Observing an angle from various viewpoints
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Abstract. Let AOB be a triangle in R*. When we look at this triangle
from various viewpoints, the angle ZAOB changes its appearance, and
its ‘visual size’ is not constant. We prove, nevertheless, that the average
visual size of ZAOB is equal to the true size of the angle when viewpoints
are chosen at random on the surface of a sphere centered at 0. We also
present a formula to compute the variance of the visual size.

1 Introduction

Let LAOB be a fixed angle determined by three points O, A, B in the three
dimensional Euclidean space R3. When we look at this angle, its appearance
changes according to our viewpoint. Let us denote by

LpAOB

the dihedral angle of the two faces OAP,OBP of the (possibly degenerate)
tetrahedron POAB, see Figure 1. This angle £p AOB is called the visual angle
of ZAOB from the viewpoint P, and its size (measure) is called the visual size
of LZAOB from P. For an angle with fixed size w (0 < w < &), its visual size can

LpAOB

Fig. 1. A visual angle

vary from 0 to 7 depending on the viewpoint.

For a given angle ZAOB in R, take a random point P distributed uniformly
on the unit sphere centered at O. Then the size of Zp AOB is a random variable,
which is called the random visual size of ZAOB. It will be clear that this random
visual size depends only on the size of ZAOB. So, for an angle LAOB of size
w(0 < w < ), we may denote its random visual size by ©,,.



Theorem 1. For any angle of size w (0 < w < ), the expected value of the
random visual size O, is equal to w, that is, E(O,) = w.

Thus, when we observe an angle from several viewpoints, each chosen at
random, the average visual size is approximately equal to the true size.

For potential applications of Theorem 1, let us present a formula to compute
the variance V(0,) of O,.

Theorem 2. V(0,) = V(O,_,) and

T cotwsiny + cos z cos y %siny
V(o) = / / (5 — tan~! ( — )) 5 dzdy — w?.
o Jo sin z T

Though this looks complicated, we can easily compute the variance from this
double integral by computer. The following table shows the values of V(8,,) for
w=knr/12, k=1,2,3,4,5,6.

w || m/12|27/12)3n/12| 4w /12|57 /12| 67 /12
V(6.,)[|0.0699]0.1874]0.3042]0.3988[0.4595[0.4804

2 Proof of Theorem 1

Let LAOB be an angle of size w, and let P be a random point on the unit
sphere S? centered at O in R®. We may suppose that A, B lie on S?. Then the
spherical distance AB of A and B is equal to w. (We denote the shortest geodesic
connecting A, B and its length by the same notation ZE) Notice that ZpAOB
is equal to the interior angle ZP of the spherical triangle AAPB. Since P is a
random point on S?, we have @, = LP.

Now, consider the (polar) dual triangle AA*B*P* of the spherical triangle
AABP:

AA*B™P* = HLAYN H(B)Nn H(P),

where H(A) denotes the hemisphere with pole A. Let ZP* (=: 7) denote the
interior angle at P* of this spherical triangle AA* B* P*, see Figure 2. Then, by
the duality (see, e.g. [1] Chapter 2), we have

715+LP"=7|‘, AT§'+LP=7:'.

Hence P* = n—w and A*B* = r—0,,. Let A = H(A)NH(B). Then the angle
of the lune A is equal to ¥ —w, and its area is equal to 2(m —w). Note that since
P is a random point on S?, the boundary dH (P) of H(P) is a random great
circle, and A*B* = OH(P)N A.

Here we recall Santalé’s chord theorem:

Theorem|[2] Let 2 C S? be a subset obtained as the intersection of a number of
hemispheres. Let G be a random great circle, and let ¢ be the length of the arc
GNR. (GN 2 =0 implies p = 0.) Then E(yp) =area(§2)/2.



Applying this theorem, we have

E(AB) = area(A)

=T —Ww.

Therefore B(r — @,) = 7 — w, and E(@,,) = w. This proves Theorem 1.
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Fig. 2. The polar dual AP*A*B*

3 Proof of Theorem 2

Since m — 6, can be regarded as @,_,, 6, and @;_, have the same variance.

Now, let ZAOB be an angle of size w with OA = OB = 1, and let P be
a random point on the unit sphere S? centered at O in R3 as in the proof of
Theorem 1. Let AA*B*P~ be the polar dual of AABP, and let A = H(A) N

H(B), T = 7 —w. Let ¢ denote the length of the arc A*B* = dH(P)NA. Then
by Santalo’s chord theorem, E(p) = 7. Since ¢ = # — @, by duality, we have
V(p) = V(7 — 0,) = V(B,). So, we consider the variance of ¢. Let y = £A*
and £ = P*A*, see Figure 2. By applying the spherical cosine law for angles (see
e.g. [1]) to AP*A*B*,
cos LB* = —cosTcosy+sinTsinycosz,
cos T = —cosycos LB* +sinysin ZB* cos p.

Hence

cosT + cosycos LB
cosp =

sin y sin ZB*
cos T + cos y(— cos T cos y + sin 7 sin y cos z)
sin y sin ZB*

COS T — cOS T Cos® y 4 cos ysin Tsin ycos =
sin ysin ZB*
cosTsiny + cosysinrcos
sin ZB*




On the other hand, by the spherical sine law (see [1]), we have

sin ¢ sin
sinT  sin ZB*’

and hence ) .
. sin 7sin z
sin = ——
= SiniB
Therefore,
; cosTsiny+cosysinTcose  col Tsiny + coszcosy
cotp = = .

sinTsinc sinz

Since 0 < ¢ < 7, we have

T tan=1 cot Tsiny + cosxcosy
= — —tan - .
d 2 sinz

Notice that since 6H(P) is a random great circle, 2 and y are mutually
independent. (Indeed, relative to the position of the random great circle dH(P),
the point P* on the fixed great circle 8H(B) can be regarded as a uniform
random point on this great circle.) Since Pr(y < yo) = Pr(PB > m — y) =
(1 — cosyp)/2, the angle y is distributed on the interval [0, #] with probability
density {siny; and z is distributed uniformly on [0, #]. Therefore,

T T, sing
Vg = [ [ o5 dedy~ Ee)?
0o Jo w

. 2 .
=/1r/7r [E—tan_l (cotrsmy.+ cosxcosy)] Smydzdy—‘rz.
o Jo L2 sin & 27

Since V(@,_,,) = V(0,), V(p) is equal to V(6;). Now, by replacing 7 with w,
we have the second formula of Theorem 2.
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