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Sintering of two cylindrical particles by lattice or grain boundary diffusion at the 
initial stage is analysed by a variational principle and use of the continuity equation.  
The expression for the growth rate by lattice or grain boundary diffusion indicates that 
the length of the neck increases as a power of time.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 1



§1. Introduction 
    Many analytical investigations have been made into the growth rate of two 
sintering particles at the initial stage (Kingery and Berg 1955; Nichols and Mullins 
1965; Johnson 1969; Coblenz et al. 1980). Their analytical solutions have been derived 
by considerable approximations applied to the geometry of sintering particles and the 
diffusion field of vacancies. Consequently there have been  discrepancies that a 
gradient of the vacancy concentration at the neck does not occur or no volume 
conservation is satisfied.  Recently a self-consistent treatment of sintering by surface 
diffusion has been proposed using a variational principle and the continuity equation 
(Saitou, 1999).  The analytical solution for the growth rate by surface diffusion is 
found by use of the shape profile function of sintering particles represented by r2=b2－

4a2sin2θ. The profile function is chosen mainly because it becomes a circle at the 
initial time and a circle-like figure with the neck profile at the sintering time, and it 
has a negative surface curvature at the neck and positive one at the remaining.  The 
growth rate by surface diffusion shows the power law(r1n∝t where r1 is the neck length 
and t is time) and the exponent n=5. 
    However the treatment proposed has not yet been applied to the case of sintering 
by lattice diffusion or grain boundary diffusion. In the lattice diffusion model, the 
vacancy flux represented by j ∝∇c where c is the vacancy concentration is transported 
through the internal part of the particle from the neck to the surface. However the 
sintering process by grain boundary diffusion has been mainly considered to be a 
relaxation process of stress by vacancies (Johnson 1969; Zhang and Schneibel 1995).  
Hence the atomic flux in the grain boundary is represented not by j ∝∇c but by j ∝∇
σ whereσ is the stress normal to the grain boundary. In this study the stress normal 
to the grain boundary is also considered to be the driving force for atom transport, and 
under the condition that the geometrical symmetry of sintering particles holds during 
sintering, the growth rate of sintering particles by grain boundary diffusion is derived. 
     The purpose of this paper is to analyse the growth of two cylindrical particles 
occurring by lattice diffusion or grain boundary diffusion.  Making use of a variational 
principle and the continuity equation of vacancies, we show expressions for the growth 
of the neck with time. 
 

§2. Theory 
     First, we need to find an expression for the pressure p. In the lattice diffusion 
model, the pressure is related to the vacancy concentration c given by c= Co exp(－pΩ
/kT) where Co indicates a constant value, Ω the atom volume, k the Boltzmann 
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constant and T the temperature. The Gibbs-Thompson equation has often been 
employed to describe the pressure, that is given as p=γ[(1/ra)+(1/rb)] where γ is the 
surface tension, and ra and rb are the principal radii of curvature.  However, under a 
fixed volume of two particles (volume conservation) it is appropriate to derive the 
pressure from a variational principle.  Hence the problem in this study is to find the 
smallest free energy under a given area.  
 
2.1 Lattice Diffusion 
    Fig.1 shows the sintering geometry of the two cylindrical particles in two 
dimensions. The Helmholtz free energy F and the area A are given by 
 
F=∫p dA+∫γdl,                                                             (1) 
 
A=∫(r2/2)  dθ,                                                               (2) 
 
where the line element  along the particle surface dl  is given by dl =[r2+(r′)   2]1/2dθ 
where r′indicates dr/ dθ.  The procedure of the principle of variation leads to 
 
∂f/∂r－d(∂f/∂r′)/ dθ=0,                                                   (3) 
 
where f = pr2/2 +γ[r2+ (r′)  2]1/2 + λr2/2 and λ is a constant. The solution has been 
already reported using the shape profile of the sintering particle represented by r2=b2

－4a2sin2θ(Saitou 1999). At the initial time t=0, the profile function represent a circle 
and at t>0 it can represent a circle-like figure with the neck as shown in Fig.2. The 
parameter b indicates the diameter of the sintering particle. The parameter a is 
related to the length of the neck r1 by r12 = b2－4a2 and gives deviations from a circle. 
The condition b≧2a, is used for this study.  The solution of equation (3) becomes  
 
p=5γ/2b－γr/[4ro(r2－b2d)1/2].                                                  (4) 
 
where d=(b2－4a2)/[2(b2－2a2)].  We can  easily make sure that p becomes 2γ/b for 
r=b. The value 2γ/b  is consistent with that obtained from the Gibbs-Thompson 
equation. On the other hand, the mass (volume) conservation requires 
 
  π/2 
∫   (r2/2 ) dθ=πro2/2,                                                        (5) 
  0 
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where ro is an initial radius of the sintering particle. Consequently, equation (5) 
becomes 
 
2ro2=b2－2a2.                                                                  (6) 
 
From equation (6), it is found that the shape profile always passes through a fixed 
point (ro, ro).  The x-y coordinates (ro, ro) at θ=π/4  divide the particle into an 
increasing and decreasing area.  The decreasing area,  for 0≦θ≦π/4, is called the 
undercutting area, named by Nichols and Mullins (1965).  The occurrence of the 
undercutting indicates that mass conservation is satisfied during the sintering 
process. 
    Next, consider the growth rate of the neck by surface diffusion from the continuity 
equation of vacancies. The continuity equation of vacancies is given by 
 
d(∫Ωc dV)/dt=－Ω∫j・n dS,                                                   (7) 
 
where t indicates time, j  the flux vector of vacancies, n  the unit vector normal to the 
particle surface and dS  the small surface area on the side. It is noted that the 
left-hand side in this equation represents an integration over the increasing volume at 
the neck.  This is because the sum of the vacancy volume eliminated at the surface is 
thought to be equal to the increase in the neck volume.  Since dV=－Ωdc  and dS=dl  
x 1 where the thickness in the z-axis direction is taken as a unit length, equation (7) 
reduces to  
 
dV2/dt=2Ω∫j ・n dl .                                                          (8) 
 
The flux vector j  is rewritten as  
 
j =－Dv∇c=－Dv (dc/dr)(r / r),                                                   (9) 
 
where Dv is the diffusion coefficient of vacancies, r the position vector of an arbitrary 
point on the surface and  r / r the unit vector.  Moreover, from the geometry of the 
particle shown in Fig.2, we have 
 
(r / r)・n = r/[(r′)2+r2]1/2,                                                       (10) 
 
Hence equation (8) becomes  
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dV2/dt=2ΩDv∫(dc/dr)r dθ.                                                   (11) 
 
From the Appendix, equation (11) becomes 
 
 
dV2/dt=－2E(ro2－a2)/a2.                                                       (12) 
 
On the other hand, the increasing volume is given by 
 
         π/2 
V=Acx1=∫  ( r2/2 )dθ,                                                       (13)  
         π/4 
 
where Ac is the cross-section of the increasing volume forπ/4≦θ≦π/2 and the 
thickness in the z-axis direction is taken as a unit length.  Consequently equation (13) 
becomes 
 
V=(ro2－a2)/2.                                                                (14) 
 
Hence equation (12) becomes 
 
a2d(ro2－a2)/dt=－4EΩDv.                                                     (15) 
 
Integrating equation (15) and applying the initial condition to the result, we have 
 
(r12－ro2)2=ro4－8EΩDvt.                                                      (16) 
 
This equation represents the growth of the neck when the atom transport occurs only 
by lattice diffusion.   
    Other solutions not for two cylindrical particles but for two spherical particles 
have been reported before. Hence we here derive a solution for cylindrical particles 
using the same geometrical assumptions as the past studies (Kingery and Berg 1955, 
Coble 1958, Coblenz 1980).  The geometrical expressions of two cylindrical sintering 
particles by lattice diffusion are the neck radius ρn=r1/2ro, the area of the neck surface 
Sn=πρn /2 and the neck volume Vn=r1ρn.  According to the Coble’s study (1958), the 
continuous equation of vacancy is 
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dVn/dt=jcSnΩ,                                                                (17) 
where the vacancy flux is given by jc=Dv∆c and the difference between the vacancy 
concentration at the neck and that at the remaining portion is expressed by 
∆c=γΩCo/(kTρn). Substituting the geometrical expressions into equation (17) and 
integrating the result, we have 
 
r15=20ro2 DγΩt/(3kT),                                                      (18)  
 
where the diffusion coefficient of atoms is defined by D=DVCoΩ (Kingery and Berg 1955, 
Coble 1958) .  The neck length increases as a fifth power of time. To see the 
time-dependent behavior of the neck length in equations (16) and (18), we choose as a 
typical example copper wires 200µm in diameter (Matsumura 1968). Using the 
thermo-physical data of copper at 1273K (Swinkels and Ashby,1981), B≈Co, 
D(cm2/sec)=1.89x10－9 and γΩ/kT(cm)=1.16x10－7 are obtained. Consequently we have 
 
[1－(r1/ro)2]2=1－2.18x10－6t,                                                   (19) 
  
(r1/ro)5=1.46x10－9t,                                                           (20) 
                             
which are plotted in Fig.3. It can been seen that in addition to the exponent there is 
considerable difference between the values of r1 in equations (19) and (20). 
 
2.2 Grain Boundary Diffusion 
    In a similar way, we first consider a solution that gives the minimum free energy. 
As shown in Fig.1, the grain boundary defined in this study is the joint plane of the 
two cylindrical particles. The vacancy diffusion paths from the neck to the grain 
boundary are illustrated in Fig.2.  In the case of sintering by grain boundary diffusion, 
the free energy has the form, 
 
F=∫pdA+∫γdl +(2/π)∫γG r1dθ.                                            (21) 
 
where γG  indicates the grain boundary energy. The procedure of the principle of 
variation formally leads to 
 
∂f/∂r－d(∂f/∂r′)/ dθ=0,                                                  (22) 
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∂f/∂r1－d(∂f/∂r1′)/ dθ=0,                                                  (23) 
where f = pr2/2 +γ[r2+ (r′)  2]1/2 + 2γGr1/π+λr2/2, r1′is d r1/ dθ and λ is a constant. 
If the grain boundary is not perpendicular to the x-axis,  the function f should become 
f(r, r′, r1, r1′). But in this study the grain boundary is assumed to be always normal 
to the x-axis.  Consequently equations (22) and (23) become  
 
dp/dr + 2p/r = －2λ/r － 2γ/(rρ),                                            (24) 
 
dp/dr1=0,                                                                    (25) 
 
ρ = [(r ′ )   2 + r 2]3/2 / [2( r ′ )   2 + r 2 － rr ″ ],                
(26) 
 
where ρ is the radius of curvature at r and r″ indicates  d2r/dθ2. The solution of 
equation (24) is given by the same form as the case of  lattice diffusion,  
 
p=－λ+Co/r2－γr/[4ro(r2－b2d)],                                               (27) 
 
where Co=Co(r1).  From equations (25) and (27), we have Co=－4r1γG/π+C1 where C1 
is a constant. Hence p is given as  
 
p=－λ－γr/[4ro(r2－b2d)]－4γGr1/(πr2)－C1/r2.                                 (28) 
 
The boundary conditions for equation (24) are  
 
r1=0, p=γ/a,   for b=2a.                                                     (29) 
 
Hence we have C1=0 andλ=－5γ/(4ro).  
    In general, the atomic flux is represented by j =－D(∇c－cF /kT) where F  is the 
force vector (De Groot and Mazur1984). If the system is in a stress field, the force is 
equal to －∇(Ωσ) ( Allnatt and Lidiard 1993). The driving force for atom transport in 
the grain boundary is considered to be the stress gradient rather than the vacancy 
concentration gradient(Johnson 1969, and Zhang and Schneibel 1995). We assume 
that the geometrical symmetry of sintering particles holds during sintering. Hence the 
grain boundary remains straight. The atomic flux equation for grain boundary 
diffusion (Johnson 1969, and Zhang and Schneibel 1995) is 
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j =－μ∇σ(y),                                                               (30) 
where μ=D/kT  and σ(y) indicate the atom mobility and the stress normal to the 
grain boundary at y.  The assumption that geometrical symmetry of sintering 
particles keeps unchanged during sintering requires 
 
∇j =－μ∇2σ(y)= constant.                                                   (31) 
 
This equation holds at any points along the grain boundary. The boundary conditions 
forσ(y) are 
 
σ(y)=p,      at y=r1,                                                        (32) 
 
dσ(y)/dy=0,  at y=0,                                                         (33) 
 
   r1 
∫  σ(y) dy =2γsin(δ/2),                                                    (34) 
 －r1 
 
where δ is the dihedral angle and in the case of using r2=b2－4a2sin2θ the angle δ 
becomes π. The symmetry ofσ(y) in the x-axis is represented in equation (33). 
Equation (34) indicates the force balance exerted on the particle. Since the stress 
distribution σ(y) is known as a quadratic polynomial (Zhang and Schneibel 1995), 
equation (32) and the boundary conditions give 
 
∇2σ(y) =－(9γ/2 +12γG /π)/r13+15γ/(4ror12).                                  (35) 
 
The non-dimensional length r1/ro and r1/a in the experiments is put in a range 10－2 to 
0.1. Hence equation (35) becomes approximately 
 
∇j ≈D(9γ/2 +12γG /π)/(r13 kT),                                              (36) 
 
From equation (8), the continuity equation is 
 
d(V2/2)/dt=Ω∫∇j dV.                                                        (37) 
 
If equation (31) holds constant in a range of ε whereε is the thickness of the region 
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of enhanced diffusion at the grain boundary (Coble 1958,Johnson 1969),  integration 
of equation (37)  is immediately made,  
d(V2/2)/dt= ε Ω D(9 γ /2 +12 γ G / π ) /(r12kT) .                
(38) 
 
Consequently we have the solution 
 
r16=72εΩD(3γ +8γG /π) t/(kT).                                             (39) 
      
This equation represents the growth of the neck when the atom transport occurs only 
by grain boundary diffusion. Equation (39) shows a sixth power relationship between 
r1 and t.  
    As stated in 2.1 Lattice Diffusion, a solution for cylindrical particles using the 
same geometrical assumptions as past studies is needed to compare. From σ(r1)=－
γ/ρn  used in the past studies(Johnson 1969), and equations (33) and (34), the atomic 
flux at the neck is given by 
 
jn=3Dγ/(kTr1ρn),                                                              (40) 
 
where ρn =r12/(4ro) (Coble 1958). Substituting Sn=εx1 and equation (40) into equation 
(17) and integrating the result, we have 
 
r16=96DγΩro2εt/(kT).                                                          (41) 
 
In comparison with equation (39), equation (41) includes the term ro2 as well as other 
solutions for spherical particles. In view of the diffusion path of atoms, the motion of 
atoms will be influenced only by the grain-boundary except the point r= r1 (see the 
second term in the right hand side of equation (35)). Hence it seems that the neck 
growth has no relation to the initial size of sintering particles. The ratio of r1 in 
equation (39) to that in equation (41) is  
 
R= {3[3 +8γG /(γπ)]/(4 ro2)}1/6.                                                 (43) 
 
From the data of copper,γG /γ=0.349 (Koda 1976) and a typical wire radius ro(cm) 
=1x10－2 (Matsumura 1968), we obtain a very great value R=5.5 owing to the term ro2, 
which implies that equation (41) underestimates at the effect of grain boundary 
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diffusion on the particle growth.  
    Thus we have the formulae for the growth rate of sintering cylindrical particles. 
However it is not so easy to determine the exponent n (r1n∝t) from experimental data. 
For defects and impurities in the real system, taken into no consideration in this study, 
will influence atom transport. Especially thin oxide layers formed on the surface of 
metal particles even in a low vacuum pressure will have a great effect on the growth of 
necks. Moreover what condition determines the dominant mechanism is not clear at 
present. Hence it is thought that these problems are next subjects to be treated in 
experimental and analytical ways. 
 
     §3. Conclusion 
    An investigation has been made into the growth of the two cylindrical particles by 
lattice or grain boundary diffusion at the initial stage from the principle of variation 
and the continuity equation reported before.  The solution satisfies the conservation 
of mass and is rigorously obtained using no geometrical approximations as in past 
studies. Thus the growth of the neck by lattice or grain boundary diffusion is found to 
increase as a power of time.  
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Appendix  
    In an range of θ in equation(12 ), the following relation consists, 
 
{2/[1+(a/ro)2]}1/2≦r/(r2－b2d)1/2≦{2/[1+(a/ro)4]}1/2.                                 (A.1) 
 
Generally speaking, the wires used for the experiments (Matsumura 1968)  have an 
initial diameter 100 to 200μm. The non-dimensional length r1/ro in the experiments is 
put in a range 10－2 to 0.1. Hence we have 
 
0.995≦(a/ ro)2≦0.99995.                                                     (A.2) 
 
From equations (A.1) and (A.2), r/(r2－b2d)1/2 has almost no change over the range ofθ 
in comparison with (r2－b2d)－1. Hence we have 
    
∫(dc/dr)r dθ=－CoΩγb2d/(4rokT)∫r(r2－b2d)－3/2exp(－Ωp/kT) dθ 
   
            ≈－BΩγdb2r/[4rokT(r2－b2d)1/2]∫(r2－b2d)－1 dθ,                  (A.3) 

 
where B= Coexp[－5Ωγ/(2bkT)]exp{Ωγr/[4rokT(r2－b2d)1/2] } becomes nearly constant 
over the range of θ since Ωγ/kT≈10－6－10－7 cm and b≈5x10－3 cm (referred to the 
data of Swinkels and Ashby(1981), and Kingery and Berg(1955) ). Using (A.2), we 
obtain 
 
(r2－b2d)≈2a2(1+cos2θ),                                                     (A.4) 
 
b2rd/(r2－b2d)1/2≈2(ro2－a2).                                                  (A.5) 
 
In the end, substituting (A.4) and (A.5) into (A.3) and integrating the result  overθ, 
we have 
   
∫(dc/dr)r dθ=－E(ro2－a2)/a2,                                                (A.6) 
 
where E= BΩγ/(8rokT). 
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Figure Captions 
 
Fig. 1  Illustration of the geometry of the two cylindrical particles in two dimension. 
Fig.2  Geometry of the sintering particle. The arrows near the grain boundary 
       indicates the diffusion paths of atoms. 
       r / r is the unit vector, n  is the unit vector normal to the shape profile, and 
       tanα= r/r′where r′= dr/dθ. 
Fig.3  Numerical comparison of two kinds of the neck growth equations for copper 
       wires by lattice diffusion.  
 

 13



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1  Illustration of the geometry of the two cylindrical particles in two dimension. 
 
 
 
 
 
 
 
 
 
 
 
 

 14



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2  Geometry of the sintering particle. The arrows near the grain boundary 
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