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The growth of two sintering particles by surface diffusion at the initial stage is  
analytically solved by a  variational principle  and use of the continuity equation.  
The solution satisfies the conservation of mass and is rigorously found using no 
approximations, unlike past studies. The expression for the growth of the two 
cylindrical particles shows that the length of the neck increases with the fifth power of 
time.  
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§1. Introduction 
     Many investigations have been made into the rate of the contact area between 
two particles at the initial sintering stage (see, for example, Coblenz et al. 1980; Zhang 
and Schneibel 1995). The rate depends on the mechanism of material transport such 
as evaporation-condensation, surface diffusion, grain boundary diffusion and lattice 
diffusion.  From the viewpoint of analytical simplicity, a single mechanism is 
normally chosen and in particular the case of the sintering by the surface diffusion of 
vacancies has been treated theoretically. However, the analytical solution by surface 
diffusion has been found by making the following considerable approximations to the 
geometry of the sintering particles and the diffusion field of vacancies  (Kingery and 
Berg 1955; Nichols and Mullins 1965; Johnson 1969; Coblenz et al. 1980):  (1) the 
volume of the neck increases during the initial sintering process but the remaining 
portion is unchanged;  (2) the neck has a fixed radius of curvature ρ; (3) the vacancy 
concentration c in pure materials is given by Co exp(－pΩ/kT) where Co indicates a 
constant, Ω the atomic volume and k the Boltzmann constant, and the pressure 
(normal stress) p is approximately  equal to －γ/ρ whereγ is the surface tension ; 
(4) the relationship between the flux vector of vacancies  j  and the radius of  
curvature ρ is  approximately  represented by | j |～－DvΔc/ρ where Dv is the 
surface diffusion coefficient of vacancies  and  Δc is the difference between the 
vacancy concentration at the neck and the remaining portion.   
     The approximation (1) indicates that the conservation of mass is ignored.  Hence 
the undercutting of the sintering particles which Nichols and Mullins (1965) reported 
never appears in the model. According to the approximations (2) and (3), the difference 
between the vacancy concentration at the neck and the remainder causes atom 
transport to the neck. However, a gradient of the vacancy concentration at the neck 
does not occur because there is no change of the radius of curvature ρ there. Hence 
the model under these assumptions is not self-consistent. It is very crude to take －Dv

Δc/ρ as the approximate form of  j =－Dv∇c. As a consequence, each model predicts 
its own behaviour of neck growth and it is desirable to find a rigorous solution using 
none of the assumptions. 
     Many numerical calculations of sintering particles by surface diffusion have been 
made. The results by German and Lathrop(1978) are in substantial disagreement with 
those of Zhang and Schneibel(1995). Hence the importance of finding a physically 
satisfactory analytical solution should be emphasized.  
     The purpose of this study is to analyse the growth of two cylindrical particles 
occurring only by surface diffusion at the initial stage.  We make use of a variational 
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principle and the continuity equation of vacancies.  The solution of the sintering 
model by surface diffusion satisfies the conservation of mass and is rigorously found 
using no approximations and an expression for the growth of the neck with time is 
given. 
 

§2. Theory 
     We first need to find an expression for the pressure p that is related to the 
vacancy concentration as stated in §1.  The Gibbs-Thompson equation has often 
been employed to describe the pressure, which is derived as follows.  From △F=－p△                
V+γ△A  and △A/△V =(1/ra) +(1/rb), the formula p=γ[(1/ra)+(1/rb)] is obtained where 
F indicates the Helmholtz free energy, p is the pressure at any point of the surface, V 
is  the volume,γ is the surface tension, A is the surface area, and ra and rb are the 
principal radii of curvature.  However, under a fixed volume of two particles it is 
appropriate to derive the pressure from a variational principle.  Hence the problem in 
this study is to find the smallest free energy under a given area A. Fig.1 shows the 
sintering geometry of the two cylindrical particles in two dimensions.  Using △F=－p
△V+γ△A,  F and  A are given by 
 
F=∫(pr2/2) dθ+∫γ[r2+(r′)   2]1/2dθ,                                            (1) 
 
A=∫(r2/2)  dθ,                                                               (2) 
 
where  r′indicates dr/ dθ. The procedure of the principle of variation leads to 
 
∂f/∂r－d(∂f/∂r′)/ dθ=0,                                                   (3) 
 
where f = pr2/2 +γ[r2+ (r′)  2]1/2 + λr2/2 and λ is a constant.  Consequently equation 
(3) becomes  
 
dp/dr + 2p/r = －2λ/r － 2γ/(rρ),                                             (4) 
 
ρ = [(r ′ )   2 + r 2]3/2 / [2( r ′ )   2 + r 2 － rr ″ ],                
(5) 
 
where ρ is the radius of curvature at r and r″ indicates  d2r/dθ2.  
     Then instead of a fixed radius of curvature at the neck, as in past studies in 
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which the neck is assumed to be circular, (Kingery and Berg 1955; Nichols and Mullins 
1965; Johnson 1969; Coblenz et al. 1980), we assume that the shape profile of the 
sintering particle is represented by the following equation, 
 
r2=b2－4a2sin2θ.                                                              (6) 
 
For b=2a, equation (6) represents a circle of 2a in diameter.  For b>2a, equation (6) 
represents the shape profile of a sintering particle that is similar to a circle but has a 
neck region as shown in Fig.2. The parameter b indicates the diameter of sintering 
particles. The neck length r1 at θ=π /2  is given as (b2－4a2 ) 1/2.  Hence the 
parameter a determines the neck length and the deviation from a circle.  The 
condition b≧2a, is used for this study. As the sintering process proceeds, the growth 
rate of the neck increases with a decrease in the parameter a. Thus the two 
parameters a and b enable us to treat the changing shape profile of the particle with 
time. In summary, equation (6) is chosen because: (1) for the initial time t=0, it 
indicates a circle and for t>0, it can represent the shape profile of a sintering particle 
that is similar to the circle but has a neck region; (2) it has a negative surface 
curvature at the neck and a positive one at the remaining as shown in Fig.2. Such a 
property of the surface curvature causes surface diffusion and was also used in past 
studies; (3) it can give a geometrical expression for mass conservation (volume 
conservation).  Substituting equation (6) into equation (4), we have 
 
dp/dr+2p/r=－2λ/r－23/2γ(r2－3b2d/2)/[(b2－2a2)( r2－b2d) 3] 1/2,                    (7) 
 
where d=(b2－4a2)/[2(b2－2a2)]  becomes zero when b=2a, that is, the particles are 
circles.  The first differential equation (7) can be easily solved, 
 
p= －λ+Co/r2－γr/[8(b2－2a2) (r2－b2d)]1/2,                                      (8) 
 
where Co is a constant of  integration.  The boundary condition for equation (8) is  
 
p=γ/a     when b=2a.                                                        (9) 
 
For equation (9), we have 
 
λ=－5γ/2b,                                                                 (10) 
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Co =0.                                                                       (11) 
Equation (11) is found from the condition that the stress p should be independent of r 
when b=2a. On the other hand, the conservation of mass (volume) conservation 
requires 
 
    π/2 
Ao=∫   (r2/2 ) dθ=πro2/2,                                                    (12) 
    0 
 
where ro is the initial radius of the particle at time t=0.  Consequently, equation (12) 
becomes 
 
2ro2=b2－2a2.                                                                 (13) 
 
From equations (6) and (13), it is found that the shape profile always passes through a 
fixed point (ro, ro).  The x-y coordinates (ro, ro) at θ=π/4  divides the particle into an 
increasing and decreasing area.  The decreasing area,  for 0≦θ≦π/4, is called the 
undercutting area, named by Nichols and Mullins (1965).  The occurrence of the 
undercutting indicates that  mass conservation is satisfied during the sintering 
process.  The shape profile of the particle in this study is similar to the numerical 
result by Zhang and Schneibel (1995). From equations (10) to  (13), the solution is 
given by  
 
p=5γ/2b－γr/[4ro(r2－b2d)1/2].                                                 (14) 
 
We can  easily make sure that p becomes 2γ/b when r=b. The value 2γ/b  is 
consistent with that obtained from the Gibbs-Thompson equation.  
     Numerous authors (Kingery and Berg 1955; Nichols and Mullins 1965; Johnson 
1969; Coblenz et al. 1980) have assumed that  p is 2γ/b at ρ1  away from the centre 
as shown in Fig.2.  Using equation (14), we examine the validity of the assumption.  
First, we define r1 and ρ1 atθ=π/2 from equations (5) and (6), 
 
r12=b2－4a2,                                                                  (15) 
 
|ρ1| =(b2－4a2)3/2/(b2－12a2),                                                 (16) 
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where r1  is the length of the neck andρ1 is the radius of curvature at θ=π/2. 

Secondly,  we  calculate  the stress p at  r= r 1+|ρ1| which is a bit larger  than   
(r 12+|ρ1|2)1/2.  For |ρ1|< < r 1, as assumed in past studies , we have 
 
(r 1+|ρ1|)2～r12(8ro2－3r12)/(8ro2－5r12),                                        (17) 
 
bd2=r12(4ro2－r12)/4ro2.                                                        (18) 
 
Using equations (17) and (18), for r 1<< ro , p at  r= r 1+|ρ1| becomes 
 
p～5γ/2b－21/2ro/r1.                                                          (19) 
 
Hence we conclude that p at r=r 1+|ρ1| is quite different from  2γ/b.   
     Next, consider the growth rate of the neck by surface diffusion from the 
continuity equation of vacancies.  According to Kingery and Berg(1955), and 
Johnson(1968), the vacancy concentration c is given everywhere as c= Co exp(－pΩ/kT). 
The continuity equation of vacancies is given by 
 
                   H 
d(∫Ωc dV)/dt=－Ω∫   j・t  dS,                                              (20) 
                   G 
 
where c indicates the vacancy concentration, t the time, j the flux vector of  vacancies, 
t  the unit vector tangent to the particle surface and dS  the small surface area. 
Equation (20) indicates that only the tangential component of the vacancy flux on the 
surface contributes to the neck growth. Moreover it is noted that  the left-hand side in 
this equation represents an integration over the increasing volume at the neck.  This 
is because the sum of the vacancy volume eliminated at the surface is thought to be 
equal to the increase in the neck volume.  Since dV=－Ωdc  and dS=ds x 1 where ds 
is the line element  along the particle surface and the  thickness in the z-axis 
direction is taken as a unit length,  equation (20) reduces to  
 
            H 
dV2/dt=2Ω∫  j・t ds.                                                         (21) 
            G 
The flux vector j  is rewritten as 
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j =－Dv∇c=－Dv (dc/dr)(r / r),                                                  (22) 
 
where Dv is the surface diffusion coefficient of vacancies, r  is the position vector of an 
arbitrary point on the surface and  r / r is the unit vector.  Moreover, from the 
geometry of the particle shown in Fig.2, we have 
 
(r / r)・t  = r′/[(r′)2+r2]1/2,                                                   (23) 
 
ds=[(r′)2+r2] 1/2  dθ,                                                         (24) 
 
Hence equation (21) becomes  
 
                    p1 
dV2/dt=(2Ω2Dv/kT)∫   c dp,                                                  (25) 
                    po 
 
where po and p1  are the stress at  G and H.  On the other hand, the increasing 
volume is given by 
 
         π/2 
V=Ax1=∫  ( r2/2 )dθ,                                                        (26)  
         π/4 
 
where A is the cross-section of the increasing volume forπ/4≦θ≦π/2 and the 
thickness in the z-axis direction is taken as a unit length.  Consequently equation (26) 
becomes 
 
V=(ro2－a2)/2.                                                                (27) 
 
In result, equation (25) becomes 
 
d(ro2－a2)4/dt=－8ΩDvCo[exp(－Ωp1/kT) －exp(－Ωpo/kT)],                      (28) 
 
where po=[2/(ro2+a2)]1/2 γ and p1=[2/(ro2+a2)]1/2 γ + γ /{8[(ro2+a2)1/2 － (ro2 － a2)1/2]}.  
Equation (28) is derived using no approximations.   
     Generally speaking, the particles used for the experiments (Kingery and Berg 
1955; Johnson 1969)  have an initial radius of over 10μm. The non-dimensional 
length r1/ro in the experiments is put in a range 10－2 to 0.2.  Since Ωpo/kT<10－2 
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(referred to the data of Swinkels and Ashby(1981)) and (ro2－a2)－1/2 >> (ro2+a2)－1/2 , 
equation (28) becomes 
d(ro2－a2)2/dt～4Ω2DvCoγ/{ kT[2(ro2－a2)]1/2}.                                   (29) 
 
Therefore we have the solution 
 
r1

5=(20Ω2γDvCo /kT)t.                                                       (30) 

 
This equation represents the growth of the neck when the atom transport occurs only 
by surface diffusion. We compare this result with other solutions reported earlier. 
Equation (30) shows a fifth power relationship between r1 and t. The theoretical 
approximate solution by Coblenz et al. (1980) shows the same fifth power relation as 
ours. But they derived the expression for the rate by making the considerable 
approximations described in §1. Hence the coefficient in equation (30) is much 
different from theirs. On the other hand, the numerical calculations by Nichols and 
Mullins(1965), and Zhang and Schneibel (1995) show a sixth power relation, where 
German and Lathrop(1978) predict a seventh power relation. The difference between 
numerical and theoretical solutions is not clear at moment.  
  In this study, the two-dimensional sintering model is analytically treated. In the 
three dimensional case, consider whether the exponent n of the power law r1n∝t 
changes or not.   From equations (27) and (29), we obtain dV/dt ∝－γK where K is 
the surface curvature  at θ=π/2(K =1/ra), where ra is the principal radius of the 
curvature given by ra－1～－4a2/r13 in this study.  In three dimensions, we will have 
dV/dt ∝－γ(1/ ra+1/rb) where rb is the principal radius of the curvature.  Hence if ｜
ra｜≪｜rb｜, the exponent n will not change in the three dimensional case. This 
indicates that the surface tension γ acts as a line force.   
    

§3. Conclusion 
    An investigation has been made into the growth of the two cylindrical particles by 
surface diffusion at the initial stage from the principle of variation and the continuity 
equation.  The solution satisfies the conservation of mass and is rigorously obtained 
using no geometrical approximations as in past studies. The growth of the neck is 
found to be proportional to the fifth power of time.  
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Figure Captions 
 
Fig. 1  Illustration of the geometry of the two cylindrical particles in two dimension. 
Fig.2  Geometry of the sintering particle.  
       r / r is the unit vector, t is the unit vector tangent to the shape profile, and 
       tanα= r/r′where r′= dr/dθ. 
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Fig.2  Geometry of the sintering particle.  
       r / r is the unit vector, t is the unit vector tangent to the shape profile, and 
       tanα= r/r′where r′= dr/dθ. 
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