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Abstract

We survey many old and new theorems, and open problems related
to distance graphs in Euclidean spaces. In the last two sections we
present some new results with their proofs. We cover the following
topics:

1. Distance graphs
Rigidity of graphs
. Bipartite graphs in the plane
. Unit-bar-graphs
. Algebraic-distance graphs
. Distance set with RC-property
. Algebraic-distance graphs on circles
. Integral- and rational-distance graphs
. v/Q-distance graphs
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1 Distance graphs

Let R, denote the set of positive real numbers, and D be a nonempty subset
of R*. We refer to D as the distance set. For a nonempty subset X of a
Euclidean space R*, we define the D-distance graph on X, denoted by X(D),
as the graph with vertex set X and edge-set {zy | d(z,y) € D}, where d(z,y)
is the Euclidean distance between z and y. Then X (D) is a simple graph.
Suppose that D is a proper subset of R, and « € D, € Ry — D.
Then, for any ¢ > 0, we can choose two numbers a,b > min{e, 8} such that
a € Db € R, — D and |a — b| < e. For any n > 0, if ¢ is sufficiently
small, there is an n-dimensional simplex in R™ whose prescribed edges have
length @ and remaining edges have length b. Any graph of order n 4+ 1 can



be represented by the D-distance graph on the vertex set of such a simplex

in B™.

Theorem 1.1 [39] If D is a proper subset of R, then every finite graph G
can be represented by a D-distance graph in some R". 1

The minimum dimension n for G is called the D-dimension of G and is
denoted by dimp G.

By specifying the distance set D in various ways, we obtain many inter-
esting classes of graphs. For example, by taking {1} as the distance set, we
have unit-distance graphs. We write simply X (1) for the unit-distance graph
X({1}) on X C R™. A famous problem on unit-distance graph (see [13,35))
is to ask the chromatic number y(R?(1)) of the unit-distance graph R?(1) on

the whole plane R?. The graph R?(1) contains a subgraph @ called the

Moser’s spindle [57] whose chromatic number is 4. At present it is known
that

4 < x(R*(1)) <7

Chilakamarri [8] proved that the chromatic number of the unit distance graph
of any Minkowski plane also lies in {4,5,6,7}.

Let Q™ denote the set of rational points in B®. Then Q"(1) is connected
for n > 5 (Chilakamarri [7]). Though x(R™(1)) is not known for any n > 2,
the following is known, see [9]:

x(@'(1)) = x(@*(1)) = x(@*(1)) = 2 and x(Q*(1)) = 4.

Chilakamarri [9] is a nice survey on the chromatic number problem on
unit-distance graphs.

Denote by Z, and @, the set of positive integers and the set of positive
rational numbers, respectively. If we take Z, or ()4 as the distance set, then
we have integral-distance graphs or rational-distance graphs.

Theorem 1.2 (Anning, Erdés [2]) If X is an infinite set in R"(n > 2)
and X(Z4) is complete (that is, any two vertices in X(Z;) are adjacent),
then the set X lies on a straight line. §

For a proof of the case n = 2 using ‘hyperbolas’, see the books Hadwiger
and Debruner [23], Klee and Wagon [35].
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If we take the interval I := {¢ : 0 < ¢t < 1} as the distance set, then
we have unit neighborhood graphs. These are also known as the intersection
graphs of unit balls. For a finite graph G, dim; G is called the sphericity of G
[21,27,39], and denoted by sph(G). The graphs with sphericity 1 are known as
the unit interval graphs, and they are characterized and enumerated [24,38].

Clearly sph(K,) =1 for n > 1. It is, however, usually difficult to deter-
mine sph(G) for an arbitrarily given graph G. In fact the following result is
known, see [5,6,28].

Theorem 1.3 (Breu, Kirkpatric [6]) The recognition of the intersection
graph of unit-disks in the plane is NP-hard.

It is known (Maehara, Reiterman, Rodl, Sifiajova [54]) that the spheric-
ity of the complement of any tree is at most 3, and there is a tree whose
complement has sphericity 3. For complete bipartite graphs, the bounds

n < sph(K(n,n)) <3n/2 forn >4

are known [41]. Moser and Pach [59] contains a brief survey on graph-
dimensions.

Eggleton, Erdés, Skilton [15,16,17] studied prime-distance graphs in which
the distance set is the set P of the prime numbers or a subset of it. Among
others, they proved that the chromatic number of Z(P), the prime-distance
graph on the integers Z C R, is equal to 4.

There are many papers on colorings of distance graphs Z(D) for D C Z,.
Voigt and Walther [66] proved that the chromatic number of Z({2, 3, u, u+1})
is 3 for any [ > 10 and u = [2—6(+3. Deuber and Zhu [14] gave a classification
of those D = {a,b,c} for which b is a multiple of a and x(Z(D)) = 3.
Kemnitz and Marangio [31,32] determined the chromatic number of Z(D)
for 4-element set D C Z, of the form D = {z,y,z + y,y —z},2 < y or an
arithmetical progression D = {a + kd | k = 0,1,2,...}, and proved that for
D = {z,2z,...,nz,y},gcd(z,y) = 1, the chromatic number of Z(D) is at
most n + 2. Ruzsa, Tuza and Voigt [61] proved that the chromatic number
of Z({dy,ds,...}) is finite whenever inf{d;,/d;} > 1.

2 Rigidity of graphs

Let us recall here some fundamentals on the rigidity and flexibility of graphs

in B™.



By a graph in R" we mean a graph whose vertices are points in R
and whose edges are line-segments connecting vertices. A graph in R" is
also considered as a representation of an abstract graph. A graph G in
R" is said to be flezible, if it admits a continuous deformation, that is, if
we can continuously move the vertices of G in R™ in such a way that (1)
the distances between adjacent vertices are unchanged, and (2) at least a
pair of non-adjacent vertices change their mutual distance. If G admits no
continuous deformation, then G is said to be rigid. Equivalently, we may
define a graph G in R" with vertex-set X C R™ to be rigid if there isa § > 0
such that any map ¢ : X — R" satisfying d(¢(z),z) < § forall z € X, and
d((z),¢(y)) = d(z,y) for all edges zy of G, is an isometry on X. Here, an
isometry on X is a map ¥ : X — X that satisfies d(z,y) = d(¢(z), ¥ (y)) for
all z,y € X.

For example, the graph consisting of four vertices and four edges of a
square in the plane R? is flexible. Indeed, it deforms into a family of rhombi.
On the other hand, the graph obtained as the 1-dimensional skeleton of a
k-dimensional simplex in R™ (k < n) is rigid since this is the complete graph
I(k-l-l-

A vector field f on X C R* isamap f: X — R". When we want to show
the domain of f explicitly, we use the notation f|X. If the values of f are
obtained as the velocity vectors of a smooth ‘rigid motion’ of X in R", then
f is called trivial. An infinitesimal motion of a graph G with the vertex-set
X C R" is a vector field f|X that satisfies

(f(2) = f(y) - (z—y) =0

for all edges zy of G, where - denotes the inner product. A nontrivial in-
finitesimal motion of G is called an infinitesimal deformation of G. If G
admits an infinitesimal deformation, then G is called infinitesimally flezible,
otherwise, G is called infinitesimally rigid.

If a graph in R™ admits a continuous deformation, then it admits a smooth
deformation, see, e.g., Asimov and Roth [3]. If a graph G in R" admits a
smooth deformation, then the velocity vectors of the vertices at some in-
stant constitute an infinitesimal deformation of G. Hence “flexible” implies
“infinitesimally flexible”, and “infinitesimally rigid” implies “rigid”.

Note that a rigid graph is not always infinitesimally rigid. For example,

the graph in R? is rigid but not infinitesimally rigid. (By assigning




a vertical nonzero vector to the vertex of degree 2, and zero vectors to all
other vertices, we get an infinitesimal deformation.)
For more information on rigidity or flexibility, see, e.g., [3,4,60]

Let us state here some results on the rigidity of a closed polyhedral sur-
face. We regard a closed polyhedral surface as a hinged-panel-manifold, that
is, a closed two-dimensional manifold in R> obtained by attaching rigid panel-
polygons along the edges with hinges. Then a question arises naturally: Is
there a flexible closed polyhedral surface? Cauchy proved that the polyhedral
surface of a compact convex polyhedron is rigid (Cauchy’s rigidity theorem
for a convex polyhedron). Gluck [20] proved that almost all polyhedral sur-
faces that are homeomorphic to a sphere and whose faces are all triangles, are
rigid. In 1976, however, Connelly [11] found a flexible closed polyhedral sur-
face with faces all triangles, homeomorphic to a sphere, and yet flexible. His
flexible surface preserves its volume (content) under continuous deformation,
that is, the volume of the polyhedron remains constant during continuous
deformation. This fact led him to the Bellow Conjecture. It asserts that
each flexible closed surface in R* conserves its volume during continuous de-
formation. Recently, the affirmative answer to the Bellow Conjecture was
obtained for flexible polyhedra in R>, see [12,62,63].

3 Bipartite graphs in the plane

To construct a rigid graph in the plane, we usually use triangles (3-cycles).
So, it would be an interesting fact that most representations of K'(3,3) in
the plane are rigid.

For two disjoint, nonempty (possibly infinite) sets X,Y C R?,let K(X,Y)
denote the complete bipartite graph with partite sets X and Y. The size (car-
dinality) of X is denoted by |X|. It will be easy to see that if |X| < 2, then
K(X,Y) is always infinitesimally flexible.

Theorem 3.1 (Bolker, Roth [4]) Suppose that X,Y C R? are two dis-
joint sets of size > 3 such that no three points in X UY are collinear. If
K(X,Y) admits an infinitesimal deformation, then X UY lies on a conic.

Proof [50]. Suppose that f: X UY — R? is an infinitesimal deformation
of K(X,Y), and let p,, p, p3 be three points in X. Then for any g € Y,

(g=pi)- (f(g) = f(p:)) =0 (i=1,2,3). (1)
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Hence for each ¢ € Y, the value f(q) is uniquely determined by the two values,
say, f(p1), f(p2), and similarly f(p) (p € X —{p1, p2}) are also determined by

f(p1), f(p2) via some two values f(q), f(¢') (¢,¢' € Y). Therefore f|{p1,p:}
must be an infinitesimal deformation, i.e., (p1 — p2) - (f(p1) — f(p2)) # 0.

(For otherwise, f : X UY — R? becomes a trivial motion.} Now, letting
f(g) = (u,v), we have

(1) & (g—p)-fl@)—(q—p) f(pi)=0 (:=1,2,3)
g—p1 (g—p1)- f(p1) t(u,v) 0
& | 9=p (g—p2)- f(pa) ( = ) =10| @
q—ps (q9—ps)- f(ps) 0
Let p; = (ai,b;) (¢ = 1,2,3), and define a polynomial F(z,y) of z,y by

r—a; y—b (z—an,y—>b) f(p)
T — dg y_b2 (.’B—(lg,y—bz)‘f(P2)
T — a3 y—bs (x_a3,y_b3)'f(p3)

F(x)=F(a:,y)=

Then, since (p1 — p2) - (f(p1) — f(p2)) # 0 and py, p3, p3 are not collinear it
follows that F((p1 + p2)/2) # 0. Hence F(z,y) is a nontrivial polynomial of

z,y with degree at most 2. Since F(g) = 0 for all ¢ € Y by (2), and since
F(p;) =0 ( = 1,2,3) as verified easily, the set {p;,p2,p3} UY lies on the
conic F(z,y) = 0. Similarly, for any p € X — {p1, p2}, the set {p1,p2,p} UY
lies on a conic. Since a proper conic is determined by five points on it, we
can conclude that X UY lies on a conic. §

The following precise result was proved by Whitely [67]: For two disjoint
sets X,Y C R? (|X| > 3,|Y| > 3) in R?, K(X,Y) is infinitesimally flexible
in the plane if and only if one of the following holds:

(1) X and a point of Y lie on a line.

(2) Y and a point of X lie on a line.

(3) X UY lies on a conic.

When does a representation of K(m,n), m,n > 3, in R? admit a contin-
uous deformation?

Theorem 3.2 (Maehara, Tokushige [56]) Let X,Y C R? be two disjoint
finite sets such that | X| > 3,|Y| > 5. Then K(X,Y) admits a continuous de-

formation if and only if X lies on a line L and Y lies on a line perpendicular
to L. 1



To see the if part of the proof, suppose that X = {py, p2,ps,. ..} lies on
the z-axis and Y = {¢1, g2, g3, .. .} lies on the y-axis, with no g; on the origin.
Then we can put

pi = (mve; +1t,0), i=1,2,.

G = (Oefbj—1), j=1,2,.

where 7;,¢; = +1 and «a;,t > 0, b; > 0. Then the length of the edge piq; is
equal to a; + b;, which is irrelevant to ¢. Hence by varying ¢, we can deform
K(X,Y).

The only if part of the proof is not easy.

We cannot relax the condition |Y| > 5 in Theorem 3.2 to |Y| > 4, by the
following result (see Wunderlich [68]).

Theorem 3.3 (Bottema) There is a flexible representation K(X,Y) of
K(4,4) in the plane such that the conver hulls of X and Y are both rect-
angles.

Proof. The simultaneous equation on z,y, z containing a parameter ¢

-1+ (y—2)° = 4
(z—t)?+(y+2)? = 6
(z+1)’+(y—2)° = 8
(z+t)?+(y+2)? = 10

can be solved easily, and has real solutions z = z(t),y = y(t),z = 2(¢) that
are continuous in some range of ¢. Let

n= (taz)’ P2 = (_t7z)7 P3 = (_ta_z)a P4 = (t )
a=(z,y), @=(-z9), ¢=(—-2z,-y), au=/(z,~y),

and put X = {py,p2,ps,Pa}, ¥ = {q1,92, 93, ¢a}. Then, varying ¢ in some
range, we have a continuous deformation of K(X,Y). i

Problem 3.1 Characterize the flexible representations of
K(3,3), K(3,4), K(4,4)

in the plane.



Let us call an (abstract) graph absolutely 2-rigid if it admits no flexible
representation in R2.

Problem 3.2 Characterize absolutely 2-rigid graphs.

It seems that a graph G of order > 2 is absolutely 2-rigid if and only if G
can be obtained from K by repeating the following operations: (1) attaching
a vertex of degree 2, and (2) adding an edge.

4 TUnit-bar-graphs

A subgraph (not necessarily an induced subgraph) of the unit-distance graph
R™(1) is called a unit-bar-graph in R*. Thus in a unit-bar-graph, a pair of
non-adjacent vertices can have unit distance.

By Theorem 3.1, there is a ‘bipartite’ graph that is rigid in R?. How
about unit-bar-graphs? Is there a (nonfrivial) rigid unit-bar-graph in the
plane that has no 3-cycle? A rigid bipartite unit-bar-graph in the plane was
constructed in [43]. Unfortunately, that graph is not infinitesimally rigid.
An infinitesimally rigid unit-bar-graph in the plane that has no 3-cycle was
given by Maehara and Chinen [52). Figure 1 shows their graph.

Figure 1: A triangle-free rigid unit-bar-graph in the plane

It is an easy exercise of elementary geometry to show that the unit-bar-
graph in Figure 1 is rigid. The infinitesimal rigidity of the graph is shown
by calculating the rank of its “rigidity matrix”.



Maehara and Tokushige [55] constructed a rigid unit-bar-graph in R that
contains no 3-cycle. Their graph consists of 26 vertices and 78 edges (unit-
bars). Its infinitesimal rigidity was checked by calculating the rank of rigidity
matrix.

Problem 4.1 Find an infinitesimally rigid bipartite unit-bar-graph in the
plane.

Problem 4.2 Find a general method to construct a triangle-free, infinitesi-
mally rigid unit-bar-graph in R".

Let G be a flexible unit-bar-graph in R*. Then, by adding some edges
of appropriate lengths, we can always extend G to a rigid graph in R".
How about when only unit-bars (edges of unit-lengths) are available? Can
we always extend G to a rigid unit-bar-graph in R™? If necessary, we may
continuously deform G as far as no two distinct vertices come to the same
position. It was proved in [45] that any unit-bar-graph in R" can be extended
to a rigid unit-bar-graph in R".

Though K, (n > 4) is not isomorphic to a unit-bar-graph in the plane,
every finite graph G is ‘homeomorphic’ to a unit-bar-graph in the plane, that
is, by inserting a number of vertices into the edges of G, we can change G into
a graph isomorphic to a unit-bar-graph in the plane. The subdivision number
of G (denoted by sd(G)) is defined to be the minimum number of vertices
we need to insert to change G into a graph isomorphic to a unit-bar-graph in
the plane. If G has m edges, then sd(G) < m. This can be seen as follows:
Put the vertices of G inside a circle of radius < 1 on the plane. For each pair
of vertices that should be adjacent in G, connect them by a path consisting
of 2 unit-bars. Then we obtain a unit-bar-graph that is homeomorphic to
G. Hence sd(G) < m. Let t(n) denote the maximum number of edges of a
graph on n vertices that contains no 4-cycle. It is known that

t(n) < le_n (1 +v4n — 3) .
A nice proof of this inequality is presented in the book by Aigner and Ziegler

[1]. Concerning the subdivision number, Gervacio and Maehara [19] proved
the following:

(g) —t(n) < sd(K,) < %(n —2)(n—3)+2,
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sd(K(n,n)) < (n—2)*+ [n ; 2.‘ )

sd(K(m,n)) = (m —1)(n—m) forn > m(m—1).

To close this section, let us mention {1}-dimensions. We write dim; G
for dimyg;y G. It is clear that dim, K, = n —1 for any complete graph K.
It was proved by Lenz (see [18]) that dim; K'(m,n) = 4 for m,n > 4. The
{1}-dimensions of complete multipartite graphs were determined in [40]:

For ny,ng,...,ny 2> 3,

dimlI((l,l,...,l,2’2,..,2’71,1,112"“’77,1& ={ S (t+u>2)
~ — N—— ~

s+t+2u—1 (t+u<l)

v

s i u

5 Algebraic-distance graphs

Let us denote by A, the set of positive (real) algebraic numbers. For a
nonempty subset X C R", X(A;) is called the algebraic-distance graph on
X. The following “rigid-complete theorem” relates algebraic-distance graphs
to rigidity.

Theorem 5.1 (Homma, Maehara [30]) For a finite point-set X C R",
the algebraic-distance graph X (A..) is rigid if and only if X(Ay) is a complete
graph.

Following [45], we present here a short proof applying a result by Homma,
Kato, Maehara [29)]:

Let f(zy,Zq,...,2N), 9(21,22,...,2N) be two polynomials whose coeffi-
cients are all real algebraic numbers. Then the mazimal values of f(z1,%2,...,ZN)
under the condition g(z1,2q,...,28) = 0 are all algebraic numbers.

Actually this assertion is true for any ‘real algebraic functions’ f,g over
the field of real algebraic numbers.

Proof of the rigid-complete theorem. Let us consider the case n = 2.
If X(A,) is complete, then it is clearly rigid. Suppose that X(A,) is not
complete. Let X = {p1,p2,-...,Pn}, and put

E = {ij | d(pi,p;) € A4, i < j}.
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Since X(A4) is not complete, we may suppose that d(p;,p2) € Ay. Now
consider the polynomials f(x), g(x) of 2m variables X = (z1,y1,. -, Tm, Ym):

f(a:la Y1, - :Tm, ym) = (‘7"1 - 3'2)2 + (yl - y2)27
g(ﬂil,yh---,mm,ym Z{(‘I’l_‘l (yt _yJ) ij}27
iJeE

where €;; = d(p;, p;). Then f(x), g(x) are polynomials over the real algebraic
numbers, and g(p) = 0, where p = (p1,p2,-..,Pm) € R*™. Since f(p) =
d(p1,p2)? is not algebraic, f(p) is not a maximal value of f under the condi-
tion g = 0. Hence, for any d > 0, there is a point q = (¢1,¢3,---,qm) € R*™
such that d(p;,¢;) < é for all 1 = 1,2,...,m, f(q) > f(p), and g(q) = 0.
However, g(q) = 0 implies that d(g,q;) = d(pi,p;) for all edges p;p; of
X(A4). Hence, recalling the second equivalent definition of the rigidity of a
graph, we can conclude that X(A,) is not rigid. il

Let us identify R™ with the subset of R**! consisting of the points whose
last coordinates are 0. Let G = (V, E) be a graph with vertex set V C R".
A suspension of G with poles

p=(0,0,...,0,2), ¢=(0,0,...,0,—2) € R**!
(where z # 0) is a graph with vertex-set V U {p, ¢} and edge-set
Eu{pv|lveV}U{q|veV}.

If the suspension of G is flexible in R"*! for some z # 0, then G is said to
be suspension-flexible.

Corollary 5.1 Let S, be a sphere of transcendental radius 7 > 0 in R".
Then every finite subgraph of S;(A4) is suspension-flexible.

Proof. We may suppose that S; is centered at the origin O of R*. Let G =
(V, E) be a finite subgraph of S;(A;). Let z = Vk — 72 for some integer k >
72, and let p = (0,...,0,2), ¢ =(0,...,0,—z) € R"*'. Then the algebraic-
dlstance graph on V U {p, q} is not complete because d(p,q) = 2vk — 72
is transcendental. Hence it is flexible by the rigid-complete theorem. This
graph contains the suspension of G as a spanning subgraph. Hence G is
suspension-flexible. Nl

The diameter of a graph G is the minimum integer m such that any two
vertices of G can be connected by a path consisting of at most m edges. If a
graph is disconnected, then its diameter is oo.
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Theorem 5.2 (Homma, Maehara [30]) Let S, be a sphere of radius r >
0 in R*, n > 3. Then the diameter of S.(Ay) 1s 2 if r is algebraic, and 3 if

r is transcendental.

Proof. Since S, has two points with transcendental distance apart, the
diameter of S.(A) is at least 2.

Let z,y be two points that are not antipodal to each other, that is
d(z,y) < 2r. Then we can choose z € S, so that d(z,z) = d(y,z) € A4
Hence in S,(A,), any non-antipodal pair ,y can be connected by a path
with two edges.

If r € Ay, then an antipodal pair are adjacent in S.(A;). Hence the
diameter of S,(A,) is 2 in this case.

Suppose now 7 is transcendental, and let z,y be an antipodal pair. Then
x,y cannot be connected by a path with two edges, for otherwise, (2r)2
becomes algebraic by Pythagorian theorem, a contradiction. It will be clear
that z,y can be connected by a path with three edges. i

For any m,n > 3, the A,-dimension of K(m,n) is 2. This can be seen as
follows: Let p; = (v +=,0) € R (1 =1,2,...,m),q; = (0,/3+7—7) €
R* (=1,2,...,n),and X = {p1,..-,Pn}, Y =9{q1,.--,6:.}. Then (X U
Y)(A4+) = K(X,Y). Hence, dims, K(m,n) = 2. It was also proved in [30]

that
dimy, K(2,2,...,2) > n.

Hence, dimy, G is also unbounded for finite graphs G.

6 Distance sets with RC-property

In this section, we consider those distance sets that contain 1. A distance
set D is said to have the n-rigid-complete-property (n-RC-property) if, for
any finite subset X C R™, the rigidity of X (D) implies the completeness
of the graph X(D). By the rigid-complete theorem, the set A, has the
n-RC-property for every n > 0.

What is the minimum distance set D that has the n-RC-Property? Since
1 € D, it will be clear that Z, is the minimum distance set with the 1-RC-
property.

A number ¢ is called a surd number if o can be obtained from 0 and 1 by
applying a finite number of arithmetic operations and extractions of square
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root. It is well known that given a line-segment of unit length in the plane,
a line-segment of length |o| can be constructed by ruler and compass if and
only if o is a surd number. See, e.g., Stewart [64].

Now, since our distance sets contain 1, it will be easy to see that any
distance set with the 2-RC-property contains the set ¥, of positive surd
numbers. It is known [47] that any rigid ¥,-distance graph in R? with at
most five vertices is complete. So, ¥ could be a candidate for the minimum
distance set with the 2-RC-property. The ¥, -distance graph on a point-set
is called the surd-distance graphs on the point-set. It turned out, however,
that there is a surd-distance graph in R? with six vertices that is rigid but
not complete. Figure 2 shows such a surd-distance graph obtained in [49].
It can be proved that none of the distances between non-adjacent pairs of
vertices in Figure 2 is a surd number. Hence, it is impossible to construct
a congruent copy of this rigid graph by ruler and compass from the data of
edge-lengths and the graph-structure of this graph.

short edge = 1, long edge = 2

Figure 2: A rigid surd-distance graph

Employing Kempe’s idea [34], it was proved in [45] that for any positive
algebraic number a, there is a rigid unit-distance graph G in R* that contains
two vertices exactly distance a apart. Thus it turned out that Ay is the
minimum distance set with 2-RC-property.

This result can be extended to arbitrary dimension n > 2.

Theorem 6.1 [45] The set of positive algebraic numbers A, is the minimum
distance set that has n-RC-property for each n > 2. 1

7 Algebraic-distance graphs on circles

Let C be a circle in R? with center O and let X = v;v,...v, be an ‘oriented’
cycle inscribed in C (that is, v,...,v, lie on C). As a closed polygonal
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curve, i may have self-intersections. For each ‘oriented’ edge v;v;41 not
passing through the center O, let us assign a sign €; = €(vjvj41) as follows: If
O — v; = vj41 = O is counterclockwise, then ¢; = +1, otherwise, ¢; = —1.

The winding number of K (around O) is defined by wind(K) = 0 if one
of the edges of K passes through the center O of the circle C, and

wind(K) = % > € Lv;0v54
j=1

otherwise, where v,y; = v; and Zv;Ov;y, is measured in radians, 0 <
Lv;Ov;3; < w. Note that wind(K) takes only integral values. The signed
area of K (denoted by area(K)) is defined by

area(K) = Z €;|A0v;v;44],

i=1

where |AOv;v;41| is the area of the triangle AOv;v;y,.
The following theorem is a special case of Connelly’s suspension theorem.

Theorem 7.1 (Connelly [10]) If an oriented cycle K inscribed in a circle
in R? is suspension-flezible, then wind(K') = area(K) = 0.

Proof. We use the following fact: If the function
fl@) =ajcos ' (1 —c1z) + ... + amecos (1 —emz) (1 <2< ... < Cm)

is constant on an interval of z, then ¢y = a; =... =@, = 0.

This can be seen as follows. Suppose that a, # 0. Then since f(z) is
real analytic on the interval (0,2/c,), it is constant on the interval. Hence
the derivative f/(z) = 0 on the interval. However, f'(z) = oo as © —= 2/cn
as easily verified, a contradiction.

Now, let K = v,v,...v, be an oriented cycle inscribed in a circle C with
center 0. Suppose that a suspension of K is flexible. Then we can continu-
ously change. the radius of the circle circumscribed to K. We may also sup-
pose, by changing the radius r if necessary, that no edge of K passes through
O. Let e; = d(v;,v;41). Then, from the cosine law, we have cos Lv;0v;4, =
1 — (1/2)(e;/r)?. Letting = = 1/(2r?%), we get Lv;0vjyy = cos™'(1 — e}).
Let ¢;,¢s, ..., Cn be the distinct numbers in {ej,...,e,}. Then

wind(K) = QL S (Y ¢)cosTH1 - cfa).

1<i<m €;=ci
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Since wind(K) remains fixed under a small change of the radius r (recall
that no edges passes through O), it follows from the fact mentioned in the
begining of the proof that

Z =0 fori=1,...,m.

ej=c;
Hence wind(K) = 0. Since |AOv;v;41| = $e;4/r? — (e;/2)?, we have
, 1 TR
area([x) = 5 Z ( Z CJ')C,,' rZ — (C,'/2)2 = 0.

1<i<m e;=¢;

The suspension-flexible oriented cycles inscribed in a circle are character-
ized in the following way.

Theorem 7.2 [44] Let K be an oriented cycle inscribed in a circle none of
whose edges passes through the center of the circle. Then, K is suspension-
flezible if and only if each edge e of K has a partner-edge € with the same
length as e and opposite sign. 1

Corollary 7.1 If a cycle inscribed in a circle is suspension-flexible, then it
has even number of edges. |

Let a denote a positive algebraic number, and 7 denote a positive tran-
scendental number. A circle with radius r is denoted by C,. Since any cycle
of C(A4) is suspension-flexible by Corollary 5.1, C;(A4+) has no odd cycle.
Hence C(A,) is a bipartite graph. On the other hand, any connected com-
ponent of Cy(A4) is a complete graph. This can be seen as follows: Let
zyz be a path of C,(Ay). Then the algebraic-distance graph on {O,z,y, z}
is clearly rigid in the plane, and hence d(z,z) € A;. Hence any connected
component of C,(A,) is complete. Thus, concerning the chromatic number
of C.(A;), we have the next result.

x(or(A+)>={ 2 (ré A

o (r € Ay)

Theorem 7.3 [46] Let C, be centered at O, and x,y be two points on C,
such that LzOy has a rational degree measure. Then there is no path in
C.(A4) connecting z,y.
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Proof. Suppose there is a path P connecting @ and y. Let p be the rotation
around O through the angle ZzQOy. Since LzOy has a rational degree, there
is an integer n such that p”(z) = z. Then by connecting the paths

P, p(P), ...,p" "' (P)

end by end, we get a cycle K of C.(A,). Its winding number around O is
clearly not zero, a contradiction to Theorem 7.1.

Since each connected component of Cy(A4) is complete, Co(A4) has in-
finitely many components. (Take a § > 0 such that sinf ¢ Ay, and let
P1, P2, - - -be points on C, such that Zp;Op;y; = 0. Then these points belong
to distinct components.) All components of C,(A4) are clearly isomorphic.
By the above theorem, it follows that C,(A4) has also infinitely many com-
ponents. Each component of C,(A;) is bipartite as already seen. It is never
a complete bipartite graph. To see this, consider a path wzyz of C;(A4) such
that d(w,z) = d(z,y) = d(y,z) < 7. Then d(w,2) € A,, for otherwise, in
the 4-cycle wzxyz, the edge wz has no partner-edge, contradicting Theorem
7.2. Hence no component of C,(A;) is complete bipartite.

Problem 7.1 Is C.(Ay) always isomorphic to Cr(A4)? In other words, is
there a bijection f : C, = C, that satisfies the condition d(z,y) € Ay &

d(f(z), f(y)) € Ay ?

8 Integral- and rational-distance graphs

If G is a finite graph represented by a rational-distance graph in the plane,
then by blowing up the plane suitably, we can get a representation by an
integral-distance graph in the plane. Hence, any finite graph represented
by a rational-distance graph can be also represented by an integral-distance
graph in the plane. This is no longer true for graphs with infinitely many
vertices as seen from the following result.

Let 0o = |Z4|, and K(oo, 00) be the complete bipartite graph with both
partite-sets of size oo.

Theorem 8.1 dimg, K(o0,0) = 2, dimz, K(o0,00) = 3.

Proof. (i) It is clear that dimg, K(00,00) > 1. Let C, be a circle
with radius r = +/8, and let v;, i € Z, be the sequence of points on C.,
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such that d(v;,viy1) = 2,¢ € Z;. Then by elementary geometry, it follows
that d(vy,v3) = V14 which is an irrational number whose square is a ra-
tional. Applying Ptolemy’s theorem to the quadrilateral v,v,v3v4, we have
d(vy,v4) = d(v1,v3)d(vs,v4)/2—2 = 5, a rational. Similarly, it can be proved
by induction that (1) if n — 1 is odd, then d(v1,v,) is a rational, and (2)
if n — 1 is even then d(v;,v,) is an irrational whose square is a rational.
Hence the rational-distance graph on the set {v;,v,,vs,...} is isomorphic to
K (o0, o).

(2¢) First we show that K(3,00) is not an integral-distance graph in the
plane. Suppose that K(3,c0) is represented by the integral-distance graph
on {u,v,w}U X in the plane, where {u,v,w} is one partite-set and X is the
other infinite partite-set. For a point z € X, d(u, z),d(v, z) are integers, but
d(u,v) is not an integer. Hence z,u,v are not collinear. Therefore, no point
of X lies on the lines uv, vw, wu. Now, for any = € X,

= |d(u,z) — d(v,z)| (3)
n = |d(v,z)— d(w,z)] (4)

are integers satisfying
0 <m < d(u,v), 0 <n<dv,w). (5)

Let us interpret these in the following way: Every points ¢ € X can be
obtained as an intersection point of two hyperbolas (3), (4) with foci u,v and
v, w for some m,n satisfying (5). Now, two hyperbolas (3), (4) intersect in
at most four points, and there are only finitely many such hyperbolas by
(5). Therefore the total number of intersection points must be finite. This
contradicts that X is infinite.

Now, let

A = {(cos 2 sin %, )|n=123,...},

B={(0,0,yn?2—-1)|n=2,3,4,...}.
Then the integral-distance graph on AU B C R? is isomorphic to K(co, 00).
|

Can every finite graph be represented by an integral-distance graph in
the plane [58]?

Theorem 8.2 (Maehara, Ota, Tokushige [53]) For every finite graph G,
there is a point set X on a circle such that X(Z,) is isomorphic to G. 1
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This was proved by, first choosing a complete rational-distance graph on
a point-set on a circle, and then blowing up the plane suitably so that only
the prescribed edges come to integral lengths.

This theorem implies that for a finite connected graph G with more than
two vertices,

2 otherwise.

dimg, G = { 1 ¢f G is complete

Since dim G, sph(G) := dim; G, dimy, G are all unbounded for finite graphs
G, the fact dimz, G < 2 is rather curious.

Kemnitz and Harborth [33] conjecture that every planar graph can be
embedded in the plane in such a way that each edge is a straight line segment
of integer length.

Let K, denote the complete graph with countably infinite vertices.

Theorem 8.3 (Klee, Wagon [35]) Let C, be a circle of radius r. Then
the following three are equivalent.

(1) r* € Q4.

(2) Cr(Q4) contains a subgraph isomorphic to K.

(3) C.(Q4) contains a 3-cycle. I

There is a graph with countably many vertices that is not an integral-
distance graph in any R®. Let K, — e denote the graph ontained from K,
by removing an edge.

Theorem 8.4 The graph K, — e is not an integral-distance graph in any
dimension, while K, — e is a rational-distance graph in the plane.

Proof. (i) Suppose that K, —e is isomorphic to X (Z,) for some X C R".
Then there are two points p,q € X such that d(p, ¢) is not an integer. Since
the integral-distance graph on X — {p} is complete, X — {p} lies on a line by
Theorem 1.2. Similarly, X — {q} lies on a line. Therefore X lies on a line.
In this case d(p, ¢) must be an integer, a contradiction.

(12) By Theorem 8.3, there is a set X of size oo on the circle {(z,y,0) |
2? +y* = 2} in R® such that X(Q) is complete. Let p = (0,0,v2), ¢ =
(0,0,—+/2). Then Y := {p,q} U X lies on the sphere of radius v/2 in R?,
and Y(Q4) is isomorphic to K, — e. Take a point v € X, and let f denote
the inversion of R® with respect to the unit sphere centered at u. Notice
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that since Auvw is similar to Auf(w)f(v) for v,w € R* — {u}, the distance
d(f(v), f(w)) is calculated as

| L d(v,w)
d(f(v), f(w)) = d(u,v) - d(u,w)’

Hence, it follows that the rational-distance graph on f(Y —{u}) is isomorphic
to Ko — €. Since f(Y — {u}) lies on a plane, K, — e is a rational-distance
graph on the plane. 1

Erdés conjectured that R™(Q;) is countably chromatic, and this conjec-
ture was proved by Komjdth [36]. From this the next follows.

Theorem 8.5 Let X C R" be an infinite set such that X(Q4+) is complete.
Then X is a countable set.

Let us give a direct proof of this fact. In 1-dimensional case (n = 1), the
assertion is clearly true. Assuming that the assertion is true up to (n — 1)-
dimensional case, let us consider n-dimensional case. We may suppose that
X contains n points py, ps, . .., p, that span an (n — 1)-dimensional simplex.
Then, for any point = € X, d(z,p;), ¢ = 1,...n, are rationals. Thus each
points z € X can be obtained as an intersection point of n spheres in R™ with
centers p;,¢ = 1,...,n and rational radii. Since the n points py,...,p, span
an (n — 1)-simplex, such n spheres intersect in at most two points. Since the
number of combination of n rational radii is countable, the set of intersection
points is also countable. Hence X is countable.

Thus, a complete graph with uncountably many vertices is not a rational-
distance graph in any dimension.

Problem 8.1 Is there a countably infinite graph that is not a rational-distance
graph in any dimension?

Problem 8.2 Is there a countably infinite graph that is not a rational-distance
graph in the plane?

Problem 8.3 Is there a finite graph that is not a rational-distance graph in
the plane?

Example 8.1 dimg, K(3,3,3) = 2.
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Let p denote the counter-clockwise rotation around the origin in R?
through the angle 120°. Take 9 points in R? in the following way:

uy; = (2v3,0), uz = (11v/3,0), us = (—13v/3,0)
vy =p(ur),  v2=p(u2), v3 = p(ua)
w = P(Ul), Wy = P('Uz), wz = P(‘U3)

Then the Q-distance graph of these 9 points is isomorphic to K£(3,3,3).

Example 8.2 dimgz, (P x K3) = dimg, (Pe X K3) = 2, where P X K is
the Cartesian product of the two-way-infinite path Py, and K,. See Figure 3.

2

1

Figure 3: P, x K3

Example 8.3 dimg, K(o0,00,00) <3, dimg, K(oo,00,00,00) < 4.

Proof. (i) Represent K'(0o,c0) as a rational-distance graph on a point-set
on the circle of radius /8 centered at the origin in the zy-plane as in the proof
of Theorem 8.1, and then take infinite points (0,0, vn? — 8), n = 9,10,11,...
on the z-axis.

(77) Let X,Y be point-sets on the circles

{(1‘,:{/,0,0) € R4 I $2+y2 = 8}7 {(0101-73,10) € R4 | Z2+w2 = 8}?

respectively, each representing K (0o, 00) as in Theorem 8.1. Then the rational-
distance graph on X UY is isomorphic to &'(co, 00, 00,00). 11

Following Stewart [65], let us call an n-point-set X in the plane an n-pack
if

(1) no three points of X lie on a line,

(2) no four points of X lie on a circle, and

(3) X(Z4) is complete.
It is known that there is a 6-pack, see Harborth {25], Harborth and Kemnitz
[26]. The following is an open problem.
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Problem 8.4 [22,35,65] s there a 7T-pack?

The next theorem relates the existence of an n-pack to the @);-dimension
of a complete n-partite graph. For n > 1, let

we (1) (15 )

Theorem 8.6 If dimg, K(aj,as,...,a,) <2 then there is an n-pack.

For example, if K(1,1,2,5,11,21,36) can be represented by a rational-
distance graph in the plane, then there is a 7-pack.

Proof. Suppose that there are n disjoint sets Y; C R? of size a;, ¢ =
1,2,...,n such that the rational-distance graph on ¥ = YUY, U ... U
Y, is isomorphic to K(a;,a;,...;a,). Then, for each : = 1,2,...,n, we
can choose a point z; € Y; so that {z;,z,,...,2,} satisfies the conditions
(1),(2) of n-pack. To see this, suppose that we could choose {z1,..., 24}, k <
n, satisfying (1) and (2). Then {zi,...,zx} determines (g) lines and (’3’)
circles. None of these (’;) lines can contain more than one point of Yj4,. (For
otherwise, some two of Y., become adjacent in Y(Q4).) Similarly, none of
these ('3‘) circles can contain more than one point of Yj4;. (For otherwise,
applying Ptolemy’s theorem, Yj.; contains an adjacent pair.) Since Yj41

contains a4, = (’;) + (g) + 1 points, there is at least one point in Yj4, that
lies on none of (l;) lines and (g) circles. Hence we can choose z; € Y; so that

X = {zy,...,2,} satisfies (1) and (2). Since d(z;,z;) € Qy, by dilating the
set X suitably, we get an n-pack. 1

9 +/Q-distance graphs

Let /@ denote the set of positive real numbers whose squares are rational
numbers. Since the distance between a pair of rational points in R* belongs
to /@, this distance set is of some interest. A set X C R" is called a \/Q-set
if X(/Q) is a complete graph. Thus a subset of @™ C R" is a /()-set.

Answering to a problem in [51], Kumada proved the following result by
applying the theory of p-adic number field.

Theorem 9.1 (Kumada [37]) Every /Q-set in R" is isometrically embed-
dable into Q713,11
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Since the integer 7 cannot be written as the sum of three squares, the
V@-set {0,v/7} in R! is not isometrically embeddable in @*. Hence, the
above theorem is best possible in general.

Example 9.1 Let {z,po,p1,p2} and {y,po,p1,p2} be two /Q-sets in the
‘plane. If po,p1,p2 are not collinear, then the 5-point-set {z,y, po,p1,p2} is

also a \/Q-set, see Figure 4(a). (0,1)
y )

y = (v3,0)

(0,_1)
solid line € /@ d(z,1
= dz,9) € V@ (e €4

(a) (b)
Figure 4: Example

Proof. We may suppose that py = O, the origin. Then we can put z =
Mp1+A2ps. We show that Aj, A, € Q. First, notice that ||u||?, ||v||?, d(v,v)* €
@ implies u - v € @, where - denotes the inner product. Now, in the simulta-
neous equation

P = Ap1-p1+ Aepr-p2
P2 = Apa-p1+ A2p2 - p2

on A1, A2, the coefficients p; - p1,p1 - p2, p2 - P1, P2 - p2 are all rationals. Since
O, p1,p2 are not collinear, we have

Pr1°P1 PrP2

0,
P2:P1 P2°P2 70,

and hence, by Cramer’s rule, we have A;, A; € Q. Similarly, we can put y =

ppr + pap2 (1, p2 € @). Then d(z,y)? = ||(M — p2)pr + (A2 — p2)p2||* € Q.
[

Note that the condition po,p;,ps are not collinear is necessary in this
example as seen from Figure 4(b).
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A point-set X C R" is said to be in general position if every k+1 points of
X span a k-dimensional simplex for &k < n. Similarly to the above example,
the following holds.

Theorem 9.2 [48] Let X,Y be two «/Q-sets in R™. If they share at least
n + 1 points in general position, then X UY is a \/Q-set. 1

An abstract graph G with N vertices is said to be n-valid if for any set
X € R" of N points in general position, the condition

(*) X(+/@) contains a subgraph isomorphic to G
implies that X is a 1/Q-set.

For example, the complete graph Ky is n-valid for any n. It follows from
Theorem 9.2 that K,43 — {an edge} is n-valid.

Let us denote by G,, a graph with m vertices.

Theorem 9.3 [48]

(1) For anym < n+ 2, Gy, is m-valid if and only if G = Ky,

(2) Guy3 is n-valid if and only if Gois3 = Kups or Guys = Kpgs —
{an edge}.

(3) Grya is n-valid if and only if the complement of G contains none of
the graphs in Figure 5. 1

1A DI

3K, K(1,3) G,

Figure 5: Theorem 9.3

Similarly to Theorem 8.3, the next holds.

Theorem 9.4 Let C, be a circle of radius r. Then the following three are
equivalent.

(1) r e Q.

(2) C.(v/Q) contains a subgraph isomorphic to K.
(3) C.(+/Q) contains a 3-cycle.
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Proof. Since C,(Q+) is a subgraph of C,(1/@), (1) implies (2) by Theorem
8.3. So, we show that (3) implies (1). Suppose that C, contains three points
z,y,2 such that all a = d(z,y),b = d(y, z),c = d(z,2) belong to \/Q. Let

= /zyz. Then by the cosine theorem, cosf = (a* + b% — ¢*)/(2ab). Hence
cos?§ € Q.. By the sine theorem, 2r = ¢/sin 6. Since sin?# = 1 — cos?8 €
Q@+, (3) implies (1).

The next theorem shows that /Q-dimension dim z G for finite graphs
G is also unbounded.
Theorem 9.5 dim 5 K(1,2,2,...,2) =n.

Proof. (i) First we show that dim g K(1,2,2,...,2) > n. To this end,
n
we prove the assertion that if a point-set X in some RV satisfies

X(JQ) = K(1,2,2,...,2),

n

then X contains a subset Y that spans an n-dimensional flat and satisfies

Y(VQ) = Knpr.
If n = 1, then this is clearly true. Suppose that the assertion is true for
n = k. Let X U {p,q} be a point-set in some RN such that

(X U {p (/@) = K(1,2,2,....2) and X(JQ) = K(1,2,2,...,2).

k+1 k

Then, by the inductive hypothesis, X contains a Y that spans a k-dimensional
flat and Y (/Q) & Kj41. Then Y U {p} and Y U {q} are both /@-sets. If
both p,q lie on the flat spanned by Y, then by Theorem 9.2, Y U {p,q} is
a -set, which implies that d(p,q) € /@, a contradiction. Hence, one of
p,q, say, p does not lie on the flat spanned by Y. Then Y U {p} spans a
(k + 1)-dimensional flat, and (Y U {p} (V@) & Ky

(#7) Now, the /@-distance graph on the 2n + 1 points

(0,0,0,0,...,0),
(‘\/5,0’0?'"70)3(\/57()’07'-‘)0))
(0,v/2,0,...,0),(0,v3,0,...,0),

(0,0,.6,.. ..,v2),(0,0,0,...,v3)
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in R™ is isomorphic to K(1,2,2,...,2). This completes the proof. §l
p

n
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