(@? ", (1 - 8)")F

= (", 1-pt+ (p)t2+"')F

2
=eF(ip:r_1(pt— (};)t2+))
= eF(gt)

To prove (2) we need the important property of the Hilbert symbol
(l-2,1-y)r=Q1-2,1-zy)r(z,1 —zy)r(l —2y,1 - y)r.
In fact we have

€(1 =71 t)p = e(1 — 77,1 — 17 t) pe(n?® |1 — 7' t)
€1 — 7%t 1 — t)p

=e(l- wi”‘, 1- wiptt)pep(—iptn"”‘“lt)

because (1 + Ir(€),1+ Ir)r = 1. Replacing ¢ by 7't we obtain

e(l -, 1 - 7' t)p = (1 — n'?',1 - 727" ) pep (—iptat® ~1ni?' ).
Thus we have
e(1 - 1ri”‘, 1-t)r=¢(l- Tri"l, 1- wiplt)pep(—iplvri”t"lt)

=€l - 1ri”‘, 1- wzi”‘t)pep(—iplwi”l‘l(l + nipt)t)

= ep((—ip"rri”"l(l + i 2P -+ )t)

—aml t_l
—ptrt =1,

=e :
R =it

Now let us define Ir(€) for £ € F* with 0 < ordpé < p™ and £ ¢ Ry. We write

E=fo+bi+ +ém

with
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where (a;,c € M U {0}). We call £ to be of type (i'p*',ip*) if

(31) ordp = i'p*,

. . k .
32) mmosgsm_lo'rdpw‘?& = ?e + ipk.

We see in this case that

ordp€, > ip* + ke ; te for £ < k;
and £Ip(k) C Ir(k).
If £ is of type (i'p* ,ip*), we define
(33) Ir(€) = Ir N o= #"+% [o(k).

Lemma 2. If ordré =0, then

Ip(§) = Ir NEIF;

therefore

Ip(€ ") =1Ip(&) and EIp(E) =Ip(§).
Proof. If ¢ is of type (0,ip"*), then by (3.3)
Ip(€) = Ir N7=#" Ip(k).

If t € Ir(k), then £t € Ir(k) C Ir because £~! is also of type (0,ip*); hence
Ip(k)CIrNEIp. Fort € Ir — Ir(k) with t € 07'[[1{""]], we have

¢telp ifandonlyif w*'t€ Ir(k).
Hence the assertion follows.
Proposition 2. Let € be of type (i'p* ,ip*). If t € Ip(£), then

(6,1~ )r = en(z 32)

Furthermore, if t; € Rp satisfies

EF(%s—f_tlt) =1 forall te Ip(k),

then t, € Ir(£).
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Proof. We may assume that £ is of type (i'p* ,ip*). We write

£ = a‘ll'ilpk‘ H(l - aj,gﬂ'jpl)

If t € Ir(k'), then

. vk
1lpk e 1

(-:(‘ll’i'p'c 1 —8)F =ep( e t)
; if Pt € Ip(f) and t € Ir), then
. ¢ J-pl_l
st _ —aj,(Jp s
el —ajn’? 1 -t)r = eF('_—_l mpy—— t).
By definition we have
Ir(€) = Ie(K') 0 (Y7 Ir (0).
it
Thus we obtain that if ¢t € Ir(€) then
i'p*'n —a;,ejptnir !
—- - t Ja
€(€,1— t)p = ep(—r—t + Z T
1d¢§
= eF(ga—;t)

Let us prove the latter part. We assume that t; € Rp—Ir (k) ;hence t; € Or[[x?"]).
By definition we have
1d¢

Zd—'tl € Ir (k).

Since £ is of (i'p*’, ip*) we obtain

A 7‘.1;) -—1p ~—1

p to€ ip(k) ie w4 € In(k).

1 — mivk-i'p¥

Hence t, € Ip N n—i#"+i7* Ir(k).
Now we can state the first result.

Theorem 1. Let € be as above. For any z € F*, one has
L z)#0
if and only if there ezists a € R} such that

1df _ =ar mod Ip(€)

Edr
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in which case we have
I(¢,2) = e(€, @)rer(a) I (€).
Proof. We have
ree) = [ , 6 v)rer()iy

= X fI o, (60l = Drer(az(l - D)

a€RE/(14+17(€))
= Z e(é,a)er(az) / €(€,1 — t)rep(—azt)dt
a€RE/(1+17(£)) Ir(®)
1df
= Z e(€, a)eF(az)/ ep((-—-d;r- - az)t)dt
o€RE/(1+1r(€)) GO

It is enough to see that there exists at most one such & mod (1 + Ir(£)) that

%-Z—ﬁ =az mod Ip(f).

If a and o satisfy the above relation, then

-1 _ a'_l)lﬁ

Far s 0 mod Ir(k).

(e
Then by Proposition 2 we have
a™l—o ! e Ir(8).
4. The set D(v)
Recall that for » € F* we have defined
41 D(v) = {¢ € F*/R; :T(§,67'v) £ 0,6 v & Rr}.

Lemma 3. Ifz € Ir — Ry, then T(£,z) =0 unless £ € (F*)P" RY in which case
we have

Heo) = { Taeu €6 0)rer(az)ay’ i ¢ (F*)"Ri

—g5" if E€(F*)"Rp
Proof. U z € Ip - RF, then

er(zlp) =1 and ep(zRp) #1.
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Since M U {0} is a representative set of Rp/Ir, we have

Z er(az) = 0;
a€MU{0}
therefore
Z er(az) = —-1.
a€eM
Then

M) = 3 el olrer(as) [ 6,1+ brep(atz)d

= E e(¢,a)per(azx) e(&,1+ ) pdt.

acEM Ir
If £ g (F*)*" R}, then
/[ 61+ 0pdt=0 and T(Ez)=0.
If £ € (F*)*" R}, then
L(¢,2) = Y e(¢ a)rer(az)|Ir|

aEM
_ {zaeMe(e,amp(az)q;‘ i ¢¢(F*)"R}
—gg' if €€ (FX)"R}.

Lemma 4. Let £ be of type (i'p* ,ip*). Then

v
if
:ii_fr =v mod ﬂipkfp(k).

Conuysersely, if

v

L'(¢, E) #0
then there erists a € R} such that
% =av mod 7ri"’k' Ir+ nipkfp(k).

Proof. Since £ is of type (i'p* ,ip*), we have

en=7" Ip(k) = Ip (k).
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If

dt _ i* 3
I = v mod 7% Ip(k)
then 1de 1 R
o2 2 —ip"+i'p'°’
fdr = {V mod # Ir(k).
Thus 1d6 1
& = -f-u mod IF(§)

because m—iP*+i'P* r(k) C Ip(f).
Let prove the latter part. By Theorem 1 there exists a € R} such that
1d¢ _ 1 5
'E-E = O!é,V mod Ip(f)
Then it
= mod £ 1Ip(8).
If i'p* # ip* then & = &x—*?" is of type (0,ip* — i'p*') ,and Ir(€) = Ir(£o) ; by
Lemma 2

€ Ip() = 7 &7 Ip (60)
= 777 Ip(£)
= =i Irn a—ir* Ir(k)).
If i'p* = ip*, then Ip(€) = Ir(k) and
€ p(E) = 777" In (k).
Thus the assertion follows.

Proposition 3.
(1) Ifv € Ir — Rp, then D(v) = {1}.
(2) Ifv € Ip(m) — Ir, then D(v) = {n"?"} for some 1 < i < ng.

Proof. Let v € Ir — Rp. It follows from Lemma 2 that 1 € D(») . v €
Ip(m) — Rp ,then there is no £ € (F*)P" R} such that

% =v mod ﬂipkjp(k)
because v contains a non-vanishing term
an®=?"-1 (aeM, 0<ip"< 5;(&2"_1)3).
Recall that
fr(m—1) =07 < w40 < i < (D

+0r <’ 1> +Rp.
Thus ,if v € fp(m) - fp, then 7'P" v € fr — Rp.
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Definition 2.

(1) We call v sinular if there exists an integer i such that vn™ € Ir — Rp.

(2) We call v p-singular if v is not singular and if there exists an integer j such
that v7?™7 is singular.

(3) We call any other element in F'* regular.

Example 1. If F = Q,(1'/?) and n = p, then § = p;

1
Rr=2,+Ir(0), Ir(0)=Pit,
and
fp = P;_;—l'
= Z,,'/r"_l + RF.

All the elements v in F* such that v ¢ Rr and 7Pv € Ry fall into the following
three class :

[1] 0<ordrv< B;—?’

2] —p2— ! <ordrv < -2, ep(nPr)=1

[3] —;—1 <ordpr <p-2, ep(v)#1.
The elements in [1] and [2] are regular; the elements in [3] are singular.
Example 2. If F = Q,,(lFl"') and n = p?, then § = 2p® — p;

Rp =2, +Zyn™$P 4. 4+ ZaP~VP 4 Ip(0), Ip(0)=P% 7T,
and
Ip(0) = P;Q_Lp
= Zp? Pl ZopP "l ZondPe--1 B

The regular elements » in F* such that » ¢ Rr and nPv € Rp are classified as
follows.

[ 0<ordry <p?~2E2, (ordpy+1,p) =1

2 2l < ordpr < -2,

2
2
B B2 -1 <ordry <plo-1) -1, pllordey+1)

[4] p*-1<ordpyv < gp(p -1)-1, pl|(ordpv +1).
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Let v be a regular element in F* such that v ¢ Rp and 7" v € Rp. Then
v & Ip(m) because v is regular. We can write

V=ZV¢

4
with
Ve = z ipla,',gﬂ'ipm_l (0<é<m)
(i,p)=1

P
Vm = E a'i,m"ra -1
i

where a; 4 € M U {0}. Since v & Ir(m) we have § < ordpv,. If we put
ordrvy =el +igpt -1 (0< €< m),

then
£ o+ &
Jze—pm<£e+i¢p‘< -;e.

Since D(v) depends only on ¥R}, it is enough to consider ¥(1 + Ir) ; hence we
may assume that v, =0 ,i.e.
m—1
V= Z Vg.

=0

If igp? > 0 for all £ (0 < £ < m — 1), we call v positive. In the case where e; = 1,

there exist non-positive elements » such that v ¢ Rpandn*"v € Rr (see Example
1 and 2).
Now we construct an element ¢ & (F*)?™ R} such that

% =v mod 7 Ip(k).

Here k is the number 0 < k£ < m so that

ke
. —te/2 — iopF — 1.
og}gxmordp(w V) > + ixp

From the expansion of v, we remove the terms of v, which are contained in
. koA
7P Ip(k) ; then
. . . koA
n= Y ipa;en® "1 (pfa 1 g o I (k).
(i.p)=1

We set
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where the summation is taken over the same range for i#%,. Then the order ip’ of
terms which appear in the expansion of £, satisfies

5—te it + SLke — fe if £> k,
—p < <{ ok 6=t :
2 inp® + 2 ift < k.

If we set € = Zz—o &¢, then € is not in Ir(m) and of type (ikvp"‘,ikp") where
ordp = iwp* (K > k)
. , ’ e
ip® —ippt < §(k' — k).

By construction it is clear that £ € D(v).
By Lemma 4, every other element ¢ in D(v) is of type (ip’, ixp®) with ixp* —
J—h < 1})‘ < ‘I.k/p and

d—€ = mod 7*fp + ‘ﬂ'i"pkip(k).
Since
. A
g — € enilp +at? Ir(k),

we can choose a reprsentative ¢ in &(1 + If) ;

m

§=€+ Z z a,'l'gt’lripl

#=k+1 (i p)=1

where p triv ¢ ﬂikpkfp(k) i.e.gp + e > iyp* + J‘—"—‘-’-

We write D, (v) (resp.Dy(v)) for the subset of D(u) consisting of the elements
€ with ordpé' = ip*¥ (resp. ordpl' < iwp ') and Dy ;pe the subset of D(v)
consisting of the elements &' with ordpé’ = ip? < i p*’.

We define

0+ ke
AL(€) = {3p" :(5,p) = 1,k < £ <m, jpt + Le > irp* + 5

. ! . . é— ke . . ’
iwp® < jpt <irp*+ — - 2(ixp* — iwp®)}

) , ;o . 4 —
U{ip™ tiwp® < jp™ <irp* + 5
Ao(€) = {ip" :(4,p) =Lk < < m,

ke ) ) :
= 2(ixp* —iwp*))

. .k . . + ke
0<Jp‘<uk:p",1pl+t’e>zkp"+ 5 }

U{ip™ : 0 < jp™ < iwp*'}
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Then we see that
6 — ke
2 k]
. . & — ke . Y
0 < jp* <ixp® + —— — 2ip* —iwp*))

A1(6) U Ao(€) = {3p" :(4.p) = 1,k < £ < m,jp’ + fe > inp* +

. cm . d — ke , .
U{ip™ 0 < jp™ < irp* + —— — 26" —iwp)};

and
(4.2) qL-"-\x(E)I'HAo(E)IH — |IF(§)'2

where |A;(£)| denotes the cardinality of A;(£).
K £' € Dy ;pe, we define

6+ ke
2

AL () = (jp¥ :(G,p) = Lk < £ <m,jp* +le>irp* +
i’ < jp¥ <ixp* + % - 2(ixp* - ip*)}
Ufip™ : ip* < jp* <iwp® +

Bo(€) = {ip" (D) =1,k < € <m,

6 — ke

- 2(ixp* — ip")}

. . . o+ ke
0 < jp? <ipl,ip® +fe > ixp* + %—}
U{jp™ : 0 < jp™ < ip'}.
Then we see that

(4 3) QIFAI(G')HIAO(OHI _ |IF(§I)|2-

Theorem 2. Let v be a regular element in F* such that v ¢ Bp andn*"v e ﬁp.
With the notations as above, one has

D(v) = D1(v) U Dy(v)
where L,
Di(v) ={€+ Z ajpem? ta; € MU {0} }
ipteA1(€)
and

Doy(v)= || Dojpev)
ipt€A0(8)
, Y
Do,jp‘(") = {ajp‘ﬂ-"pt + &+ Z a,j.py‘ir’ LA
3P €81 (a; e mIPt +€)

ajpl € M and ajfpt’ € MU {O}}.

—119—



Corollary. If v is not singular, then

3 TG, %)P = g7l.

£eD(v)

Proof. 1t is clear when v is p-singular. We prove that when v is regular. We
assume that v ¢ Rr and 77" v € Rp. Then by Theorem 2 we have

Y omE o= S InE o+ Y INE, P

1Y) Ly ) L]
¢'eD(v) 3 &€D(v) ¢ €'€Do(v) ¢
.2 _
= > =@+ Y. > Ur@® +8I7
§'eDi(v) ipt€Ao(€) £ €Do,ipt)

By (4.2) we have

> Ur@I = Dy IF(E)|2
£'eDy(v)
_ qgl(e)q;AI(e)—Ao(s)—l

—Ag(€)-1
=g ol6)-1

Similarly by (4.3) we have

3" Up(@® + €)% = | Do,ipe | Ip (7 +£)|72
§'€Do,ipe

¢ ¢ int
A (%P + A (7P —Ag(n'?P -1
__—(qF — l)q 1( E)q (7P +€)— Ao (7P +§)

_ ipt -
=gz (- g5,

Finally we have

v - - —Ag(n'?! -
E IT(¢, ?)|2 =qFAo(£) 1y E qFAo( +£)(1 _ qFl)
§'€D(v) ipt€Ao(€)

=q;_.1 .

APPENDIX

Al. The metaplectic group

So far we have studied "Gauss Sums” over a maximal isotropic ring Rp with
respect to the Hilbert symbol of the ground field F. This result is one of prepara-
tory work to develop a comprehensive local theory of metaplectic forms. In [KP)
Kazhdan and Patterson invent a very beatiful formulation (local and global) for
metaplectic forms. Unfortunately they describe their local theory only for the
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case where the metaplectic degree n is co-prime to the residual characteristic of
F. In that case Rp coincides with the integer ring of F. Therefore we need a local
theory of metaplectic forms, which is based on Rr. In this appendix we give some
statements in that theory, which follow immediately from our results.

Let us recall several definitions related to the local metaplectic group (see [KP]).
Let

G =GL(2, F)
H ={h = diag(hl,hz) €G: hl,hz € Fx}

N={n=(é niz)GG:nmEF}

1 0
N_ ={n=(n21 1>€G‘:n21€F}
10 01
W‘{I‘(o 1)’3’(1 0)}
Ko =GL(2,0F)
K =GL(2,RF)

For g1,92 € G we set

o(g1,92) = (M 1(19_)) (det(gl) x(glgz))F

x(g1) " x(g2) Jp " x(g1)
where
a b ¢ ifc#0,
"((c d)) = { d ifc=0.
We see that
(A1)
o(h, k') = (h1,hh)F for h = diag(hy, hs), b' = diag(h{,h}) € H
(A2)

o(ng,g'n’) =0(g,g') forn,n' €N
We define the metaplectic group
G={(9,¢):9€G, ¢€pn(F)}
with multiplicaion law
(9:0)(g',¢") = (99", 9(9,9"¢C )
and related mappings
i:pa(F) > G by i(¢)=(I,0)
p:G—>G by p(g,{)=g
s:G—>G by s(g) =(g1)
hiz :F* - G by hyy(z) = (diag(z,z7'),1)
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By (A,2) , the restriction of s to N is a homomorphism ; we write N for the
subgroup s(N) of G. For g = (Z 3) € Ko set

(c,d/det(g))r if0<|elr <1
k(g) = . i
1 if ICIF = 0, 1
Then if g;, g2 € K we obtain
£(g192)
0(91,92) = =
(01,92) (1)K (g2)

if we define _
kx: K =G by k=*(g)=(g9,x(9))

then xx is a homomorphism. We write K+ for the subgroup & * (K) of G. Since
WsubsetK, we write also W for the subgroup x(W) of K*; we call s € W the
simple reflection. By (A.1) the center of H = p~!(H) is equal to

H* =p~Y{h":he H}
and a maximal abelian subgroup of its is given by
H™HNK+*)
which we denote by Hx. We see that if h € H# then
h*=s"'hse Hx.

Recall the injective character € : un(F) & C*. Let w be a quasi-character of A,
such that woi = e. Let V(w) be a space of smooth functions f : G — C satisfying

f(nhg) = (wu)(h)f(g) forallne Nandallhe Hx.
Here p: H — C* is defined by
u(h) = |k /he|r where p(h) = diag(hy, hs).

Acting G on V(w) by right translation, we obtain an admissible representation
(m,V(w)). We assume that w is trivial on H N K*. Then the subspace V (w)xk.
consisting of K -invariant functions has dimension one. Let v(w) be the element
in V(w) k.« such that v(w)(s(I)) = 1. We set

wi2(z) = w(hi2(z™)) forz € F*
then w2 is a unramified quasi-character of F*. We set

*w(h) =w(h®) for he Hx
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then “w is also a quasi-character of H* satisfying the above two conditions. There
exists an intertwining operator

I : V(w) = V(*w)

which is defined by the integrations

tn@= [ 16s((} §))aas forfev

and another technique (analytic continuation or regularization). Since I,v(w) is a
Kx-invariant element in V(*w), there exists a constat ¢ such that

ILiv(w) = cv(Pw).

Evaluating each side at g = s(I} we obtain

c=/Fv(w)(ss((} g)))da:.

This integral can be easily caculated when |w;2(7)| < 1;thus we have
_ 1 _q;lw12(7r) 8
Io(w) = 1= wra(n) v(*w).
We define a normalized intertwining operator I’ : V(w) = V(*w) by

I = 1 — wia(m)

= —.],.
1—gplwia(x) °

We denote by I”, the normalized intertwining operator from V(°w) to V(w) ob-
tained by the same way. Then
ool =1y, Iol",=Iys,)

where Iy () is the identity map of V(w) (see Theorem I1.2.6 [KP]). In other words,
we have

Proposition Al. The composition
) AR
Vw) 3 V(°w) 3 V(w)
is equal to

1— gglwia(n) 1 — gplwra(n)™?
1—w12(7r) l—wlz(ﬂ')—l

V(w)-
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A2, The 7-functions
Recall the character er of F. We define a non-degenerate character ey of N by

ents ((§ 7)) =erta)

For a given representation V(w) we define the Whittaker space Wh(V (w)) by
{AeV' < \n(n)f >=en(n) <A\ f> for neN,feV(w}

where V' is the algebraic dual space of V(w) with a bilinear form <, >. For
1 € H we can define A,y € Wh(V (w)) by

< >=up)™ [ famen(mn for £ € V@)
Then :
Ay =w(h)A, for he H,.
It is proved (see KP]) that the vecor space Wh(V (w)) over C has a basis {d:ne€
H\H}.
The intertwining operator I, : V(w) — V(°w) induces a linear map

T : Wh(V (*w)) = Wh(V ())

defined by < T(A),f >=< A\, Lf > for A € Wh(V(*w)) and f € V(w). The
matrix coefficients 7(w,n’,n) (',n € H,\H) of T are defined by

TOy)= Y. mwn,mMAy Ay € Wh(V(°w)), X, € V(w)).
neHNA

We have N
T(w, h'n’, hn) = *w(hw(h)r(w,n',n) for hk',h € H,.

By the same way as that in Lemma 1.3.1([KP]) we can compute 7(w,7,7’). Put
v = "2 where n(!?) =, /n, if p(n) = diag(m,7n2). Then

rwn) = [ ol 2 er ()l ds

-/ (a6 ) ~)er (FlelFde
Fx

Z /x w(h12(f_ly)ﬂﬂl_l)ep(%y)dy

¢eFx/RxBF

-3 w(hn(f")nn"‘)f‘(a,%)

EEF* /RE

—124 —



where w is extended to H by

wh) if heHx

wiy={3" .

Dividing the summation over all £ € F*/R} into two parts we set

nw,mn)= 3 w(hu(e-l)nn'-‘)f‘(z,g)
€e£’:};:l,

nwnn)= Y. whiE Y "HIE, g)

EEFX /R
kerr

By the property of ”Gauss sum” (3) (see Introduction)

nw,n7) = D wlhia(r™)ny ) TE—n, ahny)

LEZ

vvr""eﬁp
=wim ™) ). wa*)(1-g5h)
kEZ
v:r'"‘EﬁF
: 1 —_— q_l
— -1 F ko(v)
w(mm )——1 — wm(w)w”(")

where ko(v) = min,  vncp {k € Z} ;

nwnr)= Y w(hm(e-‘)nn'-l)f(e,g)

X
EEFX/RY
yer;'-Rp

= 3 wlhale™)m e )

£eD(v)

Proposition A2. Let the notation be as above.

(1) 7(w,n,7") = 0 unless hyo(€~ )y~ € H, for £ € D(v)U{1}. In particular
if v is singular then

7(w,n,7) =0 unless n e H,.

(2) If v is not singular with v ¢ Rp and n"v € Rp, then

-1

—E )wxz(");

T(w,n,n) = m
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and for £ € D(v)
7'(“:"7, h12(E—l)n) = f‘(&’ %)'

(3) If v is singular with v € Ir — R, then

1-gplwiz(m)!
1 —wyz(m)

T(w,7,7) = wi2(m).

Proof. From the above argument (1) and (2) are clear. We prove (3). Since
v € Ir — Rp, we have D(v) = {1} and

T(w,m, 1) = To(w,n, 1) + 71 (W, 7, 7)
_ 1-g§!
1 — wya(m)
_ _1-gz
1 —wya(m)
_1- gp wiz(m)~!
1 — wya(nw)

WIZ(“) + f‘(l,l/)

wiz(m) + (—qF")

wlg(ﬂ').

Corollary. With the notation as above, for £ € D(v)

T(w, hia (€1, 1) = I, g).

Proof. If £ € D(v),then

r(a-‘,@-l)-%) =T, —(e-l)*f%)
= 14
£0,

therefore £~ € D(g%). Since (h12(E~ V)2 = ¢, we obtain

7(w, h12(€ N, m) = T(w, h12(€7)m, ha2((€71) A2 (€7 )n)
=T, (5_1)_15%)
=T(,2).
(&, E)
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Proposition A3. Foryp, ' € H we have
> rCwn ) rw,n, )
‘r’"e}.{.\ﬁ

- 1 — gzlwia(m) 1 — gplwiz(m)~! wign' =)
1—0)12(7!') l—wlz(‘ﬂ')—l ’

If v is not singular, then
> Ine I =g’

§eD(v)

Proof. The first statement is an immediate consequence of Proposition Al. The
second statement follows from the first and Proposition A2 (1),(2) by taking = 7'
In fact by Proposition A2 (1),(2) we have

> rCw,nn")(w,n,m)

7 eHN\A
= Z T(swjﬂshl2(£_1)77)7(wah12(€_1)771 7))+T(’w,77,77)7'(w,ﬂ,7))
¢eD(v)
_ —l l_q—l
&7 2+ —.
ge%%.,)l 6D+ 1 o (7T)1 e

Remark. Thus we obtain two proofs for Corollary to Theorem 2. One is a direct
proof using the structure of D(v). Another is due to the local functional equation
of the intertwining operator (Proposition Al). Recall that the proof in [KP] is not
a pure local one, which is half local and half global.

A3. The W-functions _
A C-valued function W on G is called a K.-inveriant Whittaker e-function if

(1) W(ng) =en(n)W(g) forn € N,

(2) W(i({)g) = e(Q)W (g) for { € pa(F) and
(3) W(gk) =W(g) for k € K..

Since the decomposition
= = (10
£€0r /Ry
holds, the value W (g) for g € G is reduced to

W(hs(é ?)) for he H,£€O0r/Rp.

For h € H with p(h) = diag(hy, hs), put v = %21
Let us see the relation between v and £ which is derived from

wle 1)=(0 1) = (= (e 1))

for z € Rp.

—127 -



Lemma Al. Suppose that £ € O — Rr. Then for x € Rp

w (e (e 1))

=y, €, )W (h’h12(1_:§$)s (1_-;5_: (1)))

with v

14 &z

'7(”) 6) a:) = 6(—6,1-{-{23);18}7( )

Proof. In the group G we have that
s 10 s 1 o
&1 0 1

si—g1+enis (! T )s(meE 0 Yo 1 ).

Hence the assertion follows from the definition of W.

Proposition A4.

(1) If€ =0, then W(h) = 0 unless v € Rp.
(2) If € € O — Ry, then

o ) -

v= % mod £Ip(£).

Proof. (1) is cear. (2) follows from the Lemma Al. In fact ,if é&z € Ip, then

¥(v, &, ) must be 1 when
10
w(is(1 9)) 20

Here we see that £~1Ip N Rp = €1 1p(£) and that

ep(1 :—xgx) =erp(vz) for z €& gp(E).

unless
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