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Abstract

Drop N spherical caps, each of area 47 -p(N), at random on the surface
of a unit sphere, and let G, denote the intersection graphs of these ran-
dom caps. Among others, we prove the following: (1) If N(N p)" =0
as N —+ oo, then Pr(G, has no component of order > n») — 1, while if
N(Np)*~! = oo then Pr(G, has an n-clique) = 1 as N — oco. (2) If
p < ﬁ-log N, e > 0 then Pr(6 = 0) — 1, while if p > -ﬁ,—‘logN then
for any positive integer n, Pr(6 > n) — 1 as N — oo, where ¢ denotes
the minimum degree of Gp. (3) If p = g (log N + 2) then the number
of isolated vertices of G, is asymptotically (N — oo) distributed accord-
ing to Poisson distribution with mean e~*. (4) If p > ke log N, then
Pr(G, is 2-connected) = 1 as N — co.

1 Introduction

On the surface of a unit sphere in 3-space, place at random N spherical caps
C1,Cs,...,Cn, each of area 4wp(N). We suppose that the centers of these caps
are independently and uniformly distributed over the surface of the sphere. Then,
what is the probability that the sphere is completely covered? This problem is
called the coverage problem (see, e.g. Kendall and Moran [3], Santalé [9], Solomon
[10]), and it seems difficult to give an exact answer. The following asymptotic
answer was given by Maehara [5): If p(N) < 15 log N,& > 0 then the probability
that the surface is completely covered by N caps tends to 0 as N — oo, while if
p > L=log N then for any integer n > 0, the probability that every point on the
sphere is covered more than n times tends to 1 as V — oo.

In this paper, we are going to study the asymptotic behavior of the family of
N caps for + < p(N) < #log N. Let v; denote the center of the cap C;. Then

N
V1,02, ...,v5 are independently and uniformly distributed on the unit sphere.
Let G, = QC; | 1 < i < N) be the intersection graph of the random caps
Cy,C,...,Cn, that is, the vertices of G, are v1,vs,...,vN, and two vertices

v;,v; are adjacent if and only if C; N C; # 0.

1



Among others, we prove the following:

(1) Let n be a fixed positive integer. If p < N-#/(=1) then
Pr(Cp has no component of order > n) —+ 1,
while if p > N="(=1)_then
Pr(G, has an n-clique) — 1
as N — oo. (Notation: f < g f/g—= 0(N — o0).)

(2) If p < iFlog N, € > 0, then Pr(6 = 0) — 1, whileif p > Lflog N then,
for any positive integer k, Pr(d > k) — 1 as N — oo, where d denotes the
minimum degree of G.

(3) If p = (log N + z) then

et ud
."l as N — oo,
J

Pr(# of isolated vertices of G, = j) =

where p = e™*.

(4) If p> Welog N then Pr(G, is 2-connected) — 1 as N — oo.

In the one dimensional case (circle case), existence of the cyclic ordering of the
~ caps (arcs) enable us much detail study, see Maehara [4].

Problem 1 Find a constant c (if ezists) such that p < SFlog N implies that
Pr(G, is connected) — 0, and p > <t=log N implies that Pr(G, is connected) —

1. (By (2) and (4), such ¢ must lie between } and 1. On the analogy of the

one-dimensional case, ¢ = 1 is highly probable.)

2 Number of edges

Let r be the angular radius of the cap of area 4rp, and let D; denote the cap of
angular radius 2r with center v;. Then C; N C; # 0 & v; € D;. Provided that
p(N) = o(1), the area of D; is equal to (1 + o(1))4 - 4wp. Hence,

Pr(C;NC; # 0) ~ 4p.
(Notation: f ~g< f = (14 o(1))g.) Similarly,
Pr(D; N D; # 0) ~ 16p.
Let £ denote the set of edges of Gy, and €| be its cardinality.
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Theorem 1 If N?p = 0 as N — oo, then Pr(|€| =0) = 1 as N — oo, and if
N?p — oo then for any e > 0,

€]
Pr ( 5N -1
Proof. For each pair 1,7 (1 < i < j < N), let §; denote the random variable
such that &; = 1 if C; N C; # 0, and ¢; = 0 otherwise. Then |£| = 3 &;, where

the summation is taken over (2’ ) pairs. Since the expected value E(;;) of &; is
equal to 4p, we have

<6)—>1asN—>oo.

(e ~ (§ Jar ~ 20
If N2p = 0 as N — oo, then
Pr(|€]| >1) < E(J€]) » 0 as N — oo.

Hence Pr(|€| =0) = 1 as N — oo.
Suppose now N2p — oo. If 1,7, k, £ are all different, then

E(&ijére) = E(&j€a) ~ (4p), and E(€]) ~ 4p.

Bler) = BUSe&)~ (; )4p+2((N))(4p)

~ 2N%p+ (2N%p)* ~ (2N°p)* ~ E(I€])*.

Hence

Now, applying Chebyshev’s inequality, we have
£
Pr ( €]

2N?%p
Let A = A(G,) denote the maximum degree of G,.

- 1‘ > 5) = Pr(||€| — 2N?p| > e2N?p) < (lgl,jé—(_lgn ()” — 0.

Corollary 1 If N%p — oco(N — o0), then for any € > 0,
Pr(A > 4(1 —€)Np) =+ 1 and Pr(§ < 4(1 +¢)Np) = 1 as N — oo.
Proof. By Theorem 1, the probability that
2(1 —e)N?*p < |€] < 2(1+€)N?p
tends to 1 as N — oo. Since NA > 2|€|, Né < 2|€|, the corollary follows. i

The following theorem was proved in Maehara [6, Theorem 1].
k-

k!

Theorem 2 If8N?%p = z, then Pr(|€| = k) = as N = oo. |



3 Components of order n

The next lemma will be used frequently.

Lemma 1 Let f = f(N),g = g(N) be two nonnegative functions and suppose
f =o(1) (N = o0). Then (1 — f)? < e 19 holds for sufficiently large N.
Furthermore if f2- g = o(1) then (1 — f)9 = (1 + o(1))e~ /9.

Proof will follow easily from Maclaurin expansion of log(1 —¢), 0 <t < 1:

t2
= 0<A<L

log(l —t) = —t— m

Lemma 2 Let AC {1,2,..., N} be a nonempty subset of fizred size n = |A|, and
let Hy = Q(C; | i € A) denote the intersection graph of {C; | i € A}. If p=o(1),
then

Pr(H, is connected) < (4(n — 1)p)*~".

Proof. Since the assertion is trivial for n = 1, we consider the case n > 2.
We may suppose that A = {1,2,...,n}. If Hy is connected, then each angular

distance 019; (i = 2,...,n) is at most 2(n — 1)r. (For otherwise, H4 cannot be
connected.) Hence the connectedness of H4 implies that each v;(i = 2,... )

must fall in the spherical cap of angular radius 2(n — 1)r centered at v;. Since
7(2(n — 1)7)? = 4(n — 1)*mr? ~ 4(n — 1)*(47p),
we have Pr(H, is connected) < (4(n —1)%p)*~*. §

Theorem 3 Let n > 1 be a fized integer.
(¢) If N(Np)*~! = 0 as N — oo, then

Pr(G, has no component of order > n) =1 as N — oo.
(¢2) If N(Np)*~! — oo, then
Pr(G, has an n-cliqgue) =1 as N — oo.

Proof. (i) Suppose that N(Np)*~! — 0. For each subset A C {1,2,.. ., N}
of size n, let X4 be the random variable such that X, = 1 if the subgraph
Ha = Q(C; | i € A) is connected, and X4 = 0 otherwise. Then Pr(X4 =1) <
(4(n—1)p)"~! by Lemma 2. Put X = 3|4j=n Xa. If G, has a component of order
> n, then X > 1. Hence,

Pr(G, has a component of order > n)
<Pr(X>1)<EX)= > Pr(Xa=1)
|Al=n
(4(n = 1))
n!

< (M- oy < N(Np)* =0,



(#) Suppose that N(Np)"~! — co. First we show that Pr(A(G,) >n—1) = L.
Since Pr(A(G,) > n — 1) is clearly monotone increasing in p (that is, p > p’ =
Pr(A(G,) > n —1) > Pr(A(Gy) > n — 1)), we consider the case Np = o(1) and
N(Np)"~! = oo. Let Y; be the random variable such that ¥; = 1 if degv; =n—1
and Y; = 0 otherwise. The expected valueof Y =Y, +Y2... + Yy is

V-

n—1

E(Y) = NE(Y1)=N(

(4Np)*~le NP ~ (4Np)* L.

N
(n—1)! (n— 1)

Next, we estimate the expected value E(Y;Y;), 7 # j by considering the three
exclusive cases ey, e, €3;

e : D;ND; =0,
ey : D,-nD”é@andC,-nC’,-:(B,
€3 . C,OCJ#(D

Notice that Pr(e,) ~ (1 — 16p), Pr(ez) ~ 12p, Pr(es) ~ 4p.
Pr(e; and YV}Y; = 1)
= Pr(e)) Pr(YiY; =1 | &)

~ (1 —16p) (1::_—12) (N;f . 1) (4p)2("‘_1)(1 _ gp)-2

1 2
< (—(n — 1)!(41\’1))“‘1) .
In the cases e3, €3, some vgs may fall in D; N D;.
Pr(e; and Y;Y; = 1)
= Pr(e;) Pr(YiYa =1 €2)
- 12p7§ (‘N - 2) (N -2- 1/) (1:—— 11 _—:) (4p)” (4p)21—")

o\ v n—1—-v

n—1
<12p E N2(‘n—1)—v(4p)2(n—1)-v < 12pn(4Np)2(n—1)—(n-1) — 12pn(4Np)*.
=0
Pr(ez and Y;Y; =1)
= PI‘(€3) PI'(Y;YJ =1 ‘ 63)
- n=2 N -2 N-2—v N=2—n o
4p)¥ (4p)3n—2-v)

n—2
<4py N2n=2=r(4p)20=D= < 4p(n — 1)(4Np)* >

v=0



Thus,

E(VY}) = Pr(Y¥Y; =1)
= Pr(e; and Y;Y; = 1) + Pr(e; and Y;Y; = 1) + Pr(es and YiY; = 1)

2
< (ﬁ(ﬂ\’p)n_l) + 12pn(4Np)™" + 4p(n — 1)(4Np)™2.
Hence
E(Y?) = Y E(YY;) =3 E(Y})+3 E(VY))
irj i oy
1 %
2 n—1
< NEY1)+ N ((n— 1)!(4Np) )
+ N?.12pn(4Np)"~' + N? . dp(n — 1)(4Np)"~?
~ EY)+E(Y)*+120!NpE(Y)+ (n—1)-(n — 1)IE(Y)
1 12n!Np (n—1)-(n—1)!
= EY)? | = ~ 2,
o7 (5 + 4 R+ R £)
Since E(Y?) > E(Y)? holds generally, we have E(Y?) ~ E(Y)?. Now, applying
Chebychev’s inequality,

E(Y?) - E(Y)?
E(Y)

Hence Pr(Y > 1) —+ 1 as N — oo, and hence Pr(A(G,) 2 n—1) = 1as N — oo,

Suppose that the intersection graph ©(C; | 7 = 1,2,...,N) of the N caps
Ci,...,Cn has a vertex of degree > n — 1. To clarify the argument, assume that
C, intersects C;, 1 = 2,3,...,n. Then D; contains v;, i = 2,3,...,n. In this
case, v; is contained in D; N Dy N...N D,. This implies that {v1,v2,...,Un}
forms a clique in the intersection graph Q(D; | i =1,2,...,N). Thus, if G, has a
vertex of degree > n—1, Then Gy, has a clique of order n. Since N (Np)*™! = o0
implies N(Np/4)"~' — oo, the probability that the maximum degree of G4 is
> n —1 tends to 1'as N — co. Hence Pr(G, has an n-clique) = 1 as N — oo. 1

— 0.

Pr(Y =0) < Pr([Y — E(Y)| > E(Y)) <

4 Minimum degree

Theorem 4 Let p = p(N) = Slog N. If0 < ¢ < L, then Pr(§ = 0) — 1, while
if ¢ > %, then for any positive integer n, Pr(6§ >n) =1 as N = co.

Remark. 1t is possible to prove that if ¢ > %, then

(4c—1)log N

las N .
Toglog NV 1) —1las VN =00

Pr (5>



Proof. (i) First, suppose that ¢ > % For a fixed integer n > 1, let W
denote the number of those vertices in G, that have degree at most n. Then
§<n& W >1. Foreach i, 1 <i< N, let W; denote the random variable such
that W; = 1 if degv; < n, and W; = 0 otherwise. Then W = Wy +Wa+.. . +Wy.
Let 7 be the angular radius of the cap of area 47p, and let D; be the cap of angular
radius 2r with center v;, as in Section 2. Then degv; < n if and only if D; contains

at most n vertices v;, j # 1. Hence the expected value of W; is

n

E(m) = Pr(W',- = l) ~ Z (Ny— 1) (4p)v(1 _ 4p)N—1—u

v=0

N Z (4Np)” PN < Z 4clog N)re~¥leN  e(4clog N)"N .

1
v u—O

v=0
Thus the expected value of W =W, + ...+ Wy is
E(W) ~ NE(W,) ~ e(4clog N)*N1~%.
Since ¢ > 1, we have E(W) — 0 as N — oo. Hence
Pr(6 <n)=Pr(W >1)< E(W)—=0as N — oo.

(i3) Now, suppose that ¢ < 1. Let Z denote the number of isolated vertices
in Gp. Thend =0 Z > For each 7, 1 < i < N, let Z; denote the
random variable such that Z; = 1 if degv; = 0, and Z; = 0 otherwise. Then
Z =271+ Zy+...+ Zn. Since degv; = 0 if and only if D; contains no v;, j # 1,
the expected value of Z; is

—

E(Z) = Pr(Zi=1)~(1—4p)"!

e—4pN —4clogN IV—4C

Thus the expected valueof Z = Z; +...+ Zn is
E(Z) ~ NE(Z;) ~ N'™*.
Next, we consider the expected value E(Z;Z;), i # j.
E(Z:Z;) < Pr(D; N D; = B)(1 — 8p)N =2 + Pr(D; N D; # B)(1 — 4p)™ 2.
Since Pr(D; N D; # B) ~ 16p, we have

E(Z:Z;) < (1—16p)(1—8p)N~* +16p(1 —4p)" "
~ 6_8”N+16pe'4pN
~ N~% 4 (16clog N)N~(+%),



Hence
E(Z*% = S E(Z:iZ;) =Y E(Z})+ ) E(Z:Z;)
ti J i3]
< N4 N(N —1) (N™% 4 (16clog N)N~1+4))
~ N7 N2-8¢ 4 (16clog N)N'~1°
_ 1 l6clog N
o a2(1-de
_ N4 (_NHC +1 Nl—_4)
~ N2(1—4c) ~ E(z)'l

Since E(Z?) > E(Z)? holds generally, we have E(Z%) ~ E(Z)?. Now, applying
Chebyshev’s inequality,

E(Z?) - E(2)"

Pr(2 =0) <Px(Z - E(Z)| 2 B(Z)) < =

— 0.

Hence

Pr(6=0)=Pr(Z>1)—>1as N — co.

5 # of isolated vertices at the threshold

Similarly to Lemma 2, the next holds.

Lemma 3 Let A C {1,2,...,N} be a nonempty subset of size a = |A|, and let
H = Q(D;;i € A) denote the intersection graph of {D; | i € A}. If p = o(1),
then

Pr(H is connected) < (16(a — 1)p)*~.

Let & > 1 be a fixed integer less than N. For a partition
P = {Al,Ag,...,Am}

of the set {1,2,...,k} into m nonempty subsets, let () denote the event that
(1) Cy,Cy, - .., C are mutually disjoint, and (2) the intersection graph QD; |i=
1,2,...,k) of Dy,..., Dy has m connected components H; = Q(D; | j € Ai), i =
1,2,...,m. Let Z; denote the random variable such that Z; =1 if and only if
degv; =0 in Q(C; | 0 < i < N), as in the previous section.

Lemma 4 Let p = ;5-(log N + ). Let k > 1 be a fized integer and let P be a
partition of {1,2,...,k} into m subsets. If m <k, then

Pr((P) and Z,Z, ... Zx = 1) = o(N7*).
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Proof. Let P = {A,,...,An}, and let a; = |A;| be the size of A;. Since m < k,
some a; is greater than 1. By Lemma 3, Pr(H; is connected) < (16(a; — 1)p)*~1,
for each i =1,2,...,m. Since ¥1x,(¢; — 1) = k — m, we have

Pr((P)) < f[l(w(a,-—l)p)“f-‘

K- (Llog N + £)k-m

< [\" . pk—m = Nk—m y

where K = H(lGai —16)%~!, On the other hand, since Cy,C,,...,C) are mu-
i=1

tually disjoint, area(Dj — D;) > larea(D;:) for 1 < j < j' < k. Hence, for each

A; of size > 2,

1
area( | J D;) > area(D;) + §area(Dj:) > 4m(4p + 2p) = 4m - 6p.
JEA;
Let ¢ be the number of those g;s that are greater than 1. Then ¢ > 1 and
Pr(Z,...Zy=1|(P)) < (1—=(m—£&dp—¢-6p)"*
= (1-(4dm+ 2@)17)”“'c ~ g~ (4m+20pN
~ lv—(m+€/2)e—x(m+€/2).
Hence
Pr((P)and Z,Z,... 2, =1) < K.(}T log N+§)'°-mN-(W/?)e-z(m“/?) = o(N7¥).
|

Let U,,U,,...Uyx be random variables which may take two values 0 and 1
only, and let U = U, + U; + ... + Uy. Then, for a positive integer k, the k-th
binomial moment M, of U is defined by

M, = Z E(IW,‘IIW,'Z R I'W,'k) =F ([k};) ,

where the summation is over all 1 < 7; < i3 < ... < i < N, that is, over all
k-subsets of {1,2,...,N}. Then the following lemma holds. For a proof, see
Palmer [8] pp. 139-141.

Lemma 5 Suppose that for each k=1,2,3,...,

k
i =2
Iél—rgojwk_kl’ 0 <pu<oo.

Then for each integer 3 > 0,

e—U”J

m (U =)=



Let Z denote the number of isolated vertices of G,,.

Theorem 5 Let p= ;5(log N +z). Then
=183

J!

Pr(Z =j) > c as N — oo,

where p = e™%,

Proof. By Lemma 5, it is enough to show that for any integer & > 1, the k-th

binomial moment of Z tends to p*/k! as N — oo, that is,

k
(]Z)E(zlzz...zk) — % as N — oo.

Let P, denote the partition of {1,2,...,k} into k singleton sets, that is, Py =

{{1},{2},...,{k}}. Then

E(Z:Z,... %)
=Pr(Z,2;... 2k = 1)

=Pr((Po) and Z12,... Z;, = 1)+ > Pr((P) and Z,Z,...2Z; = 1).
P#Po

Since, for any partition P # Py,
Pr((P) and Z,2,...Z, = 1) = o( N7F)

by Lemma 4, and since the number of distinct partitions of {1,2,...,k} (known
as Bell number) is clearly less than k*, we have

3" Pr({P) and Z1Z,...Z; = 1) = o( N7¥).
P#Po

On the other hand,
Pr((Po) and Z1Z,... Zy = 1) = Pr({Po)) Pr(Z; ... Zi = 1 | {Po)),
Pr({(Po)) = 1 as N — oo, and
Pr(Zy...Zk =1 (Po)) ~ (1 — 4kp)"™* ~ PN = (72 /N)".

Hence E(Z,Z,...Z;) ~ u*/N* as N — oo, and hence

N Nk“k uk
(k)E(ZI..Zk)N_]J-}v_k= m.
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6 Two-connectedness

In a family of caps C1,Cs,...,Cn with centers vy, vs,...,vn, a cap C; is called
an extremal cap if there is a great circle through v; such that all the neighbors of
v; in (C; | 0 € i < N) lie in the same side of the great circle, allowing some of
them lie on the great circle.

The following theorem is obtained in [7].

Theorem 6 Let C = {C},Cs,...,Cn} be a family of caps on a sphere, all of
the same size smaller than a hemisphere, and let G = Q(C) be their intersection
graph. If C has no extremal cap, then G is 2-connected. I

The assumption that all caps are of the same size is not necessary, see [7]. It
is also known that the analogous assertion is no longer true in higher dimension.

Theorem 7 Suppose that p= < log N with ¢ > ;. Then
Pr(G, is 2-connected) =+ 1 as N — co.

Proof. If v; € D;, then the geodesic line through v;,v; divides D; into two
half caps, and the half cap at the left side of 57} is denoted by L(¥%}). Let us
call L(#;07) empty if its interior contains no vertex.

For each i = 1,2,..., N, let V; be the random variable such that V; = 1 if
C; is an extremal cap, and V; = 0 otherwise. Then V; = 1 implies that either
D; contains no v;,j # 1, or there is a v; € D;, j # 1 such that L(#0}) is empty.
Hence

B(V) = Pr(Vi=1)
(1 —4p)V~' + 5" Pr(v; € D; and L(¥;7}) is empty)
i#i
(1= 4p)"~! + (N = 1)(4p)(1 — 2p)"V "% ~ e~ + 4pNe™™"
~ N7 4 (4clog N)N7%.

IA 1l

1l

Let V=V,+ Vo +...4+ Vy. Then V > 1 is equivalent to the existence of an
extremal cap C;, and hence

G, is not 2-connected =V > 1.
Now,
E(V) = NE(V}) < N(N™% + (4clog N)N %) ~ (4clog N)N'** ~ o(1).
Therefore
Pr(G, is not 2-connected) < Pr(V > 1) < E(V) = o(1).
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Theorem 8 Ifp= flogN, ¢ > 2, then

Pr(G, is Hamiltonian) — 1 as N — oo.

Proof. Let Ci,...,Cn be N caps of angular radius r, and G be their intersec-
tion graph. Denote by D; the cap of angular radius 2r concentric with C;. Then
the intersection graph of Dy,...,Dy contains the square G? of G. Hence G,
contains the square of G,/4. If p = £ log N,c > 2, then & > l%log N for some
e > 0. Hence Pr(G,/4 is 2-connected) — 1 as N — oo, by Theorem 7. Now,
by Fleischner’s theorem ([2] or see [1]), the square of every 2-connected graph is
Hamiltonian. Therefore, Pr(G, is Hamiltonian) — 1 as N — oo. I
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Asymptotic behavior of the intersection graph
of random N caps of the size 47p(N)

0 ——
no edge
N-2 & p= %,@ = # of edges ~ Poisson
with mean e™*
3 edges
all components are of order < n
N—l—-l/n
3(n + 1)-clique
§=0 N 5
1 loe N = s (z+log N) = # of isolated
v o8 vertices ~ Poisson with mean e”*
Yn>0,6>n
Slog N
2-connected
the sphere is not covered yet
~log N
the sphere is completely covered
% log N
Hamiltonian
p(N)
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