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Sintering of two cylindrical particles of different sizes by surface diffusion at the early 
stage is theoretically analysed. Formulae for the neck growth rate are derived using a 
variational principle and the continuity equation of vacancies.  The size difference 
between two particles is found to influence the growth rate of the neck only when the 
difference is large.      
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§1  Introduction 
Many theoretical investigations have been made into sintering of two particles of 

the same size at the initial stage (Kingery and Berg 1955, Nichols and Mullins 1965, 
Johnson 1969, German and Lathdrop 1978, Coblenz et al. 1980). From the viewpoint of 
analytical simplicity, particles of the same size have normally been chosen, whereas 
powders for sintering actually comprise particles with a range of sizes. However there 
have been very few analytical studies on sintering of particles of different sizes. Only 
Coble (1973) analysed sintering models for particles with size distributions by lattice or 
grain-boundary diffusion, making considerable approximations to the geometry of the 
sintering particles and the diffusion field of vacancies. He showed that the driving force 
for the neck growth was related to  where γ is the surface tension, 

 and  indicate the initial radii of two particles, and  is 1 for lattice diffusion 

and 2 for grain-boundary diffusion. 
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This Letter focuses on the growth of sintering particles by surface diffusion which 
is considered to be a dominant mechanism at the early stage of sintering (Pan et al. 
1998). Recently instead of Coble’s approximations, self-consistent solutions (Saitou 
1999) for the growth rate of sintering particles of a single size have been derived from a 
variational principle, the continuity equation of vacancies and a shape profile function. 
The present paper extends the study to the growth of two cylindrical particles of 
different sizes by surface diffusion at the early stage and presents expressions for the 
neck growth. 

 
§2 Theory   

One first needs to find an expression for the pressure p  that is related to the 

vacancy concentration (Kingery and Berg 1955, Nichols and Mullins 1965). The 
Gibbs-Thompson equation (Johnson 1969) has often been employed to describe the 
pressure at any point of the surface,  where r  and  are the 

principal radii of curvature.  However, under a fixed volume of two particles it is 
appropriate to derive the pressure from a variational principle.  Hence the problem in 
this study is to find the smallest free energy under a given area . Fig.1 shows the 
sintering geometry of the two cylindrical particles that satisfy  and . The 
free energy 
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F  and cross-sectional area  in this model are given by cA

 

∑ ∫∫
=

+=
2

1
dd

i l
i

A

),lAp(F ii γ
ii

               (1)              

 2



,)/r(A
i

/

iC ∑ ∫
=

=
2

1

2

0

2 d2
π

θ

iAd

d
θdd /ri

ii a2=

ii ab 2>

                                                      (2) 

2122 )4( /
ii ab −

CA

/r/f(r/f ii dd ′∂∂−∂∂ θ）

/rp(f
i

ii 2
2

1

2∑
=

+= γ

/r/pr/p iiii 22dd −=+ λ

ir ′′ 2d ri

/)(

/)(

2
2

212

1
2

121

rrrhp

rrrgp

−+−=

−+−=

γλ

γλ

)( 2rg )( 1rh
2(2[)4( 2222

iiiii ab/abd −−=

ii a/p γ= ii a2=

 
where  indicates the cross-sectional area element for the particle , i
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element expressed by  for the particle i ,  the derivative 
, and the radius is represented by a profile function  (Saitou 

1999). For b , the profile function becomes a circle of  in diameter.  For 
, the profile function represents the shape profile of a sintering particle that is 

similar to a circle but has a neck region as shown in Fig.1. The parameter  indicates 
the diameter of sintering particles. The neck length  at 
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. Hence the parameter  determines the neck length and the deviation 

from a circle. The condition , is used for this study.  
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Since the problem is to find  under the mass conservation condition, 
i.e., a given area  where 

0)( =+ CAF λδ

λ  is a constant Lagrange multiplier, the procedure of the 

principle of variation leads to 
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where  indicates .  The solutions of equation (4) have already been 

reported (Saitou 1999), which have the forms 
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where and are a function of r and that of , and 

. The term d becomes zero for b , that is, the 

cross-sections of the two particles are  circles. The boundary condition for equation (5) 
is  for b , which gives, noting that  for b , 
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Taking the differentials of Eq.(6) with respect to θ  , we have 

 Hence one promptly obtains 
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The solutions of Eq.(7) become  
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where M  is a constant that represents the effect of the size difference. Combining Eqs. 
(6) and (8) yields for 0=θ , 
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The constant M  is a term that results from connection of two particles and may be 
called a coupling constant. 
    Next, consider the growth rate of the neck by surface diffusion from the continuity 
equation of vacancies.  According to Kingery and Berg(1955), and Johnson(1969), the 
vacancy concentration  is given everywhere as  where  is a 
constant, 

c )exp( Tk/pCc Bo Ω−= oC

Ω  the atomic volume,  the Boltzmann constant and  the temperature. 
Using the flux vector of vacancies given by  where  

is the surface diffusion coefficient of vacancies,  the position vector of an arbitrary 
point on the surface and  the unit vector, the continuity equation of vacancies is 
given by 
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where  V  is an  initial  volume of  the two cylindrical particles, o t  indicates the 
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time,  the surface area for the cylindrical particle , iS i t  the unit vector tangent to 

the particle surface which satisfies 2r
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and  the small surface 

area. Equation (10) indicates that only the tangential component of the vacancy flux on 
the surface contributes to the neck growth. Moreover it is noted that the left-hand side 
in this equation represents an integration over the increasing volume at the neck.  
This is because the sum of the vacancy volume eliminated at the surface is thought to 
be equal to the increase in the neck volume.  Since  for the particle  and 

 where the thickness in the z-axis direction is taken as a unit length, Eq.(10) 

reduces to  
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where  is the pressure at the position ( i =A,B, and C) as shown in Fig.1. On the 
other hand, the increasing volume satisfies using , 
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where  and  are the initial radii of the particle 1 and 2.  Substituting Eq.(12) 

into Eq.(11) yields  
02r
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where the relation 2
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1 44 bab −=−  is used,  and   and  are given in Eq.(9).  

Generally the cylindrical particles used for the experiments (Matsumura 1968) have an 
initial radius 100 to 200 mµ .  Expanding the exponential terms in Eq.(13-a) since  

(referred to the data of Swinkels and Ashby 1981), and substituting Eqs. 

(9) and (13-b) into the result, one obtains 

310 −
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The right-hand side in Eq.(14) represents a force per unit area on the surface of the two 
particles. The first and second terms are ones that result from connection of the two 
particles by sintering. The force, related to the curvature radius drives the movement 
of atoms toward the neck.  

Here one introduces  and  defined by ,  and . 
Since the non-dimensional length  at the initial stage of sintering (Jonson and 
Cutler 1963, Coblenz et al. 1980) is generally put within a range 10

k h
r

0102 r/rk = 023 r/rh = 013 r/rhk =

023 r/
－2 to 0.2, one can 

set <1 and <0.2. In order to simplify Eq.(14) and render it soluble, the magnitudes 
of the terms on the right-hand side can be evaluated as follows: 
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Therefore at least the following condition is required to neglect the second term on the 
right-hand side in Eq.(14), 
 

.05.0)1/()1()4/5( 2 ≤+− kkh                                                   (16) 
 
The value 0.05 is chosen because of the result in Eq.(15). Eq.(16) is plotted in Fig.2 that 
defines the two areas P and Q.  It can be seen from Fig.2 that the size difference  
characterized by the radii of the initial particles in the area P has no effect on the neck 
growth. Fig.2 shows that as long as the size ratio  greater than 0.7, the difference 
has no effect on the neck growth. Consequently the equations to be solved are 

k
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If <1 and <0.2, one has k h

 

).1/()()/()( 21
01

1
023

2
2

2
1

1
1

1
2

2
13 krrrbbaabr +−≈+− −−−−                            (19) 

 
Eq. (18) can be rewritten as  
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Hence one has the solutions 
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where . Eq.(21) is the same formula as one for two 

cylindrical particles of the same sizes (Saitou 1999). The sintering experiments of 
copper wires each of a fixed radius by Alexander and Balluffi (1957), and Ichinose and 
Kuczynski (1962) showed that the neck growth rate increases as the fifth root of time. 
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The size difference has no effect on the neck growth as long as the size ratio 

0102 r/rk =  greater than 0.7 as shown in Fig.2. This result roughly agrees with the 

numerical results by Pan et al. (1998) that the neck growth is not affected by the size 
difference greater than 0.5.  However the second term on the right-hand side in 
Eq.(14) cannot be ignored for the area Q in comparison with . This implies that a 

change of the surface energy of the smaller particle with the sintering time is similar to 
that at the neck. Hence the force to which the two terms contribute promotes the neck 
growth by surface diffusion, which results in the greater reduction of the surface area. 
This well agrees the fact that a greater difference of particle sizes promotes the initial 
sintering.  

1
3
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Here let us consider roughly evaluating the effect of the particle size difference. 
From Eqs.(17) and (19), letting G  be the growth rate of the neck, one has G (for 

)/ G (for )=1+(5/4) . Particles of the different sizes have at 

most a 1.25 times greater growth rate than those of the same sizes. This well explains 
0201 rr ≠ 0201 rr = )1()( 2k/kh +1 −

 7



the experimental results that, in the initial sintering stage, the size distribution does 
not change significantly until the neck is completely formed between the particles. 

  
§3 Conclusions 

The growth rate of the two cylindrical particles of the different sizes by surface 
diffusion has been derived using the variational principle and continuity equation of 
vacancies. The solutions indicate that a greater difference between two particle sizes 
influences the growth rate of the neck.  
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Figure Captions 
 
Fig. 1  Illustration of the geometry of the two cylindrical particles. 
Fig.2  Diagram of the size difference effect on the neck growth rate. The line indicates 

.  P : area that has no effect on the growth rate, Q: 

area that has effect on the growth rate. 
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Fig.2  Diagram of the size difference effect on the neck growth rate. The line indicates 

.  P : area that has no effect on the growth rate, Q: 

area that has effect on the growth rate. 
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