琉球大学学術リポジトリ

Effects of flickering light on the photosynthesis of the coral Acropora digitifera

メタデータ	言語:
	出版者: 琉球大学21世紀プログラム
	公開日: 2007-07-10
	キーワード (Ja):
	キーワード (En):
	作成者: 中村, 崇, 山崎, 秀雄, Nakamura, Takashi,
	Yamasaki, Hideo
	メールアドレス:
	所属:
URL	http://hdl.handle.net/20.500.12000/791

Effects of flickering light on the photosynthesis of the coral Acropora digitifera

中村 崇¹⁾·山崎 秀雄²⁾

¹⁾琉球大学遺伝子実験センター ²⁾琉球大学理学部

Many shallow-inhabiting corals are frequently exposed to highly variable light conditions. Under a fine weather condition, surface waves can cause considerable heterogeneity in the subsurface light (appears as a glittering pattern) by focusing the solar irradiance, especially in the top few meters of the water. The focusing effect of surface wave eventually enhances subsurface light intensity over 9000 μ mol photons m⁻²s⁻¹ with a sub-second time scale Recent studies have shown a strong relationship between excessive PAR (photosynthetically active radiation)-induced photoinhibition of symbiotic algae and subsequent coral bleaching.

In this study, the effects of short-term (1~10 sec) fragmentation of light supply (a combination of a strong light and background weaker light) were examined in terms of symbiotic algal photosynthesis. Although light-fragmentation did not induce significant difference at sub-saturating PAR intensity (80 μ mol photons m⁻²s⁻¹) of the symbiotic algae, at super-saturating PAR intensity (500 μ mol photons m⁻² ·sec⁻¹), light fragmentation caused significantly less dynamic photoinhibition compared with continuous application in the shallow-inhabiting reef-building coral *Acropora digitifera*. Furthermore, light fragmentation effectively reduced dynamic photoinhibition under high water-temperature conditions. We suggest that high frequency in weak/strong light fluctuation in the shallow reef area (especially at calm lagoon and tide pools) poses significant effects on photosynthesis in coral-algae symbiosis, especially during high sea surface temperature conditions.

Keywords: Coral, Photoinhibition, Light flicker, wave-focusing