FRER KM R MY

De Finétti's Theorem For o -finite Measures on $

{(\Bbb R} ~infty$ \ ${0}$

=:zh.

H k& : Department of Mathematical Sciences, Faculty
of Science, University of the Ryukyus

~FH: 2007-03-08

F—7— K (Ja):

*F—7— K (En):

{ER#&: Yamauchi, Kana, Yamazato, Makoto

X=ILT7 KL R:

Firi&:

http://hdl.handle.net/20.500.12000/86




Ryukyu Math. J., 19(2006), 129-136

DE FINETTI'S THEOREM FOR
o-FINITE MEASURES ON R\ {0} *

Kana Yamauchi! and Makoto Yamazato 2

Abstract

In this paper, we extend Shiga-Tanaka’s result on de Finétti’s
theorem for o-finite measures on R>°\{0}. Their result is re-
stricted to measures with a moment condition. We remove this
restriction. ’ ‘

1 Introduction

For a measure P on (R,B(R)), we denote by P> the measure on
(R, B(R*)) generated by the infinite product of P. Topological space
of probability measures on R endowed with the topology defined by
the weak convergence is denoted by P(R). The following de Finétti’s
theorem is well known (refer [1]).

Theorem 1.1 Let p be a probability measure on (R®, B(R®)). u
15 exchangeable if and only if there is a probability measure v on
(P(R), B(P(R))) such that

u(A) = /P o Pe(AwaP)

for A € B(R*). The measure v is uniquely determined by p.

We call the measure v mixing measure of u. Exchangeability means
the invariance under any permutation. Precise definition of the ex-
changeability will be given in the next section. De Finétti’s theorem
is easily extended to finite measures.
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In [2], Shiga and Tanaka proved de Finétti’s theorem for a class
of o-finite measures on R*°\{0}. We denote R*\{0} by E. Their
statement is the following,.

Theorem 1.2 Let yu be o measure on (E, B(F)) satisfying

L (lzal? A 1)pa(dz) < oo, (1)

where x, 1is the first component of x € E. Then u is exchangeable
if and only if there are measures v on (P(R),B(P(R))) and p on

(R\{0}, B(R\{0})) satisfying fpg, ( fR\{O}(ImP/\l)P(dx))u(dP) < o0
and fm\{o}(|az|2 A 1)p(dz) < oo, respectively, such that

uA) = /P  Pelawap)

/ Tty (A)p(dz).  (2)
R\{(0} ;= 1

for A € B(E).

The above result is interesting because there appears the additional
second term in the right hand side of (2). The proof of the above
theorem is based on a choice of a special exchangeable function on
R* and the completeness of L? space. We extend their result to
general o-finite measures on (E, B(E)) without the moment condition
(1). Although the main line of our proof follows Shiga-Tanaka’s proof,
we state the full proof for completeness. The main point of our proof
is a use of a specific positive L? function (Lemma 3.1).

2 Main results

Definition 2.1 We say that a measure p on (R, B(R>)) is ezchange-
able if for any positive integer n and for any permutation o of n letters
pu(o(A)) = u(A) for A € B(R®), where

U(A) = {(xa‘(l))' v 7xa(n)a$n+17- ) : (xla- <1 Zny Ty - ) € A}
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The following is an extension of Shiga-Tanaka’s result.

Theorem 2.1 Let i be a measure on (E, B(E)) satisfying
p{z €R: |zl > €} x R®) < 00 (3)

for any e > 0. Then u is exchangeable if and only if there are measures
v on (P(R), B(P(R))) and p on (R\{0}, B(R\{0})) satisfying

f P({z € R: |z] > )(dP) < 0o @)
P(R)

and
p({z €R:|z] > €}) < oo, (5)

respectively, for any € > 0 such that

u(A) = / P®(A)v(dP)
P(R)
o j
[ S G R ) Aldz). ()
R\{0} 51
for A € B(E). The pair (v, p) is uniquely determined by p.

We obtain another version of de Finetti’s theorem for another class
of o-finite measures.

Theorem 2.2 Let u be a measure on (E, B(E)) satisfying
p{zeR:0< |z| < M} x R®) < 00

for any M > 0. Then u is exchangeable if and only if there are
measures v on (P(R), B(P(R))) and p on (R, B(R)) satisfying

f P({z € R: 0 < |z] < M})(dP) < oo
P(R)

and
p{zeR:0< |z|] < M}) < oo,
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respectively, for any M > 0, such that

uwA) = P>(A)v(dP)
P(R)
+ [ 3G b0b: 00 )(A)p(dz).  (7)
R\{0} o,

for A € B(E). The pair (v, p) is uniquely determined by p.

3 Proofs of Theorems and Remarks

Lemma 3.1 Suppose that p is a measure on (E, B(E)) satisfying (3)
for any € > 0. Let py(dz) = p(dz x R®) and let

_Jm{yeR:y>z}) forz >0,
77(ﬂv)_{,ui({yEIR:ny}) forz < 0.

Then,
/ e~ y(dr) < oo.
E

Proof We have
[emeuda) = [ el
E R\{0}
= / 6_("°(x)+""(x))(u1c(d$)+N1d(d$))
R\{0}
< / (e_"‘(z)mc(dx)+e_""(x)u1d(d:1:))
R\{0}

o0
< 2] e_””da:+/ e~y (d),
0 R\{0}

where pne and pig are a continuous part and a discrete part of i,
respectively, and

77(17)={ pc{yveR:y>z}) forz >0,
‘ me({y €R:y <z}) forz <0,
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(m)={u1d({y€R:y2:L‘}) for z >0,
T pa{y €R:y<z}) forz <O.

We may assume that the support of p1q4 is an infinite set. Let {a,}2 _.,
0 < -+ < ap < anpyr--- be the support of pyy in (0,00). Set g, =

> kon B({an}). We have

o]

’ oo
(0,00) 0

—00

In the same way, we have f(_ 0.0) el®py(dr) < [° e ®dz. We get
the conclusion. O

Proof of Theorem 2.1 Let

n

1
£n(z) = m Z e~ k)2

k=1

for x = (z1,%a,...). Then &, € L*(u). We denote by || - || the norm
in L*(u). We have that

Iém — &llI* = Im = n|(mn) ™ (a — b) — 0

asm,n — 0o. Here, a = ||| and b= [ e-(@)+n(@2)/2y(dx). Hence
{€.} is o Cauchy sequence in L*(u). There is £ € L%(u) such that
lé. — €| — 0 as n — oo. Since &, is n-exchangeble, £ is infinite
ezchangeable. Define p, by

[ utner{o})  forn=o,
(") = { (- NEN(E, LD forn> 1

Then since 2 pn(E) < [&(z)p(dz) < 00, iy is a finite measure. Since
€ is exchangeable, u, is an exchangeable measure. Hence by classical
de Finétti’s Theorem, there is a finite measure v, on (P(R), B(P(R)))
such that
o, = P>y, (dP).
P(R)
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Letv=>52> v, We have

n=1

/ P({y € R: ly| > ¢} w(dP)
P(R)

= Sy eR:lyl > ¢} x R®)

n=1
< u({yeR: |yl > e} x R®)
< 0©oQ.

Hence (4) holds for any € > 0. We have
1
tim [ €n(a)ha(da) = (a0 + (n = Do) = b

where ag = [ e =) po(dz) and by = [e ("(’“)""’(””/ 2uo(dz). On the
otherhand, limp_. [ &n(z)?po(dz) = [ &(z)*uo(dz) = 0. Hence by = 0
and we have

po({x € R¥\{0} : |z;| # 0, |z;| # 0}) =0 (8)

fori # 3. Set p(A) = po(A x R®) for A € B(R), then (5) holds for
any € > 0 since

p{y e R: |yl > €}) < u({y € R: [y| > €} x R*) < o0.
For integers k,n > 1, let

Un - R\{0} for k =n,
T {0} otherwise

and V, = [[ie, Ur. Moreover, let W = U2V, S = (R\{0})* and
T = E\(SUW). By (8),

uo(SUT) =0. . (9)

By exchangeability, the measure pg on W is represented as . | pn
using pn = [low, PR, where

n_{p fork=n

Pk = 6, otherwise.



Note that -
> un(TUW) =0. (10)
n=1

We get the uniqueness of the pair (v, p) by (9), (10) and the uniqueness
of the mizing measure in the classical de Finetti’s theorem. Hence we
get the conclusion. O

The proof of Theorem 2.2 is parallel to the proof of Theorem 2.1
by using

i(z) = rm{yeR:0<y<z}) forz >0,
e = pm({yeR:2<y<0}) forz<0

instead of 1. So, we omit the proof.

Remark 3.1 Note that (W) = 3%, u(V,). Hence p(W) = oo
provided that u(V1) > 0. If p is a finite measure, then u(W) = 0.
This is consistent with the classical de Finétti’s theorem.

Remark 3.2 Under each assumption in Theorems 2.1 and 2.2, u(T) =
0 by the proof of Theorem 2.1. This fact is explained by the following:
Assume (3). We may assume that there is a positive measure p on
(R\{0}, B(R\{0})) such that

J

WO =3 [ o0, by G B0 )(Jpldz)oldsy)
; ®\{0)? ’

is a nonnegative measure. Let A = {z; € R : |z1] > €} x R®. We
have

oo > p(A)
. J
,—/_
= /(R\{O}V

> (62,80 - - 600z, b0 - - - )(A) p(dz1) p(dz;)

= Zp({xl €ER:|z1| > €})p(R) = oo.

This is absurd.

Remark 3.3 If an excchangeable measure on (R®, B(R*®)) has a point
mass at 0 = (0,0,...), then the second term in (6) (and also in (7))
disappear.
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