琉球大学学術リポジトリ

Gauss Sums Related to the Hilbert Symbol

メタデータ	言語:
	出版者: Department of Mathematical Sciences, Faculty
	of Science, University of the Ryukyus
	公開日: 2007-03-03
	キーワード (Ja):
	キーワード (En):
	作成者: Suzuki, Toshiaki
	メールアドレス:
	所属:
URL	http://hdl.handle.net/20.500.12000/85

GAUSS SUMS RELATED TO THE HILBERT SYMBOL

TOSHIAKI SUZUKI

1. Introduction

Let F be a finite extension of \mathbb{Q}_p such that $Card.\mu_n(F) = n$ where

$$\mu_n(F) = \{x \in F : x^n = 1\}.$$

Let $(,)_F: F^{\times} \times F^{\times} \to \mu_n(F)$ be the *n*-th order Hilbert symbol of F. In [S2] we showed (under certain conditions) the existence of a maximal isotropic subring R_F of F with respect to $(,)_F$;

$$\{x \in F^{\times} : (x,y)_F = 1 \text{ for all } y \in R_F^{\times}\} = (F^{\times})^n R_F^{\times}.$$

In this paper we consider "Gauss Sums" on R_F .

Let $| \cdot |_F$ be a normalized valuation on F and π be a uniformizer of F. For $x \in F^{\times}$ define $ord_F x \in \mathbb{Z}$ by

$$|x|_F = |\pi|_F^{ord_F x}.$$

If we write $n = n_0 p^m$ where $(n_0, p) = 1$, then the ramification index $ord_F p$ of F is given by

$$e=e_1p^{m-1}(p-1).$$

For the sake of simplicity we assume that

- (1) $p \neq 2$,
- (2) e_1 is odd.

We choose and fix an injective character ϵ of $\mu_n(F)$ and a non-trivial character e_F of F (which we specify in (2.2)); then we define

$$\Gamma(\xi, x) = \int_{R_F^{\times}} \epsilon(\xi, y)_F e_F(xy) dy$$

for $\xi, x \in F^{\times}$. Here dy is a Haar measure on F so that

$$\int_{R_F} dy = 1.$$

Received November 30 2006.

Let P_F be the maximal ideal of the integer ring O_F and set $q_F = Card.O_F/P_F$. Let δ the integer so that

$$1+P_F^{\delta+1}\subset (1+P_F)^n\quad \text{ and } \ 1+P_F^\delta\not\subset (1+P_F)^n.$$

We see that $\delta=e_1p^m+e(m-1)$; this number relates to the structure of R_F . The maximal ideal I_F of R_F contains $P_F^{\frac{\delta+1}{2}}$. We have

$$R_F^{\times} = M \cdot (1 + I_F)$$

where $M = \mu_{q_F-1}(F)$ the group of $q_F - 1$ -th roots of unity in O_F ; and

$$[F^{\times}: (F^{\times})^n R_F^{\times}] = n[P_F: I_F] = nq_F^{e/2}.$$

Let \hat{R}_F , \hat{I}_F and $(P_F^{\delta+1})$ be the dual lattice of R_F , I_F and $P_F^{\delta+1}$ in F with respect to e_F .

It is easy to see that

- (1) $\Gamma(\xi\xi', xx') = \epsilon(\xi, x')^{-1}\Gamma(\xi, x)$ for $\xi' \in (F^{\times})^n R_F^{\times}$ and $x' \in R_F^{\times}$.
- (2) If $x \notin (P_F^{\delta+1})$, then $\Gamma(\xi, x) = 0$ for any $\xi \in F^{\times}$.
- (3) If $x \in \hat{R}_F$, then $\Gamma(\xi, x) = 0$ unless $\xi \in (F^{\times})^n R_F^{\times}$ in which case we have

$$\Gamma(\xi,x)=1-q_F^{-1}.$$

(4) If $x \in \hat{I}_F - \hat{R}_F$, then $\Gamma(\xi, x) = 0$ unless $\xi \in (F^{\times})^{p^m} R_F^{\times}$ in which case we have

$$\Gamma(\xi,x) = \left\{ \begin{array}{ll} \sum_{\alpha \in M} \epsilon(\xi,\alpha)_F e_F(\alpha x) q_F^{-1} & \text{if } \xi \not\in (F^\times)^n R_F^\times, \\ -q_F^{-1} & \text{if } \xi \in (F^\times)^n R_F^\times. \end{array} \right.$$

(5) If $x \in (P_F^{\delta+1}) - \hat{I}_F$ and $\xi \in (F^{\times})^{p^m} R_F^{\times}$, then $\Gamma(\xi, x) = 0$. Hence the calculation of $\Gamma(\xi, x)$ is reduced to the case where

$$\xi \not\in (F^{\times})^{p^m}R_F^{\times}.$$

For such ξ we can define an ideal $I_F(\xi)$ of R_F which satisfies

$$\epsilon(\xi, 1-t)_F = e_F(\frac{1}{\xi} \frac{d\xi}{d\pi} t) \text{ for } t \in I_F(\xi)$$

where $\frac{d\xi}{d\pi}$ is a formal derivative of ξ with respect to π .

Theorem 1. Let $\xi \notin (F^{\times})^{p^m} R_F^{\times}$. Then $\Gamma(\xi, x) \neq 0$ if and only if there exists $\alpha \in R_F^{\times}$ such that

$$\xi^{-1} \frac{d\xi}{d\pi} \equiv \alpha x \mod \hat{I}_F(\xi)$$

in which case

$$\Gamma(\xi, x) = \epsilon(\xi, \alpha)_F e_F(\alpha x) |I_F(\xi)|.$$

Here $|I_F(\xi)| = Card.R_F/I_F(\xi)$.

The next problem, which is motivated from the theory of Whittaker models of metaplectic forms, is that: for a given $\nu \in F^{\times}$, determine the set

$$D(\nu) = \{ \xi \in F^{\times} / R_F^{\times} : \Gamma(\xi, \xi^{-1}\nu) \neq 0, \xi^{-1}\nu \notin \hat{R}_F \}.$$

Note that $D(\nu)$ essentially depends only the class $\nu(F^{\times})^n R_F^{\times}$. We can classify elements $\nu \in F^{\times}/(F^{\times})^n R_F^{\times}$ into three types: singular, p-singular and regular ones. Then we obtain the followings.

(1) If ν is singular, $D(\nu)$ consists a single element $\xi \in (F^{\times})^n R_F^{\times}$ such that

$$\Gamma(\xi,\xi^{-1}\nu)=-q_F^{-1}.$$

(2) If ν is p-singular, $D(\nu)$ consists a single element

$$\xi \in (F^{\times})^{p^m} R_F^{\times} - (F^{\times})^n R_F^{\times}$$

such that $|\Gamma(\xi, \xi^{-1}\nu)|^2 = q_F^{-1}$.

Theorem 2 describes the structure of $D(\nu)$ for all other regular elements ν . As a collorary we obtain that if ν is not singular

$$\sum_{\xi\in D(\nu)}|\Gamma(\xi,\frac{\nu}{\xi})|^2=q_F^{-1}.$$

2. The ring R_F

Let F_T be the maximal unramified extension in F and O_T be its integer ring. Then O_F is identified with the ring $O_T[[\pi]]$ which consists of power series

$$\sum_{i=0}^{\infty} a_i \pi^i$$

where $a_i \in O_T$ (or $a_i \in M$). The subring $O_T[[\pi^{p^\ell}]]$ $(1 \le \ell \le m)$ also plays a role. We define

$$\begin{split} I_F(0) &= \{x \in O_F : \delta/2 < ord_F x\}, \\ I_F(\ell) &= \{x \in O_T[[\pi^{p^\ell}]] : \frac{\delta - \ell e}{2} < ord_F x\} + I_F(\ell - 1) \\ &\qquad (1 \le \ell \le m - 1) \quad \text{and} \\ I_F(m) &= \{x \in O_T[[\pi^{p^m}]] : 0 < ord_F x\} + I_F(m - 1). \end{split}$$

We set

$$(2\ 1) R_F = O_T + I_F$$

with $I_F = I_F(m)$. Then R_F is a local ring with a maximal ideal I_F such that

$$R_F/I_F \cong O_F/P_F$$
.

We note that the mapping

$$t \to \epsilon(\pi, 1-t)_F$$

defines a character on $I_F(0)$. We take e_F so that

(22)
$$\epsilon(\pi, 1-t)_F = e_F(\frac{t}{\pi}) \quad \text{for all} \quad t \in I_F(0).$$

By the definition of δ we see that

$$e_F(P_F^{\delta}) = 1$$
 and $e_F(P_F^{\delta-1}) \neq 1$.

If A is a O_T -lattice of F, define the dual lattice \hat{A} by

(23)
$$\hat{A} = \{x \in F : e_F(xy) = 1 \text{ for } y \in A\}.$$

Proposition 1.

- (1) $\hat{I}_F(0) = \pi^{-1}I_F(0)$.
- (2) $\hat{I}_{F}(\ell-1) = O_{T} < ip^{\ell}\pi^{ip^{\ell}-1}; \frac{\delta-\ell e}{2} < ip^{\ell} < \frac{\delta-\ell e+e}{2}, (i,p) = 1 > +\hat{I}_{F}(\ell)$ $(1 \le \ell \le m-1).$
- (3) $\hat{I}_F(m-1) = O_T < \pi^{\delta ip^m 1}; 0 < ip^m < \frac{\delta (m-1)e}{2}, (i, p) = 1 > +\hat{I}_F.$
- (4) $\hat{I}_F = O_T < \pi^{\delta-1} > +\hat{R}_F$.

Here $O_T < \pi^{\alpha} >$ denote the O_T -submodule generated by π^{α} .

Proof. Since $e_F(P_F^{\delta}) = 1$ and $e_F(P_F^{\delta-1}) \neq 1$ we have

$$(P_F^{\delta}) = O_F.$$

Hence

$$\hat{I}_{F}(0) = (P_{F}^{\frac{\delta+1}{2}})^{\circ}$$

$$= P_{F}^{\frac{\delta-1}{2}} (P_{F}^{\delta})^{\circ}$$

$$= \pi^{-1} I_{F}(0).$$

By definition we have

$$I_F(\ell) = O_T < \pi^{ip^{\ell}}; \frac{\delta - \ell e}{2} < ip^{\ell} < \frac{\delta - \ell e + e}{2}, (i, p) = 1 > +I_F(\ell - 1).$$

Since

$$e_F(\pi^{\delta - ip^{\ell} - 1} \cdot I_F(\ell - 1)) = 1$$
 and $e_F(\pi^{\delta - ip^{\ell} - 1} \cdot \pi^{ip^{\ell}}) \neq 1$

we have $\pi^{\delta-ip^{\ell}-1} \in \hat{I}_F(\ell-1)-\hat{I}_F(\ell)$. Considering the dimensions of $I_F(\ell)/I_F(\ell-1)$ and $\hat{I}_F(\ell-1)/\hat{I}_F(\ell)$ over $O_T/(p)$, we obtain the result.

Corollary.

(1) If $t_1, t_2 \in I_F(\ell)$, then $e_F(\frac{p^{\ell}}{\pi}t_1t_2) = 1$. (2) If $t_1 \in \forall_T[[\pi^{p^{\ell}}]]$ and $e_F(\frac{p^{\ell}}{\pi}t_1t) = 1$ for all $t \in I_F(\ell)$, then $t_1 \in I_F(\ell)$.

Proof. If $t_1 \in I_F(\ell)$, then $\frac{p^{\ell}}{\pi}t_1 \in \hat{I}_F(\ell)$ by Proposition 1. Hence

$$e_F(\frac{p^\ell}{\pi}t_1t_2)=1$$
 for all $t_2\in I_F(\ell)$.

Conversely, if $e_F(\frac{p^\ell}{\pi}t_1t)=1$ for all $t\in I_F(\ell)$, then

$$\frac{p^{\ell}}{\pi}t_1\in \hat{I}_F(\ell).$$

Since $t_1 \in O_T[[\pi^{p^{\ell}}]]$ we have $t_1 \in I_F(\ell)$.

3. The ideal $I_F(\xi)$

Lemma 1. Let i be an integer prime to p and $0 \le \ell \le m-1$.

(1) If $t \in I_F(\ell)$, then

$$\epsilon(\pi^{ip^{\ell}}, 1-t)_F = e_F(\frac{ip^{\ell}}{\pi}t).$$

(2) If $t\pi^{ip^{\ell}} \in I_F(\ell)$ and $t \in I_F$, then

$$\epsilon(1-\pi^{ip^{\ell}},1-t)_F = e_F(\frac{-ip^{\ell}\pi^{ip^{\ell}-1}}{1-\pi^{ip^{\ell}}}t).$$

Proof. By (1.2) we have

$$\epsilon(\pi^i, 1-t)_F = e_F(\frac{i}{\pi}t) \quad \text{for } t \in I_F(0).$$

We prove (1) by the induction on ℓ . If $\ell=0$, we have done. Assume that if $t \in I_F(\ell-1)$, then

$$\epsilon(\pi^{ip^{\ell-1}}, 1-t)_F = e_F(\frac{ip^{\ell-1}}{\pi}t).$$

If $t \in I_F(\ell) - I_F(\ell-1)$, then

$$pt \in I_F(\ell-1)$$
 and $e_F(\frac{p^\ell}{\pi}t^2) = 1$

by Corollary to Proposition 1; hence

$$\epsilon(\pi^{ip^{\ell}}, 1-t)_F = \epsilon(\pi^{ip^{\ell-1}}, (1-t)^p)_F$$

$$= \epsilon(\pi^{ip^{\ell-1}}, 1-pt + \binom{p}{2}t^2 + \cdots)_F$$

$$= e_F(\frac{ip^{\ell-1}}{\pi}(pt - \binom{p}{2}t^2 + \cdots))$$

$$= e_F(\frac{ip^{\ell}}{\pi}t)$$

To prove (2) we need the important property of the Hilbert symbol

$$(1-x,1-y)_F = (1-x,1-xy)_F(x,1-xy)_F(1-xy,1-y)_F.$$

In fact we have

$$\begin{split} \epsilon(1-\pi^{ip^{\ell}},1-t)_{F} &= \epsilon(1-\pi^{ip^{\ell}},1-\pi^{ip^{\ell}}t)_{F}\epsilon(\pi^{ip^{\ell}},1-\pi^{ip^{\ell}}t)_{F} \\ &\quad \cdot \epsilon(1-\pi^{ip^{\ell}}t,1-t)_{F} \\ &= \epsilon(1-\pi^{ip^{\ell}},1-\pi^{ip^{\ell}}t)_{F}e_{F}(-ip^{\ell}\pi^{ip^{\ell}-1}t) \end{split}$$

because $(1+I_F(\ell),1+I_F)_F=1$. Replacing t by $\pi^{ip^\ell}t$ we obtain

$$\epsilon(1 - \pi^{ip^{\ell}}, 1 - \pi^{ip^{\ell}}t)_F = \epsilon(1 - \pi^{ip^{\ell}}, 1 - \pi^{2ip^{\ell}}t)_F e_F(-ip^{\ell}\pi^{ip^{\ell}-1}\pi^{ip^{\ell}}t).$$

Thus we have

$$\begin{split} \epsilon(1-\pi^{ip^{\ell}},1-t)_{F} &= \epsilon(1-\pi^{ip^{\ell}},1-\pi^{ip^{\ell}}t)_{F}e_{F}(-ip^{\ell}\pi^{ip^{\ell}-1}t) \\ &= \epsilon(1-\pi^{ip^{\ell}},1-\pi^{2ip^{\ell}}t)_{F}e_{F}(-ip^{\ell}\pi^{ip^{\ell}-1}(1+\pi^{ip^{\ell}})t) \\ &= \cdots \\ &= e_{F}((-ip^{\ell}\pi^{ip^{\ell}-1}(1+\pi^{ip^{\ell}}+\pi^{2ip^{\ell}}+\cdots)t) \\ &= e_{F}(\frac{-ip^{\ell}\pi^{\ell}-1}{1-\pi^{ip^{\ell}}}t). \end{split}$$

Now let us define $I_F(\xi)$ for $\xi \in F^{\times}$ with $0 \leq ord_F \xi < p^m$ and $\xi \notin R_F^{\times}$. We write

$$\xi = \xi_0 + \xi_1 + \dots + \xi_m$$

with

$$\xi_{\ell} = \sum_{(i,p)=1} a_{ip\ell} \pi^{ip\ell} \quad (0 \le \ell \le m)$$

where $(a_{ip^{\ell}} \in M \cup \{0\})$. We call ξ to be of type $(i'p^{k'}, ip^k)$ if

$$(3 1) ord_F \xi = i'p^{k'},$$

(32)
$$\min_{0 \le \ell \le m-1} \operatorname{ord}_F \pi^{\frac{\ell e}{2}} \xi_{\ell} = \frac{ke}{2} + ip^k.$$

We see in this case that

$$ord_F \xi_\ell > ip^k + \frac{ke - \ell e}{2}$$
 for $\ell < k$;

and $\xi I_F(k) \subset I_F(k)$.

If ξ is of type $(i'p^{k'}, ip^k)$, we define

(3 3)
$$I_F(\xi) = I_F \cap \pi^{-ip^k + i'p^{k'}} I_F(k).$$

Lemma 2. If $ord_F \xi = 0$, then

$$I_F(\xi) = I_F \cap \xi I_F$$
;

therefore

$$I_F(\xi^{-1}) = I_F(\xi)$$
 and $\xi I_F(\xi) = I_F(\xi)$.

Proof. If ξ is of type $(0, ip^k)$, then by (3.3)

$$I_F(\xi) = I_F \cap \pi^{-ip^k} I_F(k).$$

If $t \in I_F(k)$, then $\xi^{-1}t \in I_F(k) \subset I_F$ because ξ^{-1} is also of type $(0, ip^k)$; hence $I_F(k) \subset I_F \cap \xi I_F$. For $t \in I_F - I_F(k)$ with $t \in O_T[[\pi^{p^k}]]$, we have

$$\xi t \in I_F$$
 if and only if $\pi^{ip^k} t \in I_F(k)$.

Hence the assertion follows.

Proposition 2. Let ξ be of type $(i'p^{k'}, ip^k)$. If $t \in I_F(\xi)$, then

$$\epsilon(\xi, 1-t)_F = e_F(\frac{1}{\xi} \frac{d\xi}{d\pi} t).$$

Furthermore, if $t_1 \in R_F$ satisfies

$$e_F(\frac{1}{\xi}\frac{d\xi}{d\pi}t_1t)=1$$
 for all $t\in I_F(k)$,

then $t_1 \in I_F(\xi)$.

Proof. We may assume that ξ is of type $(i'p^{k'}, ip^k)$. We write

$$\xi = a\pi^{i'p^{k'}}\prod(1-a_{j,\ell}\pi^{jp^{\ell}})$$

If $t \in I_F(k')$, then

$$\epsilon(\pi^{i'p^{k'}}, 1-t)_F = e_F(\frac{i'p^{k'}\pi^{i'p^{k'}-1}}{\pi^{i'p^{k'}}}t)$$

; if $\pi^{jp^{\ell}}t \in I_F(\ell)$ and $t \in I_F$, then

$$\epsilon(1-a_{j,\ell}\pi^{jp^{\ell}},1-t)_F = e_F(\frac{-a_{j,\ell}jp^{\ell}\pi^{jp^{\ell}-1}}{1-a_{j,\ell}\pi^{jp^{\ell}}}t).$$

By definition we have

$$I_F(\xi) = I_F(k') \cap \bigcap_{j,\ell} \pi^{-jp^{\ell}} I_F(\ell).$$

Thus we obtain that if $t \in I_F(\xi)$ then

$$\begin{split} \epsilon(\xi, 1 - t)_F &= e_F(\frac{i'p^{k'}\pi^{i'p^{k'}-1}}{\pi^{i'p^{k'}}}t + \sum_{j,\ell} \frac{-a_{j,\ell}jp^{\ell}\pi^{jp^{\ell}-1}}{1 - a_{j,\ell}\pi^{jp^{\ell}}}t) \\ &= e_F(\frac{1}{\xi}\frac{d\xi}{d\pi}t) \end{split}$$

Let us prove the latter part. We assume that $t_1 \in R_F - I_F(k)$; hence $t_1 \in O_T[[\pi^{p^k}]]$. By definition we have

$$\frac{1}{\varepsilon} \frac{d\xi}{d\pi} t_1 \in \hat{I}_F(k).$$

Since ξ is of $(i'p^{k'}, ip^k)$ we obtain

$$p^k \frac{\pi^{ip^k - i'p^{k'} - 1}}{1 - \pi^{ip^k - i'p^{k'}}} t_1 \in \hat{I}_F(k)$$
 i.e. $\pi^{ip^k - i'p^{k'}} t_1 \in I_F(k)$.

Hence $t_1 \in I_F \cap \pi^{-ip^k+i'p^{k'}}I_F(k)$.

Now we can state the first result.

Theorem 1. Let ξ be as above. For any $x \in F^{\times}$, one has

$$\Gamma(\xi,x)\neq 0$$

if and only if there exists $\alpha \in R_F^{\times}$ such that

$$\frac{1}{\xi} \frac{d\xi}{d\pi} \equiv \alpha x \mod \hat{I}_F(\xi)$$

in which case we have

$$\Gamma(\xi, x) = \epsilon(\xi, \alpha)_F e_F(\alpha x) |I_F(\xi)|.$$

Proof. We have

$$\begin{split} \Gamma(\xi,x) &= \int_{R_F^\times} \epsilon(\xi,y)_F e_F(xy) dy \\ &= \sum_{\alpha \in R_F^\times/(1+I_F(\xi))} \int_{I_F(\xi)} \epsilon(\xi,\alpha(1-t))_F e_F(\alpha x(1-t)) dt \\ &= \sum_{\alpha \in R_F^\times/(1+I_F(\xi))} \epsilon(\xi,\alpha) e_F(\alpha x) \int_{I_F(\xi)} \epsilon(\xi,1-t)_F e_F(-\alpha xt) dt \\ &= \sum_{\alpha \in R_F^\times/(1+I_F(\xi))} \epsilon(\xi,\alpha) e_F(\alpha x) \int_{I_F(\xi)} e_F((\frac{1}{\xi} \frac{d\xi}{d\pi} - \alpha x)t) dt \end{split}$$

It is enough to see that there exists at most one such $\alpha \mod (1 + I_F(\xi))$ that

$$\frac{1}{\xi} \frac{d\xi}{d\pi} \equiv \alpha x \mod \hat{I}_F(\xi).$$

If α and α' satisfy the above relation, then

$$(\alpha^{-1} - \alpha'^{-1}) \frac{1}{\xi} \frac{d\xi}{d\pi} \equiv 0 \mod \hat{I}_F(k).$$

Then by Proposition 2 we have

$$\alpha^{-1} - \alpha'^{-1} \in I_F(\xi).$$

4. The set $D(\nu)$

Recall that for $\nu \in F^{\times}$ we have defined

(41)
$$D(\nu) = \{ \xi \in F^{\times} / R_F^{\times} : \Gamma(\xi, \xi^{-1}\nu) \neq 0, \xi^{-1}\nu \notin \hat{R}_F \}.$$

Lemma 3. If $x \in \hat{I}_F - \hat{R}_F$, then $\Gamma(\xi, x) = 0$ unless $\xi \in (F^{\times})^{p^m} R_F^{\times}$ in which case we have

$$\Gamma(\xi,x) = \left\{ \begin{array}{ll} \sum_{\alpha \in M} \epsilon(\xi,\alpha)_F e_F(\alpha x) q_F^{-1} & \text{if} \quad \xi \not \in (F^\times)^n R_F^\times \\ -q_F^{-1} & \text{if} \quad \xi \in (F^\times)^n R_F^\times \end{array} \right.$$

Proof. If $x \in \hat{I}_F - \hat{R}_F$, then

$$e_F(xI_F) = 1$$
 and $e_F(xR_F) \neq 1$.

Since $M \cup \{0\}$ is a representative set of R_F/I_F , we have

$$\sum_{\alpha \in M \cup \{0\}} e_F(\alpha x) = 0;$$

therefore

$$\sum_{\alpha \in M} e_F(\alpha x) = -1.$$

Then

$$\begin{split} \Gamma(\xi,x) &= \sum_{\alpha \in M} \epsilon(\xi,\alpha)_F e_F(\alpha x) \int_{I_F} \epsilon(\xi,1+t)_F e_F(\alpha t x) dt \\ &= \sum_{\alpha \in M} \epsilon(\xi,\alpha)_F e_F(\alpha x) \int_{I_F} \epsilon(\xi,1+t)_F dt. \end{split}$$

If $\xi \notin (F^{\times})^{p^m} R_F^{\times}$, then

$$\int_{I_F} \epsilon(\xi, 1+t)_F dt = 0 \quad \text{and} \quad \Gamma(\xi, x) = 0.$$

If $\xi \in (F^{\times})^{p^m} R_F^{\times}$, then

$$\begin{split} \Gamma(\xi, x) &= \sum_{\alpha \in M} \epsilon(\xi, \alpha)_F e_F(\alpha x) |I_F| \\ &= \left\{ \begin{array}{ll} \sum_{\alpha \in M} \epsilon(\xi, \alpha)_F e_F(\alpha x) q_F^{-1} & \text{if} \quad \xi \not\in (F^\times)^n R_F^\times \\ -q_F^{-1} & \text{if} \quad \xi \in (F^\times)^n R_F^\times . \end{array} \right. \end{split}$$

Lemma 4. Let ξ be of type $(i'p^{k'}, ip^k)$. Then

$$\Gamma(\xi,\frac{\nu}{\xi})\neq 0$$

if

$$\frac{d\xi}{d\pi} \equiv \nu \mod \pi^{ip^k} \hat{I}_F(k).$$

Convsersely, if

$$\Gamma(\xi,\frac{\nu}{\xi})\neq 0$$

then there exists $\alpha \in R_F^{\times}$ such that

$$\frac{d\xi}{d\pi} \equiv \alpha \nu \mod \pi^{i'p^{k'}} \hat{I}_F + \pi^{ip^k} \hat{I}_F(k).$$

Proof. Since ξ is of type $(i'p^{k'}, ip^k)$, we have

$$\xi \pi^{-i'p^{k'}} I_F(k) = I_F(k).$$

If

$$\frac{d\xi}{d\pi} \equiv \nu \mod \pi^{ip^k} \hat{I}_F(k)$$

then

$$\frac{1}{\xi}\frac{d\xi}{d\pi} \equiv \frac{1}{\xi}\nu \mod \pi^{-ip^k+i\hat{'}p^{k'}}I_F(k).$$

Thus

$$\frac{1}{\xi} \frac{d\xi}{d\pi} \equiv \frac{1}{\xi} \nu \mod \hat{I}_F(\xi)$$

because $\pi^{-ip^k+i\hat{p}^{k'}}I_F(k)\subset \hat{I}_F(\xi)$.

Let prove the latter part. By Theorem 1 there exists $\alpha \in R_F^{\times}$ such that

$$\frac{1}{\xi} \frac{d\xi}{d\pi} \equiv \alpha \frac{1}{\xi} \nu \mod \hat{I}_F(\xi).$$

Then

$$\frac{d\xi}{d\pi} \equiv \alpha \nu \mod \hat{\xi}^{-1} I_F(\xi).$$

If $i'p^{k'} \neq ip^k$ then $\xi_0 = \xi \pi^{-i'p^{k'}}$ is of type $(0, ip^k - i'p^{k'})$, and $I_F(\xi) = I_F(\xi_0)$; by Lemma 2

$$\xi^{-1}I_F(\xi) = \pi^{-i'p^{k'}}\xi_0^{-1}I_F(\xi_0)$$

$$= \pi^{-i'p^{k'}}I_F(\xi_0)$$

$$= \pi^{-i'p^{k'}}I_F \cap \pi^{-ip^k}I_F(k).$$

If $i'p^{k'}=ip^k$, then $I_F(\xi)=I_F(k)$ and

$$\xi^{-1}I_F(\xi) = \pi^{-ip^k}I_F(k).$$

Thus the assertion follows.

Proposition 3.

- (1) If $\nu \in \hat{I}_F \hat{R}_F$, then $D(\nu) = \{1\}$.
- (2) If $\nu \in \hat{I}_F(m) \hat{I}_F$, then $D(\nu) = \{\pi^{ip^m}\}\$ for some $1 \le i < n_0$.

Proof. Let $\nu \in \hat{I}_F - \hat{R}_F$. It follows from Lemma 2 that $1 \in D(\nu)$. If $\nu \in \hat{I}_F(m) - \hat{R}_F$, then there is no $\xi \notin (F^{\times})^{p^m} R_F^{\times}$ such that

$$\frac{d\xi}{d\pi} \equiv \nu \mod \pi^{ip^k} \hat{I}_F(k)$$

because ν contains a non-vanishing term

$$a\pi^{\delta-ip^m-1}$$
 $(a\in M, 0\leq ip^m<\frac{\delta-(m-1)e}{2}).$

Recall that

$$\hat{I}_F(m-1) = O_T < \pi^{\delta - ip^m - 1}; 0 < ip^m < \frac{\delta - (m-1)e}{2} > + O_T < \pi^{\delta - 1} > + \hat{R}_F.$$

Thus , if $\nu \in \hat{I}_F(m) - \hat{I}_F$, then $\pi^{ip^m} \nu \in \hat{I}_F - \hat{R}_F$.

Definition 2.

- (1) We call ν simular if there exists an integer i such that $\nu \pi^{ni} \in \hat{I}_F \hat{R}_F$.
- (2) We call ν *p-singular* if ν is not singular and if there exists an integer j such that $\nu \pi^{p^m j}$ is singular.
- (3) We call any other element in F^{\times} regular.

Example 1. If $F = \mathbb{Q}_p(1^{1/p})$ and n = p, then $\delta = p$;

$$R_F = \mathbb{Z}_p + I_F(0), \quad I_F(0) = P_F^{\frac{p+1}{2}};$$

and

$$\begin{split} \hat{I}_F &= P_F^{\frac{p-1}{2}} \\ &= \mathbb{Z}_p \pi^{p-1} + \hat{R}_F. \end{split}$$

All the elements ν in F^{\times} such that $\nu \notin \hat{R}_F$ and $\pi^p \nu \in \hat{R}_F$ fall into the following three class :

[1]
$$0 \leq ord_F \nu \leq \frac{p-3}{2}$$

[2]
$$\frac{-p-1}{2} \le ord_F \nu \le -2$$
, $e_F(\pi^p \nu) = 1$

[3]
$$\frac{p-1}{2} \leq ord_F \nu \leq p-2, \quad e_F(\nu) \neq 1.$$

The elements in [1] and [2] are regular; the elements in [3] are singular.

Example 2. If $F = \mathbb{Q}_p(1^{\frac{1}{p^2}})$ and $n = p^2$, then $\delta = 2p^2 - p$;

$$R_F = \mathbb{Z}_p + \mathbb{Z}_p \pi^{\frac{p+1}{2}p} + \dots + \mathbb{Z}_p \pi^{(p-1)p} + I_F(0), \quad I_F(0) = P_F^{p^2 - \frac{p-1}{2}};$$

and

$$\hat{I}_F(0) = P_F^{p^2 - \frac{p+1}{2}}
= \mathbb{Z}_p \pi^{2p^2 - p - 1} + \mathbb{Z}_p \pi^{p^2 - 1} + \dots + \mathbb{Z}_p \pi^{\frac{3}{2}p(p-1) - 1} + \hat{R}_F.$$

The regular elements ν in F^{\times} such that $\nu \notin \hat{R}_F$ and $\pi^p \nu \in \hat{R}_F$ are classified as follows.

[1]
$$0 \le ord_F \nu \le p^2 - \frac{p+1}{2}$$
, $(ord_F \nu + 1, p) = 1$

$$[2] \quad \frac{-p-1}{2} \leq ord_F \nu \leq -2,$$

[3]
$$\frac{p^2+p}{2}-1 \le ord_F\nu \le p(p-1)-1$$
, $p|(ord_F\nu+1)$

[4]
$$p^2 - 1 \le ord_F \nu \le \frac{3}{2}p(p-1) - 1$$
, $p|(ord_F \nu + 1)$.

Let ν be a regular element in F^{\times} such that $\nu \notin \hat{R}_F$ and $\pi^{p^m} \nu \in \hat{R}_F$. Then $\nu \notin \hat{I}_F(m)$ because ν is regular. We can write

$$\nu = \sum_{\ell}^{m} \nu_{\ell}$$

with

$$\begin{split} \nu_{\ell} &= \sum_{(i,p)=1} i p^{\ell} a_{i,\ell} \pi^{i p^{e \ell \ell} - 1} \quad (0 \leq \ell < m) \\ \nu_{m} &= \sum_{i} a_{i,m} \pi^{\delta - i p^{m} - 1} \end{split}$$

where $a_{i,\ell} \in M \cup \{0\}$. Since $\nu \notin \hat{I}_F(m)$ we have $\delta < ord_F \nu_m$. If we put

$$ord_F \nu_\ell = e\ell + i_\ell p^\ell - 1 \quad (0 \le \ell < m),$$

then

$$\frac{\delta + \ell e}{2} - p^m < \ell e + i_\ell p^\ell < \frac{\delta + \ell e}{2}.$$

Since $D(\nu)$ depends only on νR_F^{\times} , it is enough to consider $\nu(1+I_F)$; hence we may assume that $\nu_m=0$,i.e.

$$\nu = \sum_{\ell=0}^{m-1} \nu_{\ell}.$$

If $i_{\ell}p^{\ell} > 0$ for all ℓ $(0 \le \ell \le m-1)$, we call ν positive. In the case where $e_1 = 1$, there exist non-positive elements ν such that $\nu \notin \hat{R}_F$ and $\pi^{p^m}\nu \in \hat{R}_F$ (see Example 1 and 2).

Now we construct an element $\xi \notin (F^{\times})^{p^m} R_F^{\times}$ such that

$$\frac{d\xi}{d\pi} \equiv \nu \mod \pi^{ip^k} \hat{I}_F(k).$$

Here k is the number $0 \le k < m$ so that

$$\min_{0 \leq \ell \leq m} \operatorname{ord}_F(\pi^{-\ell e/2}\nu_\ell) = \frac{ke}{2} + i_k p^k - 1.$$

From the expansion of ν_{ℓ} we remove the terms of ν_{ℓ} which are contained in $\pi^{i_k p^k} \hat{I}_F(k)$; then

$$\tilde{\nu}_\ell = \sum_{(i,p)=1} i p^\ell a_{i,\ell} \pi^{ip^\ell-1} \quad (p^\ell \pi^{ip^\ell-1} \not\in \pi^{i_k p^k} \hat{I}_F(k)).$$

We set

$$\xi_{\ell} = \sum_{(i,p)=1} a_{i,\ell} \pi^{ip^{\ell}}$$

where the summation is taken over the same range for $\tilde{\nu}_{\ell}$. Then the order ip^{ℓ} of terms which appear in the expansion of ξ_{ℓ} satisfies

$$\frac{\delta - \ell e}{2} - p^m < ip^{\ell} < \begin{cases} i_k p^k + \frac{\delta + ke}{2} - \ell e & \text{if } \ell \ge k, \\ i_k p^k + \frac{\delta - \ell e}{2} & \text{if } \ell < k. \end{cases}$$

If we set $\xi = \sum_{\ell=0}^{m-1} \xi_{\ell}$, then ξ is not in $I_F(m)$ and of type $(i_{k'}p^{k'}, i_kp^k)$ where

$$ord_F \xi = i_{k'} p^{k'} \ (k' \ge k)$$

 $i_k p^k - i_{k'} p^{k'} < \frac{e}{2} (k' - k).$

By construction it is clear that $\xi \in D(\nu)$.

By Lemma 4, every other element ξ' in $D(\nu)$ is of type $(ip^{\ell}, i_k p^k)$ with $i_k p^k - \frac{\delta - \ell e}{2} < ip^{\ell} \le i_{k'} p^{k'}$ and

$$\frac{d\xi'}{d\pi} \equiv \frac{d\xi}{d\pi} \mod \pi^{i\ell} \hat{I}_F + \pi^{i_k p^k} \hat{I}_F(k).$$

Since

$$\xi' - \xi \in \pi^{i\ell} I_F + \pi^{i_k p^k} I_F(k),$$

we can choose a representative ξ' in $\xi(1+I_F)$;

$$\xi' = \xi + \sum_{\ell'=k+1}^{m} \sum_{(i',p)=1} a_{i',\ell'} \pi^{ip^{\ell}}$$

where $p^{\ell}\pi^{ip^{\ell}} \in \pi^{i_k p^k} \hat{I}_F(k)$, i.e. $jp^{\ell} + \ell e > i_k p^k + \frac{\delta + ke}{2}$.

We write $D_1(\nu)$ (resp. $D_0(\nu)$) for the subset of $D(\nu)$ consisting of the elements ξ' with $ord_F\xi'=i_{k'}p^{k'}$ (resp. $ord_F\xi'< i_{k'}p^{k'}$) and $D_{0,ip'}$ the subset of $D(\nu)$ consisting of the elements ξ' with $ord_F\xi'=ip'< i_{k'}p^{k'}$.

We define

$$\begin{split} \Delta_{1}(\xi) &= \{jp^{\ell} : (j,p) = 1, k < \ell < m, jp^{\ell} + \ell e > i_{k}p^{k} + \frac{\delta + ke}{2}, \\ & i_{k'}p^{k'} < jp^{\ell} < i_{k}p^{k} + \frac{\delta - ke}{2} - 2(i_{k}p^{k} - i_{k'}p^{k'})\} \\ & \cup \{jp^{m} : i_{k'}p^{k'} < jp^{m} < i_{k}p^{k} + \frac{\delta - ke}{2} - 2(i_{k}p^{k} - i_{k'}p^{k'})\} \\ \Delta_{0}(\xi) &= \{jp^{\ell} : (j,p) = 1, k < \ell < m, \\ & 0 < jp^{\ell} < i_{k'}p^{k'}, jp^{\ell} + \ell e > i_{k}p^{k} + \frac{\delta + ke}{2}\} \\ & \cup \{jp^{m} : 0 \le jp^{m} < i_{k'}p^{k'}\} \end{split}$$

Then we see that

$$\begin{split} \Delta_1(\xi) \cup \Delta_0(\xi) &= \{jp^\ell : (j,p) = 1, k < \ell < m, jp^\ell + \ell e > i_k p^k + \frac{\delta - ke}{2}, \\ 0 &< jp^\ell < i_k p^k + \frac{\delta - ke}{2} - 2(i_k p^k - i_{k'} p^{k'})\} \\ \cup \{jp^m : 0 < jp^m < i_k p^k + \frac{\delta - ke}{2} - 2(i_k p^k - i_{k'} p^{k'})\}; \end{split}$$

and

(4.2)
$$q_F^{|\Delta_1(\xi)|+|\Delta_0(\xi)|+1} = |I_F(\xi)|^2$$

where $|\Delta_i(\xi)|$ denotes the cardinality of $\Delta_i(\xi)$. If $\xi' \in D_{0,ip^{\ell}}$, we define

$$\begin{split} \Delta_{1}(\xi') &= \{jp^{\ell'}: (j,p) = 1, k < \ell' < m, jp^{\ell'} + \ell'e > i_{k}p^{k} + \frac{\delta + ke}{2} \\ & ip^{\ell} < jp^{\ell'} < i_{k}p^{k} + \frac{\delta - ke}{2} - 2(i_{k}p^{k} - ip^{\ell})\} \\ & \cup \{jp^{m}: ip^{\ell} < jp^{\ell'} < i_{k}p^{k} + \frac{\delta - ke}{2} - 2(i_{k}p^{k} - ip^{\ell})\} \\ \Delta_{0}(\xi') &= \{jp^{\ell'}: (j,p) = 1, k < \ell' < m, \\ & 0 < jp^{\ell'} < ip^{\ell}, jp^{\ell'} + \ell'e > i_{k}p^{k} + \frac{\delta + ke}{2}\} \\ & \cup \{jp^{m}: 0 \leq jp^{m} < ip^{\ell}\}. \end{split}$$

Then we see that

(4 3)
$$q_F^{|\Delta_1(\xi')|+|\Delta_0(\xi)|+1} = |I_F(\xi')|^2.$$

Theorem 2. Let ν be a regular element in F^{\times} such that $\nu \notin \hat{R}_F$ and $\pi^{p^m} \nu \in \hat{R}_F$. With the notations as above, one has

$$D(\nu) = D_1(\nu) \cup D_2(\nu)$$

where

$$D_1(\nu) = \{ \xi + \sum_{jp^{\ell} \in \Delta_1(\xi)} a_{jp^{\ell}} \pi^{jp^{\ell}} : a_{jp^{\ell}} \in M \cup \{0\} \}$$

and

$$\begin{split} D_0(\nu) &= \bigsqcup_{jp^{\ell} \in \Delta_0(\xi)} D_{0,jp^{\ell}}(\nu) \\ D_{0,jp^{\ell}}(\nu) &= \{a_{jp^{\ell}}\pi^{jp^{\ell}} + \xi + \sum_{j'p^{\ell'} \in \Delta_1(a_{jp^{\ell}}\pi^{jp^{\ell}} + \xi)} a_{j'p^{\ell'}}\pi^{j'p^{\ell'}} : \\ a_{jp^{\ell}} \in M \quad and \quad a_{j'p^{\ell'}} \in M \cup \{0\}\}. \end{split}$$

Corollary. If ν is not singular, then

$$\sum_{\xi \in D(\nu)} |\Gamma(\xi, \frac{\nu}{\xi})|^2 = q_F^{-1}.$$

Proof. It is clear when ν is p-singular. We prove that when ν is regular. We assume that $\nu \notin \hat{R}_F$ and $\pi^{p^m}\nu \in \hat{R}_F$. Then by Theorem 2 we have

$$\begin{split} \sum_{\xi' \in D(\nu)} |\Gamma(\xi', \frac{\nu}{\xi'})|^2 &= \sum_{\xi' \in D_1(\nu)} |\Gamma(\xi', \frac{\nu}{\xi'})|^2 + \sum_{\xi' \in D_0(\nu)} |\Gamma(\xi', \frac{\nu}{\xi'})|^2 \\ &= \sum_{\xi' \in D_1(\nu)} |I_F(\xi)|^{-2} + \sum_{ip^{\ell} \in \Delta_0(\xi)} \sum_{\xi' \in D_0, ip^{\ell}} |I_F(\pi^{ip^{\ell}} + \xi)|^{-2}. \end{split}$$

By (4.2) we have

$$\begin{split} \sum_{\xi' \in D_1(\nu)} |I_F(\xi)|^{-2} &= |D_1(\nu)| |I_F(\xi)|^{-2} \\ &= q_F^{\Delta_1(\xi)} q_F^{-\Delta_1(\xi) - \Delta_0(\xi) - 1} \\ &= q_F^{-\Delta_0(\xi) - 1}. \end{split}$$

Similarly by (4.3) we have

$$\begin{split} \sum_{\xi' \in D_{0,ip\ell}} |I_F(\pi^{ip^\ell} + \xi)|^{-2} &= |D_{0,ip^\ell}| |I_F(\pi^{ip^\ell} + \xi)|^{-2} \\ &= (q_F - 1)q_F^{\Delta_1(\pi^{ip^\ell} + \xi)}q_F^{-\Delta_1(\pi^{ip^\ell} + \xi) - \Delta_0(\pi^{ip^\ell} + \xi) - 1} \\ &= q_F^{-\Delta_0(\pi^{ip^\ell} + \xi)}(1 - q_F^{-1}). \end{split}$$

Finally we have

$$\begin{split} \sum_{\xi' \in D(\nu)} |\Gamma(\xi', \frac{\nu}{\xi'})|^2 &= q_F^{-\Delta_0(\xi) - 1} + \sum_{ip^{\ell} \in \Delta_0(\xi)} q_F^{-\Delta_0(\pi^{ip^{\ell}} + \xi)} (1 - q_F^{-1}) \\ &= q_F^{-1}. \end{split}$$

APPENDIX

A1. The metaplectic group

So far we have studied "Gauss Sums" over a maximal isotropic ring R_F with respect to the Hilbert symbol of the ground field F. This result is one of preparatory work to develop a comprehensive local theory of metaplectic forms. In [KP] Kazhdan and Patterson invent a very beatiful formulation (local and global) for metaplectic forms. Unfortunately they describe their local theory only for the

case where the metaplectic degree n is co-prime to the residual characteristic of F. In that case R_F coincides with the integer ring of F. Therefore we need a local theory of metaplectic forms, which is based on R_F . In this appendix we give some statements in that theory, which follow immediately from our results.

Let us recall several definitions related to the local metaplectic group (see [KP]). Let

$$\begin{split} G = &GL(2,F) \\ H = &\{h = diag(h_1,h_2) \in G : h_1,h_2 \in F^{\times}\} \\ N = &\{n = \begin{pmatrix} 1 & n_{12} \\ 0 & 1 \end{pmatrix} \in G : n_{12} \in F\} \\ N_{-} = &\{n = \begin{pmatrix} 1 & 0 \\ n_{21} & 1 \end{pmatrix} \in G : n_{21} \in F\} \\ W = &\{I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, s = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\} \\ K_0 = &GL(2,O_F) \\ K = &GL(2,R_F) \end{split}$$

For $g_1, g_2 \in G$ we set

$$\sigma(g_1,g_2) = \left(\frac{\chi(g_1g_2)}{\chi(g_1)},\frac{\chi(g_1g_2)}{\chi(g_2)}\right)_F \left(det(g_1),\frac{\chi(g_1g_2)}{\chi(g_1)}\right)_F$$

where

$$\chi\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = \left\{ \begin{array}{ll} c & \text{if } c \neq 0, \\ d & \text{if } c = 0. \end{array} \right.$$

We see that

(A 1)

$$\sigma(h, h') = (h_1, h'_2)_F$$
 for $h = diag(h_1, h_2), h' = diag(h'_1, h'_2) \in H$

(A 2)

$$\sigma(ng, g'n') = \sigma(g, g')$$
 for $n, n' \in N$

We define the metaplectic group

$$\tilde{G} = \{(g,\zeta) : g \in G, \ \zeta \in \mu_n(F)\}$$

with multiplicaion law

$$(g,\zeta)(g',\zeta')=(gg',\sigma(g,g')\zeta\zeta');$$

and related mappings

$$\begin{split} \mathbf{i} : & \mu_n(F) \to \tilde{G} \quad \text{by} \quad \mathbf{i}(\zeta) = (I, \zeta) \\ \mathbf{p} : \tilde{G} \to G \quad \text{by} \quad \mathbf{p}(g, \zeta) = g \\ \mathbf{s} : G \to \tilde{G} \quad \text{by} \quad \mathbf{s}(g) = (g, 1) \\ h_{12} : F^{\times} \to \tilde{G} \quad \text{by} \quad h_{12}(x) = (diag(x, x^{-1}), 1) \end{split}$$

By (A,2) , the restriction of s to N is a homomorphism ; we write N for the subgroup s(N) of \tilde{G} . For $g=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in K_0$ set

$$\kappa(g) = \begin{cases} (c, d/det(g))_F & \text{if } 0 < |c|_F < 1\\ 1 & \text{if } |c|_F = 0, 1 \end{cases}$$

Then if $g_1, g_2 \in K$ we obtain

$$\sigma(g_1, g_2) = \frac{\kappa(g_1 g_2)}{\kappa(g_1)\kappa(g_2)};$$

if we define

$$\kappa * : K \to \tilde{G} \quad \text{by} \quad \kappa * (g) = (g, \kappa(g))$$

then $\kappa *$ is a homomorphism. We write K * for the subgroup $\kappa * (K)$ of \tilde{G} . Since Wsubset K, we write also W for the subgroup $\kappa(W)$ of K *; we call $s \in W$ the simple reflection. By (A.1) the center of $\tilde{H} = \mathbf{p}^{-1}(H)$ is equal to

$$\tilde{H}^n = \mathbf{p}^{-1}\{h^n : h \in H\}$$

and a maximal abelian subgroup of its is given by

$$\tilde{H}^n(\tilde{H}\cap K*)$$

which we denote by $\tilde{H}*$. We see that if $h \in \tilde{H}*$ then

$$h^s = s^{-1}hs \in \tilde{H} * .$$

Recall the injective character $\epsilon: \mu_n(F) \to \mathbb{C}^{\times}$. Let ω be a quasi-character of \tilde{H}_* such that $\omega \circ \mathbf{i} = \epsilon$. Let $V(\omega)$ be a space of smooth functions $f: \tilde{G} \to \mathbb{C}$ satisfying

$$f(nhg) = (\omega \mu)(h)f(g)$$
 for all $n \in N$ and all $h \in \tilde{H} *$.

Here $\mu: \tilde{H} \to \mathbb{C}^{\times}$ is defined by

$$\mu(h) = |h_1/h_2|_F$$
 where $p(h) = diag(h_1, h_2)$.

Acting \tilde{G} on $V(\omega)$ by right translation, we obtain an admissible representation $(\pi, V(\omega))$. We assume that ω is trivial on $\tilde{H} \cap K*$. Then the subspace $V(\omega)_{K*}$ consisting of K*-invariant functions has dimension one. Let $v(\omega)$ be the element in $V(\omega)_{K*}$ such that $v(\omega)(\mathbf{s}(I)) = 1$. We set

$$\omega_{12}(x) = \omega(h_{12}(x^n))$$
 for $x \in F^{\times}$

then ω_{12} is a unramified quasi-character of F^{\times} . We set

$$^s\omega(h)=\omega(h^s)$$
 for $h\in \tilde{H}*$

then ${}^s\omega$ is also a quasi-character of $\tilde{H}*$ satisfying the above two conditions. There exists an intertwining operator

$$I_s:V(\omega)\to V({}^s\omega)$$

which is defined by the integrations

$$(I_s f)(g) = \int_F f(ss\left(\begin{pmatrix} 1 & x \\ 1 & 0 \end{pmatrix}\right)g)dx$$
 for $f \in V(\omega)$

and another technique (analytic continuation or regularization). Since $I_s v(\omega)$ is a K*-invariant element in $V({}^s\omega)$, there exists a constat c such that

$$I_s v(\omega) = c v(^s \omega).$$

Evaluating each side at g = s(I) we obtain

$$c = \int_F v(\omega)(s\mathbf{s}\left(\left(egin{matrix} 1 & x \ 1 & 0 \end{matrix}
ight)))dx.$$

This integral can be easily caculated when $|\omega_{12}(\pi)| < 1$; thus we have

$$I_s v(\omega) = \frac{1 - q_F^{-1} \omega_{12}(\pi)}{1 - \omega_{12}(\pi)} v({}^s \omega).$$

We define a normalized intertwining operator $I_s':V(\omega)\to V({}^s\omega)$ by

$$I_s' = \frac{1 - \omega_{12}(\pi)}{1 - q_F^{-1}\omega_{12}(\pi)} \cdot I_s.$$

We denote by I_s^* the normalized intertwining operator from $V(s\omega)$ to $V(\omega)$ obtained by the same way. Then

$$I"_s \circ I'_s = I_{V(\omega)}, \quad I'_s \circ I"_s = I_{V({}^s\omega)}$$

where $I_{V(\omega)}$ is the identity map of $V(\omega)$ (see Theorem I.2.6 [KP]). In other words, we have

Proposition A1. The composition

$$V(\omega) \stackrel{I_s}{\to} V({}^s\omega) \stackrel{I_s}{\to} V(\omega)$$

is equal to

$$\frac{1 - q_F^{-1}\omega_{12}(\pi)}{1 - \omega_{12}(\pi)} \frac{1 - q_F^{-1}\omega_{12}(\pi)^{-1}}{1 - \omega_{12}(\pi)^{-1}} I_{V(\omega)}.$$

A2. The τ -functions

Recall the character e_F of F. We define a non-degenerate character e_N of N by

$$e_N(\mathbf{s}\left(\left(egin{matrix}1&x\0&1\end{matrix}
ight)
ight)=e_F(x).$$

For a given representation $V(\omega)$ we define the Whittaker space $Wh(V(\omega))$ by

$$\{\lambda \in V' : \langle \lambda, \pi(n)f \rangle = e_N(n) \langle \lambda, f \rangle \text{ for } n \in N, f \in V(\omega)\}$$

where V' is the algebraic dual space of $V(\omega)$ with a bilinear form <, >. For $\eta \in \tilde{H}$ we can define $\lambda_{\eta} \in Wh(V(\omega))$ by

$$<\lambda_{\eta}, f> = \mu(\mathbf{p}(\eta))^{-1} \int_{N} f(\eta s n) \bar{e}_{N}(n) dn \text{ for } f \in V(\omega).$$

Then

$$\lambda_{h\eta} = \omega(h)\lambda_{\eta} \quad \text{for} \quad h \in \tilde{H}_*.$$

It is proved (see KP]) that the vecor space $Wh(V(\omega))$ over $\mathbb C$ has a basis $\{\lambda_\eta:\eta\in \tilde{H}_*\backslash \tilde{H}\}.$

The intertwining operator $I_s: V(\omega) \to V({}^s\omega)$ induces a linear map

$$T: Wh(V(s\omega)) \to Wh(V(\omega))$$

defined by $\langle T(\lambda), f \rangle = \langle \lambda, I_s f \rangle$ for $\lambda \in Wh(V({}^s\omega))$ and $f \in V(\omega)$. The matrix coefficients $\tau(\omega, \eta', \eta)$ ($\eta', \eta \in \tilde{H}_* \backslash \tilde{H}$) of T are defined by

$$T(\lambda_{\eta'}) = \sum_{\eta \in \tilde{H}_{\bullet} \backslash \tilde{H}} \tau(\omega, \eta', \eta) \lambda_{\eta} \quad (\lambda_{\eta'} \in Wh(V({}^s\omega)), \ \lambda_{\eta} \in V(\omega)).$$

We have

$$\tau(\omega, h'\eta', h\eta) = {}^s\omega(h')\omega(h)\tau(\omega, \eta', \eta) \quad \text{for} \quad h', h \in \tilde{H}_*.$$

By the same way as that in Lemma I.3.1([KP]) we can compute $\tau(\omega, \eta, \eta')$. Put $\nu = \eta^{(12)}$ where $\eta^{(12)} = \eta_1/\eta_2$ if $\mathbf{p}(\eta) = diag(\eta_1, \eta_2)$. Then

$$\begin{split} \tau(\omega,\eta,\eta') &= \int_{F^{\times}} \omega(h_{12}(\nu^{-1}z)\eta\eta^{'-1})\bar{e}_{F}(z)|z|_{F}^{-1}dz \\ &= \int_{F^{\times}} \omega(h_{12}(\xi^{-1})\eta\eta^{'-1})\bar{e}_{F}(\frac{\nu}{\xi})|\xi|_{F}^{-1}d\xi \\ &= \sum_{\xi \in F^{\times}/R_{F}^{\times}} \int_{R_{F}^{\times}} \omega(h_{12}(\xi^{-1}y)\eta\eta^{'-1})e_{F}(\frac{\nu}{\xi}y)dy \\ &= \sum_{\xi \in F^{\times}/R_{F}^{\times}} \omega(h_{12}(\xi^{-1})\eta\eta^{'-1})\bar{\Gamma}(\xi,\frac{\nu}{\xi}) \end{split}$$

where ω is extended to \tilde{H} by

$$\omega(h) = \left\{ egin{array}{ll} \omega(h) & & ext{if} \quad h \in \tilde{H}* \\ 0 & & ext{if} \quad \tilde{H} - \tilde{H}*. \end{array} \right.$$

Dividing the summation over all $\xi \in F^{\times}/R_F^{\times}$ into two parts we set

$$\tau_{0}(\omega, \eta, \eta') = \sum_{\substack{\xi \in F^{\times}/R_{F}^{\times} \\ \frac{\nu}{\xi} \in \hat{R}_{F}}} \omega(h_{12}(\xi^{-1})\eta \eta'^{-1}) \bar{\Gamma}(\xi, \frac{\nu}{\xi})$$

$$\tau_{1}(\omega, \eta, \eta') = \sum_{\substack{\xi \in F^{\times}/R_{F}^{\times} \\ \frac{\nu}{\xi} \notin \hat{R}_{F}}} \omega(h_{12}(\xi^{-1})\eta \eta'^{-1}) \bar{\Gamma}(\xi, \frac{\nu}{\xi})$$

By the property of "Gauss sum" (3) (see Introduction)

$$\begin{split} \tau_0(\omega,\eta,\eta') &= \sum_{k\in\mathbb{Z}\atop\nu\pi^{kn}\in\hat{R}_F} \omega(h_{12}(\pi^{kn})\eta\eta'^{-1})\bar{\Gamma}(\pi^{-kn},\pi^{kn}\nu) \\ &= \omega(\eta\eta'^{-1}) \sum_{\substack{k\in\mathbb{Z}\\\nu\pi^{kn}\in\hat{R}_F}} \omega_{12}(\pi^k)(1-q_F^{-1}) \\ &= \omega(\eta\eta'^{-1}) \frac{1-q_F^{-1}}{1-\omega_{12}(\pi)} \omega_{12}(\pi)^{k_0(\nu)} \end{split}$$

where $k_0(\nu) = \min_{\nu \pi^{kn} \in \hat{R}_F} \{k \in \mathbb{Z}\}$;

$$\begin{split} \tau_{1}(\omega,\eta,\eta') &= \sum_{\substack{\xi \in F^{\times}/R_{F}^{\times} \\ \frac{\nu}{\xi} \in P_{F}^{-1} - \hat{R}_{F}}} \omega(h_{12}(\xi^{-1})\eta\eta'^{-1})\bar{\Gamma}(\xi,\frac{\nu}{\xi}) \\ &= \sum_{\xi \in D(\nu)} \omega(h_{12}(\xi^{-1})\eta\eta'^{-1})\bar{\Gamma}(\xi,\frac{\nu}{\xi}) \end{split}$$

Proposition A2. Let the notation be as above.

(1) $\tau(\omega, \eta, \eta') = 0$ unless $h_{12}(\xi^{-1})\eta\eta'^{-1} \in \tilde{H}_*$ for $\xi \in D(\nu) \cup \{1\}$. In particular if ν is singular then

$$\tau(\omega, \eta, \eta') = 0$$
 unless $\eta \eta^{'-1} \in \tilde{H}_*$.

(2) If ν is not singular with $\nu \notin \hat{R}_F$ and $\pi^n \nu \in \hat{R}_F$, then

$$\tau(\omega, \eta, \eta) = \frac{1 - q_F^{-1}}{1 - \omega_{12}(\pi)} \omega_{12}(\pi);$$

and for $\xi \in D(\nu)$

$$\tau(\omega,\eta,h_{12}(\xi^{-1})\eta)=\bar{\Gamma}(\xi,\frac{\nu}{\xi}).$$

(3) If ν is singular with $\nu \in \hat{I}_F - \hat{R}_F$, then

$$\tau(\omega, \eta, \eta) = \frac{1 - q_F^{-1} \omega_{12}(\pi)^{-1}}{1 - \omega_{12}(\pi)} \omega_{12}(\pi).$$

Proof. From the above argument (1) and (2) are clear. We prove (3). Since $\nu \in \hat{I}_F - \hat{R}_F$, we have $D(\nu) = \{1\}$ and

$$\begin{split} \tau(\omega,\eta,\eta) &= \tau_0(\omega,\eta,\eta) + \tau_1(\omega,\eta,\eta) \\ &= \frac{1 - q_F^{-1}}{1 - \omega_{12}(\pi)} \omega_{12}(\pi) + \bar{\Gamma}(1,\nu) \\ &= \frac{1 - q_F^{-1}}{1 - \omega_{12}(\pi)} \omega_{12}(\pi) + (-q_F^{-1}) \\ &= \frac{1 - q_F^{-1} \omega_{12}(\pi)^{-1}}{1 - \omega_{12}(\pi)} \omega_{12}(\pi). \end{split}$$

Corollary. With the notation as above, for $\xi \in D(\nu)$

$$\tau(\omega,h_{12}(\xi^{-1})\eta,\eta)=\Gamma(\xi,\frac{\nu}{\xi}).$$

Proof. If $\xi \in D(\nu)$, then

$$\Gamma(\xi^{-1}, (\xi^{-1})^{-1} \frac{\nu}{\xi^2}) = \Gamma(\xi^{-1}, -(\xi^{-1})^{-1} \frac{\nu}{\xi^2})$$
$$= \bar{\Gamma}(\xi, \frac{\nu}{\xi})$$
$$\neq 0,$$

therefore $\xi^{-1}\in D(\frac{\nu}{\xi^2})$. Since $(h_{12}(\xi^{-1})\eta)^{(12)}=\frac{\nu}{\xi^2}$, we obtain

$$\begin{split} \tau(\omega,h_{12}(\xi^{-1})\eta,\eta) &= \tau(\omega,h_{12}(\xi^{-1})\eta,h_{12}((\xi^{-1})^{-1})h_{12}(\xi^{-1})\eta) \\ &= \bar{\Gamma}(\xi^{-1},(\xi^{-1})^{-1}\frac{\nu}{\xi^2}) \\ &= \Gamma(\xi,\frac{\nu}{\xi}). \end{split}$$

Proposition A3. For η , $\eta' \in \tilde{H}$ we have

$$\begin{split} & \sum_{\eta^{"} \in \tilde{H}_{\bullet} \backslash \tilde{H}} \tau({}^{s}\omega, \eta, \eta^{"}) \tau(\omega, \eta^{"}, \eta') \\ = & \frac{1 - q_{F}^{-1}\omega_{12}(\pi)}{1 - \omega_{12}(\pi)} \frac{1 - q_{F}^{-1}\omega_{12}(\pi)^{-1}}{1 - \omega_{12}(\pi)^{-1}} \omega(\eta \eta^{'-1}). \end{split}$$

If ν is not singular, then

$$\sum_{\xi \in D(\nu)} |\Gamma(\xi, \frac{\nu}{\xi})|^2 = q_F^{-1}.$$

Proof. The first statement is an immediate consequence of Proposition A1. The second statement follows from the first and Proposition A2 (1),(2) by taking $\eta = \eta'$. In fact by Proposition A2 (1),(2) we have

$$\begin{split} & \sum_{\eta^{"} \in \tilde{H}_{\bullet} \setminus \tilde{H}} \tau(^{s}\omega, \eta, \eta^{"}) \tau(\omega, \eta^{"}, \eta) \\ & = \sum_{\xi \in D(\nu)} \tau(^{s}\omega, \eta, h_{12}(\xi^{-1})\eta) \tau(\omega, h_{12}(\xi^{-1})\eta, \eta) + \tau(^{s}\omega, \eta, \eta) \tau(\omega, \eta, \eta) \\ & = \sum_{\xi \in D(\nu)} |\Gamma(\xi, \frac{\nu}{\xi})|^{2} + \frac{1 - q_{F}^{-1}}{1 - \omega_{12}(\pi)} \frac{1 - q_{F}^{-1}}{1 - \omega_{12}^{-1}(\pi)}. \end{split}$$

Remark. Thus we obtain two proofs for Corollary to Theorem 2. One is a direct proof using the structure of $D(\nu)$. Another is due to the local functional equation of the intertwining operator (Proposition A1). Recall that the proof in [KP] is not a pure local one, which is half local and half global.

A3. The W-functions

A C-valued function W on \tilde{G} is called a K_* -invariant Whittaker ϵ -function if

- (1) $W(ng) = e_N(n)W(g)$ for $n \in N$,
- (2) $W(\mathbf{i}(\zeta)g) = \epsilon(\zeta)W(g)$ for $\zeta \in \mu_n(F)$ and
- (3) W(gk) = W(g) for $k \in K_*$.

Since the decomposition

$$ilde{G} = igsqcup_{\xi \in O_F/R_F} N ilde{H} ext{s} \left(egin{matrix} 1 & 0 \ \xi & 1 \end{matrix}
ight) K_*$$

holds, the value W(g) for $g \in \tilde{G}$ is reduced to

$$W\left(hs\begin{pmatrix}1&0\\\xi&1\end{pmatrix}
ight) \quad ext{for} \quad h\in ilde{H}, \xi\in O_F/R_F.$$

For $h \in \tilde{H}$ with $\mathbf{p}(h) = diag(h_1, h_2)$, put $\nu = \frac{h_1}{h_2}$. Let us see the relation between ν and ξ which is derived from

$$W\left(h\mathbf{s}\begin{pmatrix}1&0\\\xi&1\end{pmatrix}\mathbf{s}\begin{pmatrix}1&x\\0&1\end{pmatrix}\right) = W\left(h\mathbf{s}\begin{pmatrix}1&0\\\xi&1\end{pmatrix}\right)$$

for $x \in R_F$.

Lemma A1. Suppose that $\xi \in O_F - R_F$. Then for $x \in R_F$

$$W\left(h\mathbf{s}\begin{pmatrix}1&0\\\xi&1\end{pmatrix}\right)$$
$$=\gamma(\nu,\xi,x)W\left(h\cdot h_{12}(\frac{1}{1+\xi x})\mathbf{s}\begin{pmatrix}\frac{1}{\xi}&0\\\frac{\xi}{1+\xi x}&1\end{pmatrix}\right)$$

with

$$\gamma(\nu,\xi,x) = \epsilon(-\xi,1+\xi x)_F^{-1} e_F(\frac{\nu x}{1+\xi x}).$$

Proof. In the group \tilde{G} we have that

$$\mathbf{s} \begin{pmatrix} 1 & 0 \\ \xi & 1 \end{pmatrix} \mathbf{s} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$$
$$=\mathbf{i}(-\xi, 1 + \xi x)_F^{-1} \mathbf{s} \begin{pmatrix} 1 & \frac{x}{1+\xi x} \\ 0 & 1 \end{pmatrix} \mathbf{s} \begin{pmatrix} \frac{1}{1+\xi x} & 0 \\ 0 & 1 + \xi x \end{pmatrix} \mathbf{s} \begin{pmatrix} \frac{1}{1+\xi x} & 0 \\ \frac{\xi}{1+\xi x} & 1 \end{pmatrix}.$$

Hence the assertion follows from the definition of W.

Proposition A4.

- (1) If $\xi = 0$, then W(h) = 0 unless $\nu \in \hat{R}_F$.
- (2) If $\xi \in O_F R_F$, then

$$W\left(h\mathbf{s}\begin{pmatrix}1&0\\\xi&1\end{pmatrix}\right)=0$$

unless

$$u \equiv \frac{d\xi}{d\pi} \mod \xi \hat{I}_F(\xi).$$

Proof. (1) is cear. (2) follows from the Lemma A1. In fact, if $\xi x \in I_F$, then $\gamma(\nu, \xi, x)$ must be 1 when

$$W\left(hs\begin{pmatrix}1&0\\\xi&1\end{pmatrix}\right)\neq 0.$$

Here we see that $\xi^{-1}I_F \cap R_F = \xi^{-1}I_F(\xi)$ and that

$$e_F(\frac{\nu x}{1+\xi x}) = e_F(\nu x)$$
 for $x \in \xi^{-1}I_F(\xi)$.

REFERENCES

- [KP] D.A.Kazhdan and S.J.Patterson, Metaplectic Forms, Publ. Math. IHES 59 (1984), 35-142.
- [S1] T.Suzuki, On the biquadratic theta series, J.reine angew. Math. 438 (1993), 31-85.
- [S2] T.Suzuki, A maximal isotropic ring of a local field and spherical functions on a metaplectic group, Ryukyu Math. J. 15 (2002), 71-100.

Department of Mathematical Sciences Faculty of Science University of the Ryukyus Nishihara-cho,Okinawa 903-0213 JAPAN