
琉球大学学術リポジトリ

文学的テキストとその視覚的表現の可能性について

言語:

出版者: 琉球大学教育学部

公開日: 2007-07-18

キーワード (Ja):

キーワード (En):

作成者: Taira, Katsuaki, 平良, 勝明

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/20.500.12000/1040URL

Visualizing Literary Text

Katsuaki TAIRA

What is the relationship between what we perceive and the emotional and

intellectual content it evokes? That may be a rather sweeping question because is

there really universally agreed evocative mechanism in which any given "trigger"

automatically elicits homogeneous reactions in any randomly selected groups ofpeople?

Unless we go truly philosophical and abstract the answer, from an empirical standpoint,

may be a resounding no. However, before we drop such an important question I

posited in the very first sentence of this essay, let us pause a minute and consider the

implications ofsuch mechanism if it could have even a modicum ofa chance to establish

in this living world, and hopefully apply it to evoke the maximum strands of those

subtle and nuanced evocations poets and other creative writers try hard to realize in

their ever elusory search for literary success, however mundane it may be. But before

we can toy with the idea of employing the auto-mechanism to suffuse every nook and

corner of every single individual with the iridescent web ofemotional archetypal semes1

of unfathomable nuances, we need to experiment with the very possibility of

instantiating those nuances through deft use of visual images, both still and moving,

and establish the causational relationship that is deemed to be lurking somewhere out

there in the day-to-day world. At least that is the premise upon which I will be

weaving the threads of my essay as I look for the clues and manifestations of the

confluences that could be posited to exist at this stage between the inner consciousness

of the human psyche and the visual stimuli that surround it, I will employ digital

data that in combination with sound elements can be easily presumed to produce the

variegated nuances imaginable as amply instantiated in moving pictures. But my

essay does not simply remain in the realm of movies/videos. I will introduce

interactive programmed versions of the moving/still pictures to see how they in all or

either of them with a slight difference in emphasis affect the person undergoing the

visual experience. If the factors that induce multiple yet precalculated reactions on

1 I am not specifically using this term in the manner many structuralists were fond of evoking it,
namely that any semio/semantic constituents that clinch oppositional differences in many possible
paired concepts. Rather, I am conceptualizing it more as semio/semantic units that constitute any

larger meaningful conceptual aggregate such as expressed in literary work quoted in this essay. See
an excellent exposition on the former example of the semes by Jonathan Culler in his Structuralist
Poetics on pages 76-79, published by Cornell University Press in Ithaca, New York in 1986.

— 199-

the part of the viewer are indeed found out or theorized in any usable form, that in its

turn will be much utilized to bring the visual and human interactivity to a new level.

With that in mind let us begin our search for that tenuous ground that is as yet filled

with indefinable nebulous speculations. Before I suddenly plunge you into the bathetic

practical technicalities, let me add that the program I often refer to in this essay is a

mostly script dependent, proprietary one named Ldngo that is rather widely known as of

today, June 2002.

Since poetry excels in its evocative possibility, let me quote a sonnet by

Shakespeare and argue for the imagistic potentiality of fusing between the text-based

work and audio-visual elements. I would like to start by introducing Sonnet no. 35 by

the same author.

No more be grieved at that which thou hast done;

Roses have thorns, and silver fountains mud;

Clouds and eclipses stain both moon and sun,

And loathsome canker lives in sweetest bud.

All men make faults, and even I in this,

Authorizing thy trespass with compare,

Myself corrupting, salving thy amiss,

Excusing thy sins more than thy sins are;

For to thy sensual fault I bring in sense

(Thy adverse party is thy advocate)

And 'gainst myselfa lawful plea commence;

Such civil war is in my love and hate

That I an accessory needs must be

To that sweet thiefwhich sourly robs from me.

This is indeed a complex of emotions that are deftly captured by one of the greatest

poets ofall times. The question is how we capture them objectively and render them in

a form that is intelligible to all.2 That may be a starting point. Although the ultimate

purpose, as I mentioned above, is to trigger the gamut of those iridescent and floating

emotions in a predictable way (or more precisely, to determine the causational linkage

between the final emotions that are experienced by the maximum number ofpeople and

the factors that are directly involved in the mechanism), it is wise to focus on the

2 Needless to say, I am not about to impose the absolute unseizability of the essence ofthe literary
production as amply hinted at by Roland Barthes in his S/Z, a seminal work in the ad infinitum
disseminability oflanguage or its subcategory, literary work. If the object ofmy textual study is
hopelessly "writerly," as Barthes says, then there is no chance that we can retrieve a fraction of the
"meaning" of the work or fix even blurred image of the nucleus of the literary production
Roland Barthes, pp. 4-22, published by Hill and Wang ofNew York in 1986.

— 200 —

^P-S. : Visualizing Literary Text

process that is implicitly embedded in the literary craftsmanship the present poet

employs in the weaving of this particular poem. But even before that let us attempt to

interpret the poem to come up with the general consensus as we try to colorate the

concept found there with the apt images to buttress the senses to make the product even

more vividly alive in the minds' eyes. Could the first line be a vain and valiant attempt

to rationalize the pains inflicted upon the I that appears throughout the poem? But is

the cause of such pains truly worthy of such sincere attention the subject seems to pay?

That is a simple question that immediately arises in the reader's mind. Indeed as the

second line confirms, or rather prevaricates, the psychology ofthe subject is complicated

over the status of his relation to the other, be it his girlfriend or whatever adversarial

position it happens to possess. Is the seeming determination expressed by the first line

only that? Seeming and not in reality? Whatever is the case the ambivalence that is

implicit throughout the poem is evidence enough that the subject is split over the

suffering he himself has subjected to. On the conceptual level, however, one thing is

certain. The two ideas put forth by the two clauses in the second line, "Roses have

thorns," and "silver fountains [have] mud" contain truism. Anyone who has seen the

plant designated by the name rose is aware that it is invariably endowed with thorns

and any fountain, be it of silver or silvery white water (most likely reality forces us to

concretize the latter unless one willingly allows himself to float in the Pegasusian

world), unfortunately accumulates mud or dregs as a byproduct. By the same token

both the moon and the sun are more often than not covered by multi-shaded clouds and

occasionally hidden, either entirely or partially, by other planets. The following line

continues in the same strain. Indeed no desirable object comes without its antithesis

and often they accompany each other and there is no separating between he two in this

mundane imperfect world. What do we make of this continuous duality/ambiguity

expressed by the subject? Is it to alter or modulate the sentiment floated in the first

line? Most likely yes. Otherwise the author would not have wasted ink over the

random quatrain. That is another clue the reader is encouraged to seize upon to skim

the poem on the objective conceptual level.

On another level we have to consider what is causing the author to dally

between two swinging polar opposite sentiments. Is it a mere undesirability as to how

he positions himselfas to the implicit love he confesses he feels toward the lady? Or is

it a complexity of feelings that constantly pull the author to sway through all gamuts of

emotions? Or is it something else that lies deep yet interpretable as the active mind

(by which I mean the reader) immerses himselfin the world opened up before his mind's

eye? In order to solve that question we need to proceed and continue absorbing all the

— 201 —

variegated subtle nuances that emerge from the poem. Let us then go on to the next

quatrain and see if we can find any evidence to persuade us to believe one way or

another. The next line, "All men make faults, and even I in this," reads more like a

concession in which the author allows himself a breathing space before venturing on to

another intellectual ratiocination. The first half of the sentence is a generalization

that is made to precede in order to include himselfin that category. But whether it is a

ploy to excuse himselfor further castigate himselfis not certain at this point. However,

the second line gives us a clue as to where the drift of is his argument is moving. It is

an accusation that he has been rather overindulgent when it comes to confronting his

mistress's faults. He has been overlooking her violations of whatever kind by

comparing them to others of larger magnitude (?) or de-emphasizing their significance

to such a degree that he himselfis even aware what moral consequences he is inviting.

Now with that confession, "Myself corrupting, salving thy amiss," the author raises the

issue he has been handling throughout the poem to a new level. Ifyou look back at the

first line, he started with a subjective self-suasion and then developed it into an

objective arraying offactual statements that nevertheless brings out the issue ofduality,

or the inevitable coexistence of things with their adulterated counterparts. And now

the argument has been brought to the moral and semi-religious level. According to his

confession, he is corrupted and overindulgent because he looks away or overlooks the

apparent faults she manifests. His overindulgence always surpasses the magnitude of

the sins the lady commits, "Excusing thy sings more than thy sins are." However,

what exacerbates his inner conflicts is his rational acceptance of his own fault. In

other words, he admittedly knows the moral infraction the lady is making but he turns

it into something forgivable in spite ofhimself. Or even worse he consciously bends his

own moral integrity to accommodate the woman he confesses he cares with all his heart:

Tor to thy sensual fault I bring in sense." The most ludicrous result, again admittedly

by the author, is that he is making himself the adversary in this curious case involving

two parties. The parenthetical clause foregrounds that upside-down state ever so

conspicuously except that the author turns the table and assumes a different

perspective, placing the lady as the source of the viewing subject. The following line is

a continuation of the litigious simile the author initiated before the parenthesis. By

now he has completely framed himself and there is no way weaseling out of it. He

needs to be (self-)interrogated and expose his precarious situation to the whole world.

However, that is also intended from the beginning. The author has to bring out the

ambiguous state he is forced himselfin and by weaving all the intricate psychologically

metonymic images in a series of quatrains he drops the contradicting yet concurrent

— 202 —

: Visualizing Literary Text

emotional flows that occupy a mind that is as sensitive to the subtle shades of human

emotions as he is. That is, by universalizing the very odd experience that is putatively

only his own the author suddenly jots the objective confidence the reader has held so far.

Whether one reads the final couple as a clownish surrender to the intricate emotional

flows that barge on inside every human psyche or helpless compromise every lovesick

tenderhearted yokel must make may be irrelevant. But what one has to recognize here

is that the couplet, or for that matter the whole poem, is made up of kaleidoscopic

emotional nuances that can possibly be divided into a multitude of colorlistic shades if

the poem is to be rendered or helped by some kind of imagistic interpretation.3 It may

not be realistic either to assign one emotional shade to its supposed chromatic

counterpart or group certain emotional and intellectual nuances into a set of scenic cues

that are deemed to evoke a series of inchoate images that are in turn susceptible to

appropriate emotional responses. But in the context of this essay I would like to

remind the reader that a piece of artistic work such as the present one based on text is

invariably pregnant with multitudes of meanings. The question then in the light of

this essay is how to capture them and translate them into their closest imagistic

entirety and used to evoke the original sentiment with added nuances. The task seems

rather redundant and circuitous but if we need to program the artistically rich content

and feed it to the intended audience we must arrive at the apt imagistic and colorational

combinations to make the viewing experience truly worthy of the original poem and

textual content.

First let us consider the possibility of giving rise to the programmed space in

which the ambivalence that permeates the textual space is well reflected. Before we

come up with the ultimate interface in which the viewer is actually come nice to face

with the pictorial rendition of the textual content we must lay out the foundation on

which all such cosmetically satisfying facade must necessarily depends. Although the

explications could become rather tedious, the reader is encouraged to follow them

through. Since we are here primarily concerned with the graphical elements let us

delve into the world of bitmaps in varying bit depths. Bit-depths may sound rather

technical but they simply indicate the amount of information one can put in one bit ofa

group of pixels that constitute one pictorial element on the visible level. Because the

more information one embeds in an image the larger the entire size ofthe file inevitably

3 Perhaps some structural analysis exhibited long time ago by Roman Jakobson and his ilk can

elucidate the underlining sophistication that buttresses the whole composition. Ifthe subtle

techniques used by the great poet can be analytically explained away there is a great chance that the

interweaving of the kind I am advocating in this essay can be accomplished without much trouble.

See Language in Literature, pp. 198-215, published by Harvard University Press in 1987.

— 203-

becomes, it is paramount to think of a strategy before any concrete step is taken as to

how many graphic units and of what depth one is going to include in one clip o

presentation. Of course, the cons and pros of using one kind of depth as opposed to

another depend on the over all picture the architect of the presentation has before the

actual work starts. If it needs clear and absolutely photo-realistic movie throughout

the presentation then the graphic elements are likely to be dominated by the kinds in

the higher bit depth. But if on the other hand one intends to incorporate graphic

images more or less as a background filler then no high-bit pictures may be required;

doing so only takes up precious media space and most likely increases the loads on the

presentation program in general. Needless to say, in the best of possible world even

the background images are to be rendered as colorifically rich as possible all the time.

But in the mundane and gritty world we must need to reside compromise is the

albatross that hangs around our neck all the time. With that rather humbling

admission let us consider the choices we have as to the bit depths of graphics we can

incorporate into our projects using Macromedia Director.

The simplest and most primitive element we can put in the program is a 1-bit

bitmap. The most primitive because the images saved in this depth has only a black or

white coloristic state. Although the images of this kind can have only the

monochromatic state, which is actually a state that is deprived of color, they are very

small in size because of the amount of information they require. In addition to 1-bit

bitmap one can use 4 bit bitmap in Director. Although 16 color rendition is much more

colorful than the monochromatic one, it is still limited in its range of expressibility and

realism. To circumvent that technical trap each 16 color can be customized on the

Macintosh. That means if one wants to use a different set of colors it can be

accommodated without resorting to higher resolution images. But the limitation is

definitely there. Even though each 16 colors can be manipulated in a way that

partially fulfill one's needs one cannot go beyond the number limit at any given time

with a particular graphic. Besides varying color assignment to each bit of information

is only possible on the Macintosh. On the Windows platform the 4-bit of chromatic

information is always tied to one set ofcolors that is associated with the Microsoft VGA

palette. What that implies is that if one intends to distribute his presentation

cross-platform he is obliged to limit his colors to the Microsoft color palette. Otherwise

all the precious colorations one has worked hours to produce will come to naught.

Regardless of the platform one is working on, there is always that reality-impinged

concept of limitation as long as one is concerned with distributing his final product to

the maximum number of randomly chosen multitudes, which by the way is the norm

— 204 —

: Visualizing Literary Text

and ideal toward which every developer should strive.

Thankfully for those who need more than 16 colors to express his ideas more

color rich bitmaps are allowed in the director environment The next in line is an 8-bit

bitmap that contains 256 colors. Although once again it is not exactly photo

realistically color rich, the number of colors the image of this kind contains is for

numerous compared to the ones in the previous category. What is important is that the

palette the images of the current class uses can have various ranges of grays, which

conceptually foil between black and white. The graduated monochromatic colors

enables the creator to produce various shades which in turn add realistic touches to the

object he gives rise in the current environment. As an added advantage to the 8*bit

mode is that both the Windows and the Macintosh platforms allow customization ofthe

color palette that corresponds to the set of 256 colors. If one wants to change the

chromatic nuances of the set of colors, therefore, one simply creates another palette or

resorts to another preexisting one that dictates the representation of colors that are

visible to the interfaced viewer. There is another choice when it comes to using

different platelets in the Director's environment. If one wishes to use an image that is

made up of a certain set of 256 colors and they are beyond the range ofthe already used

palette, then one either decide whether to use the palette that is associated with the

image or translate the chromatic set of the image through the current palette. Once a

new palette is imported into the program it becomes a part ofthe entity that constitutes

the whole presentation. It does not exist something other than or outside the

environment ofthe Director presentation. The next color depth in the line ofchromatic

hierarchy is 16 bit. A 16-bit bitmap can have as many as 65,536 colors. The

expressibity is quite astounding in this mode. The number ofcolors allowed in this bit

depth exactly corresponds to that used in a normal television set. If one intends to

distribute his presentation through that very media the encouraged bit depth to render

the images may be 16. However, because the program has to be run on a computer, be

it Windows or Macintosh based, the initial interface needs to be so robust and nimble as

to render the images lightning fast as any set-top DVD player might do in its capacity

as a generator/ decoder of clear and crisp moving images. Until the seamless

interfacing of various media is achieved, the bit depth issue remains a truly nerve

wracking choice for those developers who want to penetrate the wide finicky market

with incalculably multitudes of tastes. The largest number of color choice can be

achieved by incorporating 24/32 bit color images.4 Needless to say, the available colors

4 The notation here employed, 24/32, may seem rather odd. What it indicates is that the actual

number of colors used on the monitor is the number expressed by the former in the set offigures

— 205 —

exceed 16 million in this format. But the vast array potentially projected onto your

monitor goes far beyond that practically detectable by naked human eyes. Therefore, if

one wants to produce a movie using all kinds of graphic elements needs to strike a

balance between the practical technical issues confronting the program and the photo

realistic presentation that is truly effective on the viewers. As with the previous color

images the images rendered in this format do not have any direct linkage with sets of

color palettes that are required in any other format.

Before going any further we need to understand the significance of palette.

Although I have been making numerous references to that word ones without much

experience in computer based graphical presentations may have a difficult time

comprehending the function of a set of chromatic reference tables, which is what color

palette signifies. Of course one can safely incorporate graphical elements without any

understanding whatsoever ofthe concept. But having a firm grasp ofthe word helps in

developing smooth and robust presentations that will most likely withstand almost all

predictable situations. The parameters involved in successfully carry out

computer-based presentations being so numerous, one cannot be too careful when

building his products from the foundation on. Understanding color palettes certainly

contributes to averting disastrous glitches which more than not happens when the

computer is overloaded with graphically superb yet information heavy works. The

caveat is, needs to say, it is only one of many variables that must be taken into

consideration when putting together innumerable elements when preparing one's

presentations. With that being firmly placed in the reader's memory, let us proceed

with the explication of the concept that is on the agenda here. The program we are

concerned here has some preset palettes that come with it as a default. Two of the

palettes are each assigned to function as a default in their turn for the Windows and the

Macintosh respectively. That is clear enough so far. But oddly enough and very

troublesome to the programmers is that they do not exactly correspond to each other

and the same value (by which I mean the location in the entire palette assigned to each

platform as a default) does not necessarily produce the identical visible effect as the

presentation is interfaced with the user. For instance, if one chooses to incorporate

some 8-bit graphic elements then it is his ineluctable fate to choose an appropriate

palette that is referenced by every single color in the graphic images. If the same

color intended by the programmer shows differently on each platform, how is one to deal

represented and the remaining 8 bits represents the corresponding number of alpha channel

information, which include rates oftransparency, special effects and so on. See SpecialEdition: Using

Macromedia Director 8.5, pp. 72-77, authored by Gary Rosenzweig.

— 206 —

-^Jl : Visualizing Literary Text

with this non-trivial issue? The solution lies somewhere between the absolutist

extremism and the relativist pragmatism. One way to deal with the issue would be to

cover the entire screen so that no other fringe area ofthe desktop on the user's computer

shows. If the entire movie/presentation takes over the computer then all the colors are

displayed relative to the current user's palette, no matter what the original program

designated or the original programmer intended to display the graphic elements in his

presentation. Ifeach pixel ofcolor is shown in relation to the given color palette and as

long as each one is appropriately associated to that palette there should be no visible

incoherency before the viewer's eyes. Another caveat when one wants to display

images in the 8-bit mode is not to mix different sets ofpalettes simultaneously. Iftwo

images try to reference themselves to two disparate color tables at the same time the

computer/ program cannot handle it; as a result the program interprets the excessive

colors by approximating the nearest colors to the ones that need to be displayed on the

monitor. Needless to say, the outcome is most likely to be less than desirable, to say

the least, and in most cases, completely unexpected by the editor/ programmer of the

presentation. Therefore, unless the color shift that is predicted is allowable within the

overall design of the presentation never use images that try to associate themselves

with different set of palettes at he same time. Or even preferably, if the bit depth or

the speed issue is not a problem, simply avoid the limiting format and adopt a higher

depth presentation.

There are many more issues that need to be addressed before a convincing

presentation is formulated. But for the moment let us leave the graphical aspect ofthe

movie and move on to the textual element of the Director generated presentations.

Since the direct linkage between the multimedia movie and a textual work has to be the

text itself, the issue we will be looking at must necessarily occupy the central stage in

any work that incorporates the bets the modern technology has to offer. Under

Director textual elements are comprehensively referred to as strings. Therefore, I will

be using that term frequently during my excursion into this subject, which is both

primordial and up-to-date as far as the information technology is concerned. First,

when we put together strings and let them constitute as a string each element of the

string such as a, b, c and so on need to be concatenated in order to make up a

meaningful whole. In feet, the simple rendition of "a" is a chunk of values that are

associated with it; therefore, it in itself is made up of a set ofbits of information strung

together to constitute a certain signifier. If we look from a more macroscopic

perspective, a set of characters need to be artificially strung together to make any sense

to the program and ultimately to the viewer, who in this case constitutes one end of the

— 207 —

interactive chain. Then how does one achieve that seamless coagulation of meanings

through each discrete signal of semiotic bits? The following examples demonstrate

some of the possibilities strings have in developing the semantic scope of the given

presentation. Ifone wants to express certain ideas in text all he has to do is to put the

chunk in quotation marks. A very common name such as John can be rendered as

"John." That is nothing surprising except that the program needs to receive the

semiotic signals through the insignificant seeming symbols of those quotation marks

unless it is confused by the incoming information with the semiotic ingredients that are

part of its vocabulary. If that happens the program either treats the command

differently from the initial intent of the editor, which is very unlikely because of the

limited number of program's vocabulary,6 or it simply demurs and shuts itself off

because it cannot process the incoming information due to the limited amount ofleeway

average computer programs usually are usually allowed to possess. But we must go

into the actual mechanism involved in receiving and inputting information under the

circumstances we are considering at this moment. For instance, as I mentioned

already, simple information such as "hello!" can be fed in the following manner:

S= "hello"

Puts

The command in the second line returns the string "hello" without any surprise.

However, daily contingencies more often than not requires to combine each semiotic and

semantic unit with other myriads of strings that either modify or add the original

meaning in every conceivable manner. How such feat6 can be accomplished? By

using concatenators and commands that allow combination of string chunks. Look at

the following example. Suppose one desires to input "Hello, Tom!" and each word

needs to be fed separately, how is it to be accomplished? It is programmed as follows*

S = "Hello,"

T = Tom!"

U = S&T

5 Although Director is constituted ofhundreds and thousands of commands and symbols that are

essential to achieve most ofthe interactive and presentational functions, it is easily eclipsed in the size

of its vocabulary by any living language people daily use. As for the list of "words" Director employs,

see Macromedia Director 8Shockwave Studio:Lingo Dictionary, published by Macromedia. It

comprehensively lists a usable vocabulary a programmer needs to make his presentations come alive.

6 Stringing chunks ofliteral messages can indeed be considered a feat. Unlike daily combination of

semantic/semiotic units in textual communication, computer-based communication has to receive

every new bit of information in its defined manner and fusing one with the other brings in an entirely

new procedural operation before any overall meaning can be arrived at. Therefore, it is not a matter

of incorporating redundant subtle nuances, which may be introduced as the semantic/semiotic

complications increase, as in daily communications, but rerouting the information signal through the
"semiotic circuit" all over again when the computer-based machines take in new input.

— 208 —

: Visualizing Literary Text

Put U

•• "Hello, Tom!"

Now, notice that I inserted a space after the comma in line one, which is preceded by the

variable S. That is the reason why the command put U results in the manner noted

above. But leaving a space after a letter and before a closing quotation mark becomes

a little confusing, especially in complicated programming where bulky expressions

jostle with each other. Rather than allowing such very likely confusion to wreck the

fruit of lucubration, why not use an alternate method, which is much more explicit and

thus likely to reduce careless mistakes to a great degree? Ifone has gone through with

the process of checking lengthy expressions and has been troubled with the nagging

literal input that did not appear as it should have been, then he must surely appreciate

the importance of explicit statement. The alternate and more powerful description of

the above statement goes as follows*

S = "Hello,"

T = Tom!"

U = S&&T

PutU

- "Hello, Tom!"

Admittedly there is not much difference between the above and the one preceding it.

The only difference is that the space-inserting concatenated indicated by two

ampersands, has been used to elicit the right combination oftwo chunks of strings. In

case you want to insert letters at a certain location within already exiting chunks,

methods are not so complicated. Let us try the following.

Putu

-■ "Hello, Tom!"

put "h" after u.char [8l

putu

- "Hello, Thorn!"

put "as" before u.char [12]

putu

- "Hello, Thomas!"

Needless to say, we could have used the first command to accomplish the same effect.

Or alternately we could have used the following command.

Put "Scottino" into u.char [14]

Putu

-- "Hello, Thomas Scottino!"

— 209 —

That is a perfectly intelligible sentence. Of course, we might as well skip the whole

command and orally input all the necessary addendum and information into the

computer memory and have that passed to the interfacial stage. But unfortunately

programs ofthe kind we are dealing with need the vocabulary to perform the operations

we want to them execute. At this stage, that is a necessary detour, which nevertheless

saves us a lot ofextra work in the end. Now, what about substitution of strings? How

is it to be accomplished? That is not complicated either. Essentially it works in the

same manner. Consider the following.

Put "Lucia" into u.char [8.. 13]

Putu

- "Hello, Lucia Scottino!"

The operation is quite simple. First you set the range of characters to replace in the

brackets and command the program to insert a given string into that particular slot.

The result is a clean substitution that replaces the original chunk with the desired one.

What is noteworthy here is that the target string and the substitute string may not be

the same size. Note that the alternate string "Lucia" does not correspond to the

original chunk "Thomas" in the number of letters it contains. The former is obviously

one short ofthe latter. This trivial feature of the series of command I cited here makes

string operation very flexible. You almost execute it without any sense of what takes

place on the basic programmatic level. (There is certainly no need to pay attention to

memory allocation, which could complicate the editing work considerably although it

may contribute to the interfacial efficiency.)

There are many other useful string operations that are feasible in Director.

Look at the following example,

on allCaps text

repeat with i = 1 to text.length

thischar = charToNum (text.charti])

If thischar >= charToNum(tta") and thiaChar<= charTbNum(V) then

thischar = thischar - 32

put numTbChar(thi8char) into text.charli]

end if

end repeat

return text

end

This is a command culled from Gary Rosenzweig's Using Macromedia Director 8.5

— 210 —

: Visualizing Literary Text

(p.326) that converts lower case letters to their uppercase counterpart. What it does in

the first line is to take a parameter from the incoming source, here represented by text.

(Needless to say, it does not have to be called as such; the name text is merely a

convenient metonymy for all that is coming in as a string.) Once the function receives

the information it subjects it to a methodical scrutiny by checking every single

component of the chunk from 1 (the starting letter) to the final letter (here indicated by

text.length). Each letter in its turn is represented by the variable i7 that is placed on

the left side of the equation. Once the methodical check starts each letter in a given

permutational spot is converted to the numeric value it holds in the program. The

value then is safely stored in a variable thisChar. The next line in the function

ascertains ifthe given datum is indeed a lower letter within the range between a and z.

The process utilizes the fact that lower letters between a and z fall within a defined

numeric values and all those which do not excluded from further consideration at this

stage. Once the datum passes beyond the conditional barrier, it is transformed to its

uppercase counterpart by the subtraction of numeric value 32. It is possible because

every lowercase letter has its uppercase counterpart exactly 32 numeric value smaller

than it is. Thus, the variable thischar, which is on the left side of the programmatic

equation, comes to hold the desired numeric value in line 5. The only thing left for

this function to accomplish is to put the corresponding letter ofthe numeric value in the

right spot in the original order of the string elements. The numTbChaiK) operation

does the conversion and the put operation accomplishes the second in line 6. It is a

simple handler but executes the command quickly and without any demurral.

Let us apply the power the allCaps handler gives us to the poem we started this

essay with. Suppose we need to emphasize a chunk of words/string in the poem. Or

more concretely, the first four words in line one, "No more be grieved at that which thou

hast done." The command need to have the handler to execute the required work is

allCaps("No more be grieved"). It seems very simple but all that is required of the

editor is exactly that after the target handler has been constructed. But unfortunately,

the command does not print out the result of the call to the handler. In order for the

editor to see the feedback he needs to store the outcome and have it utilized by the

program in such a manner that the chain reaction that derives from the initial

execution ends up with the final capitalization ofthe original string. But as a shortcut

let us view the outcome without the usual trappings of lines that intervene between the

7 The i stands for index, obviously. Although it does not have to be i(in fact any letter can assume the
role of a variable in lingo unless it already has a designated role in it), every programmer is advised to
use letters in a semio'semantically significant manner. That will eventually save him much trouble.

— 211 —

initial feed of the information and the final result, which would be the norm in real life

programming than otherwise. The immediate feedback can be obtained by the

following simple command.

Put allCaps("No more be grieved")

- "NO MORE BE GRIEVED"

Interestingly enough there are all kinds of operations that can be executed to modify

and arrange the chunks of words in the original poem by resorting to the Lingo's

vocabulary. See the following.

S = "Clouds and eclipses stain both moon and sun"

Put s.word.count

-8

put "[there is always something that adulterates the purity of existence.

Meteorological phenomena brought in by the poet support that major premise.]" after

s.word[8]

t = s.word [l]

allCaps (t)

u = s.word [3]

allCaps (u)

puts

- "CLOUDS and ECLIPSES stain both moon and sun [there is always something that

adulterates the purity of existence. Meteorological phenomena brought in by the poet

support that major premise.]

Here we have achieved a minor annotation of the poem while keeping the sight well

focused on the artistic work itself. Of course, all the preceding experiments are just an

attempt to demonstrate the interactive possibilities using the simple handler we have

constructed above (plus numerous functions that are a part of the Lingo by default).

Granted that the interpolation of the kind that accompanied the foray into the

interactive presentation of Shakespeare's artistic work should not be made frivolously.

But the ramifications such intrusion into a major citadel of literature spawns seems to

justify rather presumably haphazard programming attempt to come up with visualizing

conceptual treasures. Back to our programming quest. If one wants to read the

annotation of a certain line in the poem, all you have to do is to request or command

S = 'The entire poem in string"

Put s.line[x].word[y .. z]

- "[feedback of all the string annotation that is embedded in the poem]"

The mechanism seems rather primitive but after discreet development in the intended

— 212 —

: Visualizing Literary Text

line the corpus of the whole presentation is sure to impart significant amount of new

insights into the target work. Be that as it may, string commands are an ingredient

that cannot be ignored by somebody who is seeking to build a robust and yet meaningful

interface with an artistic expression using the computer supported platform.

Now it is time to look at the sound related issues that are likely to become the

focal point in trying to bring the multimedia presentations to their fullest potential.

There are, like other features in the program, hundreds if not thousands of functions

that are possible to construct based on the default vocabulary embedded in Director.

Needless to say, it is impossible to cover all of them. We will look at some of the more

useful and interesting ones that are likely to be fitted within a purview of a small

number of pages available at the moment. There is a property named pan that

determines the way sound is played more or less on one side of the speaker than the

other. Suppose an object position controls the way the sound plays and the object

incessantly moves around the stage as time passes. The following lines meet such

requirement.

pSound = "grvySound"

On beginSprite me

Sound(2).queue(pSound)

Sound(2).play()

End

On exitFrame me

X = sprite(me.spriteNum).locH

StageWidth = (the stage).drawRect.width

cL = 200*x/stageWidth - 100

sound(2).pan = cL

end

The channel used for the sound is arbitrary. It could be any number between 1 and 8.

The function queue() loads the designated sound and readies for the next command.

The play() command actually triggers the sound to play. Therefore, in the first

handler the target sound starts playing as soon as the stage is drawn on the user's

monitor. The fourth line in the next handler calculates the relative value of the pan in

relation to the stage width of the presentation. The number in the numerator reflects

the panning values assigned to the pan property' 100 forces the sound come only out of

the right speaker and conversely -100 out of the left speaker. The actual plotting of

the sound is executed by the proceeding line. Ifwe apply this simple mechanism to the

creation of the interactive interface some interesting effects can be accomplished. For

— 213 —

instance, if lines 5 to 8 are associated with some moving object on the stage, be it a

concrete representation of the hinted object of love or an abstract rendition of such

emotional stage of the poet (or the pretended I in the poem) fresh angles cold be posited

to look into the psychological state of the lover or the relationship depicted here as a

whole. Let me quote the lines to refresh our memory.

All men make faults, and even I in this,

Authorizing thy trespass with compare,

Myselfcorrupting, salving thy amiss,

Excusing thy sins more than thy sins are!

Suppose the sound that is playing, as if it is truly playing on the stage, shifts its pan

ever so restlessly while the reader's consciousness is fixed on the first line, what would

be the added effect on his overall experience? The line states the aberrant judgment

one makes in life, especially vis-a-vis one's lovers. It is a fit metaphoric landscape for

wavering pan. What if a tune that is susceptible to ever so slight whiff of air on the

wind instrument changes its panning value while the tune itself remains uncertain in

its quality about which way it will resolve? That music backdrop is sure to corroborate

the moral dithering the author is confessing to be having whatever its true nature may

be. The first line almost makes sure that the reader perceives the willful nature ofthe

author's aberration from his sense of moral integrity and right judgment as he

simultaneously hints at self-flagellation and excuse. The intentional guilt is further

brought to the fore by the active authorization the I grants each instance ofthe trespass

the other makes. The purported authorization is made more explicit by the term

compare because the act is completely volitional and more than a little dependent upon

the rational part of the author's ratiocinative faculty. Imagine once again the

sound/music is constantly panning between right and left or vice versa as the object

associated with the psychological texture ofthe given lines oscillates on the stage. The

comparative act is reiterated as the lines progress. While the author tries to protect

the integrity, be it moral or personal depending on the mental picture he depicts of his

loved partner, of the target of his love, he inevitably brings himself down in each of

those aspects he is judging the other in to the extent that he "corrupts" himself while

compensating the other's failures with his own overly indulgent attitudes. The

relations depicted here is like two points constantly ascertaining their positions in

respect to the other, except that in the subject's case he is the one that is always shifting

his psychological locale in an obvious attempt to morally over-compensate. The music

continually oscillates from moment to moment, which in time should correspond to

psychological oscillation the reader perceives the author is experiencing.

— 214 —

: Visualizing Literary Text

Sound elements can be utilized in many other ways. Another possibility to

effectively integrate interactive features computer based presentations generate and

the textual corpus is to use the following method.

On cuePassed me, chnnlNum, cueNum, cueName

Sound(l).queue (cueName)

Sound(l).play{)

End

Of course the playback head needs to be stationary for the program to be able to

intercept the message, here represented by cueName. The handler to accomplish that

is state as follows.

On exitFrame me

Go the frame

End

The series of functions are quite simple but nonetheless the combined effect on the

whole presentation can be enormous. Suppose a context sensitive music plays while

the poem is being displayed when a selected line is suddenly read out to grab the

attention of the viewer on cue. The added impact that turn ofevents has on the viewer

would be enormous. The present mechanism not only helps enhance the overall

ambience of the presentation but in combination with the string-based interactions

sound cue mechanism is sure to deepen the viewer's appreciation ofthe poem as a whole.

Not only does the basic programming delineated here control the timing and the order

ofsound effects that play out before the user but also render itselfto modulating various

elements of those sound clips being utilized in the given context. As one possible

diversification from the main model given above, let us consider those aspects that deal

with the pitch modulation. Consider the following coding.

CrrntPitch = random (8)

Sound(3).queue([#member: memberCaccmpMscl"), #rateShift: CrrntPitch])

Sound(3).play()

As expected, the music designated by the queue function plays according to the rateshift

value determined by the random function. Since the rateShift8 is to be decided every

time the random function is run, there is an unexpected surprise on the part of the

8 The rateshift is a factor that influences the way a given piece of music/sound plays. Because the
faster a sound clip plays under the same condition, the higher in pitch it is likely to be, the values,
which are spread within the range of 1 to 8, the optimum speed and the pitch are those which are
initially recorded or sampled. But in a demanding environment such as a computer-based
multimedia presentation, utilization of one feature or the other in an attempt to realize the maximal

potential in terms of conveying the underlying ideattonal gestalt may as well be justified and be much
taken advantage ofno matter what the cost, be it fidelity or acoustic satisfaction.

— 215 —

recipient of the content as the music plays somehow modulated every time he goes over

the same passage (although admittedly there is a chance that the same pitch is

repeated every once in a while.) Let us combine the time trigger scheme shown above

and the current pitch modulation mechanism to produce a setup that is more elaborate

than if any one of them is used independently. Suppose that as the reader's eye has

reached the end of the line, 'Tor to thy sensual fault I bring in sense," a timing object

initiates a series of acoustic flourishes. The timing object can be created in the

following manner.

RecTuner = new(script "timerMatrix", the ticks)

RunTimer(recTimer)

Needless to say, the timer should be triggered so many seconds before the approximate

moment when the reader is supposed to have finished reading the target line. The

following coding sates the general stream of commands and input interceptions needed

to accomplish the textual and sound synergy I have been delineating. Suppose the

presentation takes place while the playback head remains stationary.9

on exitFrame me

go the frame

end

This is clear and simple. As the playback head tries to move onto to the next frame the

command, go (to) the (same) frame, sends it back to the beginning of the same frame.

The plan is that while the playback head remains in the same frame ambient or

(con)text appropriate music, which has been started somewhere in the presentation,

continues playing. In the meanwhile the reader's eyes trace the markings on the

monitor which reflect the artistic work produced by the initial author in ever varying

degrees. Bu the decisive moment arrives when the recalculated juncture arrives when

the attentive eyes have presumably reached the end of the given line and the coded

script intercept the message that has been embedded in the playing music. The

interceptive process can be encoded as follows,

on cuePassed me, chnnlNum, cueNum, cueName

if cueName contains "strtTimer" then

timerObj=new(script "tiinerPrnt", the ticks, "crrntRct")

runtimer(timerObj)

9 The stationary playback head does not mean the presentation itselfremains static While the

playback head is securely moored in one particular frame, there are thousands of things occurring on

the stage. Presenting moving pictures, videos and interactive animations are only a few of the

representative contents that can be incorporated into the Director-based movies. For more on the

technical issue of the playback head, see Macromedia Director 7andLingoAuthorized, pp. 14*118 by

Phil Gross, published in 1999.

— 216 —

: Visualizing Literary Text

end if

end

Here the cueName corresponds to the message pre-inscribed to the original music at a

certain critical moment the programmer deemed fit for the eventual textual-music

interactive fusion. Once the message has been received by the current handler it

initiates a series of actions in which a timer object is created and the timer—that has

come into existence as a result of the interaction between the commanding script and

the recipient parent script—is set in motion. Now it is high time that we saw the

recipient script that answers the call from the coding we cited above. The script—the

type of which is classified as parent in the taxonomy of the program we are dealing

with—begins with the object creating handler "on new me." Of course all the

parametric properties need to be declared somewhere in the script, although the

beginning and on top of everything else is usually a preferred location. I will follow

that time-honored custom,

property pTicks, pCrrntRct

on new me, crrntTime, crrntRct

pTicks=crrntTime

pCrrntRct=crrntRct

return me

end

The parameters receive and hand over the corresponding arguments sent from the

calling script. Each one is stored in the respective properties that are placed on the left

hand side of the equation. Here pTicks holds the value represented by crrntTime,

which in turn—if you see the calling handler—takes after the ticks10 the computer

sends to the program. The command preceded by "return me" effectively returns the

values or the object produced by the current operation to the calling handler, allowing

the calling side to manipulate the values independently held by the parent script.

Because the newly created object is reachable from the calling side the second command

in the on cuePassed handler sets off the timer mechanism embedded in the

corresponding parent script,

on runTimer me

if (the actorList).getOne(me)=0 then

10 The ticks are the continuous stream of pulses, as it were, that a given computer generates from the

moment it was turned on. Because the concept represents a ceaseless stream of signals, it can be

utilized in various ways to measure a given duration of time. Each tick signifies 1/60 of a second, or

conversely, 60 ticks amounts to one second. By comparing the ticks at any given moment to those at

some other moment and subtracting the former from the latter one can arrive at the time elapsed

between those two segments while the Director driven presentation is going on.

— 217

(the actorList).append(me)

end if

end

Actually, the time elapsed will be calculated by subtracting the number of ticks pulsed

after the previous ticks measured when the moment the calling script was evoked. The

difference between the two is expressed as the comparative values between the left and

the right terms in the following coding,

on stepFrame me

if the ticks<pTicks + 60*5 then

exit

else

puppetSound 1, 0

sound(2).queue(member (pCrrntRct))

sound(2).playO

(the actorList).deleteOne(me)

go to "rctPhsl"

end if

end

In line two of the above handler 60*5 indicates the surplus value beyond the ticks that

was measured at one point in the flow of presentation. Since the ticks on the left

continuously measure the time elapsed since the computer was turned one, the right

term, the number of ticks at pint X plus an arbitrary accumulation of numbers decided

by the programmer, easily adjust the timing fro whatever purpose the timer object has

been initiated in the first place. In this case, as I have already mentioned, the timer is

turned on to first wait and then sound the recitation sound effect. Here the channel

used to sound the target clip is different from the one used for the previous ambient

music. Because the music playing in channel 1 is turned offbefore the current one is to

be played, channel switching does not have much significance. But considering all the

contingencies that might come in the way of the editor, such as playing sound FX

simultaneously in two diverse channels, although that is not necessarily a

recommended strategy for the reason that each clip could interfere with each other, the

present coding could be justified.11 Here as before the sound element is first loaded—

11 Although it might not be the case in many cases because brevity and clarity of scripting often helps

editor to build more solid structures and the edifice that will eventually arise from them, leaving

numerous options later on to develop other ramifying codes to deal with interactive contingencies, for

example, more often than not prove more sagacious than otherwise. The seemingly redundant coding

on the surface may not always be just an ineffectual and callow attempt on the part of the editor to

— 218 —

: Visualizing Literary Text

sound(2).queue(member (pCrrntRct))—to the program before it is actually played. The

final two lines in the current handler first eliminate the object from the actorlist12 and

then move the playback head to the destination appropriate from the next scene

development. That is to say, a scene that is to synergistically play out the essential

artistic elements together with the music FX, in this case as I have numerously

adumbrated a sound clip with the recitation of the line where the viewer's eyes are

presumed to be fixed.

Using the timer object strategy there are many things possible to evoke

interest in the artistic work the reader is facing at the moment. The straightforward

one enumerated above is one. Triggering timers at various points in the reader's

immersion in the aesthetic world is another. For instance. When the reader's eyes

have supposed to have traced the lines auditorily enhanced by the interactive

presentation the program then transitions in another line, either posterior or anterior

in its relative position to the line just dealt with, for the reader perusal. And once

again when the subject's eyes have reached, that is presumed to have, the end of the

given line the timer that has been started beforehand brings his attention to the next

line, which may or may not have to be immediately following the line in question, either

by the sound or visual effects. Scattering all the preceding tricks throughout the

target work will have a kind of discontinuous effects on the working mind ofthe subject

that the overall mechanism is sure to thrust new insights into the viewer's ken which he

might have overlooked in spite of himself. Multimedia-based presentations are in that

sense conducive to new perspectives on the works that may have become "common"

through their currency in today's information oriented society. Although that might

remind many readers of the Romantic ethos deliberated upon by none other than the

Master ofRomantic poetry William Wordsworth,13 exposing artistic works in iridescent

desperately interactivate his presentations.

12 The actorlist is set up as a global list, a list that can be accessed from any place in the presentation,

and putting an object in the actorlist makes the object susceptible to the signal named stepFrame.

Once an object is in the actorList, therefore, it can he manipulated to go through the ticks operation

explained above and many other macroscopic processes, programmatically speaking. That is why

appending to and deleting the object from the named list allows the editor controlling timing from any

locale in the presentation, as demonstrated above.

19 The sentiment most conspicuously expressed by the same author in this context appears in a

prolegomenon entitled "Preface to Lyrical Ballads." Succinctly summarized as making ordinary

things strange, the estranging strategy sounds both new and old in the same way as the multimedia

reinterpretation of the Shakespeare's poetic work does.

The principal object, then, which I proposed to myself in these poems was to choose incidents and

situations from common life, and to relate or describe them, throughout, as far as was possible, in a
selection of language really used by men? and, at the same time, to throw over them a certain

colouring of imagination, whereby ordinary things should he presented to the mind in an unusual

way.* and, further, and above all, to make these incidents and situations interesting by tracing in the,

truly though not ostentatiously, the primary laws ofour nature...." (Quoted from The Norton

— 219 —

lights by dint of the new technology is both something new and old in that the

technology utilized in the kind of presentations I have been describing has become

available only recently and the attempts to commingle the current methodology with

the old seemingly discrepant contents have been tried and retired since the dawn of

civilization. Before we become mired in the philosophical aspect of the attempt I am

describing, let us detach ourselves once more from the deeper issues and see how the

actual multi timer triggers can be set and pulled. Look at the following lines.

Let me confess that we two must be twain

Although our undivided loves are one>

So shall those blots that do with me remain,

Without thy help by me be borne alone.

This is the first quatrain of Shakespeare's sonnet 36.14 The following codes are set to

deliver the quatrain in the most effective manner possible in the digital environment we

have been envisioning. But rather than simply reiterating the previous strategy, in

which the simple timing mechanism starts calculating and trigger a given series of

actions, let me introduce you to a more elaborate manner of presenting the above lines.

First, let us consider a situation where consecutive pictures are shown to the viewer one

after another in an order that is deemed to enhance the viewing experience of the

audience and crescendo, as it were, the ambient mood that is appropriate for the movie

as a whole. Look at the following proposition.

Property pWaitT

On beginSprite me

StartTimer

pWaitT=5

End

On exitFrame me

If the timer<60*pWaitT then

Go the frame

Else

Go next

End if

end

Anthology ofEnglish Literature, vol. 2, pp. 142-143, published in 1993.)

14 The numbering used here relies on William Shakespeare: The Complete Works edited by Alfred

Harbage, published by The Viking Press in 1975. Needless to say, as one of the editors overtly admits,

spelling and punctuation are modernized to convey accurate imageries and nuances to the modern
audience.

— 220 —

: Visualizing Literary Text

The two handlers are to be executed, of course, after the movie has actually started.

Therefore, before these commands are issued, there is an unlimited number of

possibilities that can in turn trigger various interactive actions for the diversion of the

audience. But that segment is to be skipped for the moment to make my structural

design clearer. Back to the handlers stated above. The first property pWaitT is the

value that is to be determined according to the needs of the editor. It controls the

length of time a given picture is shown to the audience. The value given in the

beginSprite handler happens to be 5 but it can be varied according to the kind of effect

the programmer is seeking. To make the coding more flexible and at the same time

more accessible even to the novice, another handler can be utilized to fill in the value

represented by the same property. The handler for that purpose can be written as

follows.

Property pWaitT

on getPropertyDescriptionList me

pList=[:]

pIist.addProp&pWaitT, Gteomment: "Waiting Time in seconds", #range: frmax: 10, #min: 2],#format:

#integer, #de£ault: 5])

return pList

end

The part within the parentheses, preceded by the symbol #range, can be deleted. But

by setting up the range, you can generate a graphic user interface for the individual

editor to manipulate the time for the duration of which the target picture can be

perused. In any case if the getPropertyDescriptionList handler is used the person

editing or constructing the presentation does not have to enter inside the coding. All

he or she has to do to initialize the variable is to attach the script that has the named

handler as part of it to any object or location where the value is utilized. For instance,

ifthe pWaitT is to determined the length oftime a given picture is shown and at the end

of which duration to send the playback head to the next destination to let the program

display the ensuing picture the getPropertyDescriptionList handler not only becomes

an integral part of the preceding script but also necessitates deletion of line that sets a

value to the property pWaitT. Now the first graphical presentation is set up according

to the blue print, let us consider embellishing the movie even further with some sound

elements. What if the transition from, scene A to B (in this case change in graphical

elements) is accompanied by music or at least some sound effects? How is it to be

achieved? Just insert the following commands before sending the playback head off

to the next label within the exitFrame handler above.

— 221-

puppetTransition 47, 2, 1

sound(2).queue([#member: member("pict2")])

sound(2).playO

Needless to say, the first line in the modification is to add more interest to the

presentation. It forces the program to play a transitional animation between the given

scenes. All the arguments represented by numbers each control the type, duration and

response to the discrepant elements in the two scenes, respectively. Besides the first

argument appended to the queue function, you can add another called rateShift, which

modulates the pitch ofthe sound element to be played by the proceeding function play().

If, for instance, the sound needs to be played at a higher pitch than its original one, you

can rewrite the line in question in the following manner.

sound(2).queue([#member* member("pict2"), #rateShift- 8])

Ofcourse, as previously stated, the given method simply plays the sound clip at a faster

rate. The result may not be satisfactory if the purpose sought by the editor is to

modulate only the pitch and nothing else. Along with the .pitch the duration is

inevitably affected. But other than that there is not much noticeable defects to the

method used here. As long as the major objective is accomplished the kind of

inconvenience experienced is quite negligible and something that is easily overlooked.

Now let us make the values and other parameters more easily settable and accessible to

the editors. If one takes recourse to the getPropertyDescription handler, which we

already did above, the objective is easily accomplished. See the following execution,

property pWaitT, pTrnsType, pPitch, pSndNm

on getPropertyDescriptionList me

pList=[:]

pLiat.addProp(#pWaitT, [#comment: "Waiting Tiine iu seconds", #range: [#max: 10, #min: 2],#format:

#integer, #default: 5])

pList.addPropfapTrnsType, [#comment: "Transition Type", #range: btmax' 52, #min: 1], #format-

#integer, #default: l])

pIist.addProp(#pPitch, [#comment: "Sound Element Pitch", #range: [#max- 12, #min: -12], #format:

#integer, #default: l])

pLdst.addProp(#pSndNm, [#comment: "Sound Name Used for Transition", #format: #strrng,

#default:""])

return plist

end

Here the noteworthy feature is that each numeric value is to be set through a graphic

user interface to facilitate quick initialization of respective variables. An extra feature

— 222 —

: Visualizing Literary Text

makes the getPropertyDescriptioiiList handler so usable is that the same script can be

used to allow different sets of variables for each frame the script is assigned to. For

instance, if one wants to play a different music clip, which is very likely if the sound

element is to enhance the viewing pleasure of the audience as they watch different

graphic images appear and disappear from their ken, one just enter the target sound

name in the dialogue box that is part of the interface units in the given frame script

Therefore, the same handler leads to the economy of scripting, which is definitely an

advantage ifone is thinking ofwriting a substantially long corpus ofcodes.

Let us think of a situation where the intended scenes develop not only with

sound elements alone but other more literally charged elements such as text. Suppose

textual clips also fade in and out of the scenes in tandem yet somewhat independent of

the sound elements. What are the possibilities? In order to accomplish that one

needs a timer object, the kind used above. Look at the following pair ofscripts,

property pWaitT, pTrnsType, pPitch, pSadNm, pTxSprt, pTxSpMem, pTmObj, pWtTmTxtChng,

pFrstTxtStrng, pScndTxtStrng, pThrdTxtStrng, pFrfhTxtStrng, pTxTrnsType

on getPropertyDescriptioiiList me

plast=[-]

pList.addProp{#pWaitT, bfcomtnent' "Waiting Time for Scene Change in seconds", #range: [#max^ 40,

#min- 20],#format: #integer, #default: 20])

pList.addProp(#pWtTmTxtChng, [#cominent: "Waiting Time for Text- Change", #range: E#max: 10,

#inin* 4], #forinat: #integer, #default: 5])

pList.addProp(#pTrnsType, 0#commenf- "Scene Transition Type", #range: l#max-' 52, #inin: 1],

^format: #integer, #defaul£ l])

pL£st.addProp(#pPitch, [#comnient: "Sound Element Pitch", #range: [#max: 12, #min: -12], #format:

#integer, #defiiult: 1])

pLdst.addProp(#pSndNm, ^comment.' "Sound Name Used for Transition", ^format: #string,

#deEault:""])

pList.addProp(#pTxSprt, [#comment: "Text Sprite Numbei-11, #range: \#m&x'- 20, #min: 10], #format:

#iateger, #demult: 10])

pIiat.addProp(#pTxSpMem, [^comment: "TextSprite Member", #format: #string, #defeult: "ficTxt"])

pLiat.adclProp(#pFrstTxtStrng, [^comment; "First Text to Appear", #format: #string, #default:""])

pList.addProp(#pScndTxtStrng, [#comment: "Second Text to Appear", #format: #string, #default*""])

pList.addProp(^pThrdTxtStrng, (^comment: "Third Text to Appear", #format: ^string, #defaxdt:""])

pList.addProp^pFrtb.TxtStrng, I#comment: "Fourth Text to Appear", #format: #string, #de£ault: ""])

pIi8t.addProp(#pTxTrn3Type, I#comment: "Text FX Transition Type", #range: Wmta'> 52, #min: 1],

#format: ^integer, #default: 52])

— 223 —

return pList

end

on beginSprite me

sprite(pTxSprt).puppet=1

sprite(pTxSprt).ink=36

sprite(pTxSprt).member=member(pTxSpMem)

sprite(pTxSprt).loc=pointGrandom(500)+150, random(400)+100)

member(pTxSpMem).font="centiuy"

member(pTxSpMem).fontSize=25

member(pTxSpMem).color=rgb("#FF6600")

membei-(pTxSpMem).text=pFratTxtStrng

pTmObj=new(script "tuneiPrnt",pTxSpMem, pTxSprt, pWtTmTxtChng, pScndTxtStrng,

pThrdTxtStrng, pFrthTxtStrng, pTxTrnsTVpe)

runTimer(pTmObj)

startTimer

end

on exitFrame me

if the timer<60*pWaitT then

go the frame

else

puppetTransition pTrnsiype, 2, 1

sound(2).queue(l#member: member(pSndNm), #rateShift> pPitchl)

sound(2).playO

go next

end if

end

property pSpNum, pRcvTm, pWtTime, pMemNm, pTxTrnCntr, pScndTx, pThrdTx, pFrthTx,

on new me, memNm.txSprt, wtTime, scndTx, thrdTx, frthTx, txTrnsType

pMemNm=memNm

pSpNum=txSprt

pRcvTm=the ticks

pWtTime=wtTime

pTxTrnCntr=l

pScndTx=scndTx

— 224 —

■¥.§. : Visualizing- Literary Text

pThrdTx=thrdTx

pFrthTx=frthTx

pTxTrnsType=txTrnsType

return me

end

on runTimer me

if (the actorList).getOne(me)=0 then

(the actorList).append(me)

end if

end

on stepFrame me

if the ticks<pRcvTm+ 60*pWtTime then

exit

else

pTxTrnCntr=pTxTrnCntr+1

sprite(pSpNum).member=member(pMemNm)

sprite(pSpNum).ink=36

sprite(pSpNum).loc=point(random(400)+150, random(400)+100)

member(pMemNm).font="century"

member(pMemNm).fontSize=25

member(pMemNm).color=rgb("#FF6600")

if pTxTrnCntr=2 then

puppetTransition pTxTrnsType, 4, 15, 0

member(pMemNm).text=pScndTx

pRcvTm=the ticks

else if pTxTrnCntr=3 then

puppetTransition pTxTrnsType, 4, 15, 0

member(pMemNm).text=pTbirdTx

pRcvTm=the ticks

else ifpTxTrnCntr=4 then

puppetTransition pTxTrnsType, 4, 15, 0

member(pMemNm).text=pFrthTx

else if pTxTrnCntr=5 then

(the actorList).deleteOne(me)

end if

end if

-225 —

end

on xOut me

if (the actorList).getOne(me) then

(the actorList).deleteOne(me)

end if

end

I admit the pairs are rather complicated and lengthy scripting that may not be easy to

grasp intuitively. But they hold the key to timing the appearance of various elements

that are to play important roles in the presentation. In this case the visual effect is

accomplished by the coming in and out of the text that constitutes the part of the target

work. Without further delay let me explicate the inner mechanism involved in

accomplishing the desired end through the coding introduced above. First all the

properties/variables are to be initialized through the graphic user interface to simplify

the process. That is taken care of by the getPropertyDescriptionList handler. As the

editor tries assign the pertinent script to a desired location all the dialogue boxes

appear asking him to fill in appropriate values. Unless he does, all the default values

are used, preventing uninitialized variables, which inevitably cause the program to

shuts down. Once the presentation gets under way, the beginSprite handler in the

same script accepts the namesake message and causes all the commands incorporated

within the handler to be executed. What it does is, first, puppet the designated

channel (here represented by variable pTxSprt which has been effectively initialized

before the program has run), then set the ink of the sprite to 36, which is transparent

other than the colored element, and populate the channel with the desired member (the

content of the pTxSpMem has been determined already by the previous handler) and

sets the location of the same sprite (which is randomized to add some surprising

element to the presentation by the random () function). The font of the text that is to

appear in the puppeted sprite is set in the next line to "century" and along with the font

its size and color are fixed by the proceeding two lines. The actual text that will

inhabit the text element is decided by the next initialization. Because the string

variable pFrstTxtStrng is already determined in the previous handler (provided that

the editor did input the necessarily information! otherwise the variable remains

uninitialized and the object initialization fails) the text member possesses the given

string value. At this point the poetic line (once again suppose the above quatrain was

the elements editor was dealing with here) appears according to the dictate of the editor

incorporated within the current handler, i.e., somewhere within the demarcated area of

the stage.

— 226 —

: Visualizing Literary Text

Once the string value is set and populated in the target text member, the next

couple lines generate the timer object that will calculate the number of seconds to wait

before inserting the next text element into the same member until all the target lines

are displayed and the playback head is effectually sent to the next segment of the

presentation. But in order to fully understand the series of processes leading to the

elimination ofthe functionality ofthe timer object by its removal from the actorList, it is

essential to see the inner workings ofthe parent script called by the behavior script that

has been introduced above. As is evident from the number of the arguments the first

handler, on new me, of the parent script takes, the present script relies heavily on the

values passed from the calling script. That in turn translates into the high flexibility

the whole corpus of presentation is endowed with because all the editor needs to if he

desires to modify string elements of the parametric values is to access the graphic user

interface and input the necessary modifications. The time saved and the intellectual

exertion spared through the simple mechanism is enormous. The more complex the

entire movie becomes, the more energy is likely to be saved, both physical and mental.

Note that the object created within the new handler is safely returned by the final

command return me. The simple command makes the time object available for further

used in the calling script, which otherwise lacks the handle to deal with the timer any

more. The actual ticking of the timer, as it were, does not start until the runtimer()

command is issued in the preceding script. The mechanism is very simple. The lines

within the runTimer handler first checks if the object me is already in the actorList (if

the actorList contains me, whether the result of the (the actorList).getOne (me) is 1 or

0). If it is not it is inserted in the list. As soon as it is put in the actorList, the

message stepFrame is generated every 1/60 of a second. It is that pulsation that is

made use ofwhen the timer is actually set to work. Once the stepFrame is generated

by the object, the rest is not so complicated. The timer determines the difference

between a given time stored in a variable and the excess amount ofseconds (the number

of seconds programmed to wait) and subtracts the former from the latter. Once the

condition expressed by the comparative operator is satisfied, the parent script executes

the lines of commands to repopulate the text member with the next text until all the

string values are exhibited. To add one more surprise element to the presentation, the

location of the text member is varied each time a new string value is inserted into it.

Therefore, if the coding is used as it is presented here, the viewer is not only challenged

with the new text every so many seconds but also with the visual exertion he has to

force himself to in order to recognize the textual content in the first place. If we add

the sound accompaniment whatever the new elements are presented that will make the

— 227 —

intellectual exercise more vigorous and render the whole presentation aesthetically

more engaging.

Works Referenced

Abrams, M.H., ed. The Norton Anthology ofEnglish Literature. New York: W.W.

Norton, 1993.

Allenson, Andrew, et al. Director 8.5 Studio. Birmingham, UK: Mends of ED, 2001.

Armstrong, Jay, et al. Macromedia Director 8.5 Shockwave Studio. San Francisco,

CA: Macromedia, 2001.

Barthes, Roland. S/Z. New York: Hill and Wang, 1986.

Catanese, Paul. Directors Third Dimension. Indiana: QUE, 2001.

Culler, Jonathan. Structuralist Poetics. New York: Cornell University Press, 1982.

Harbage, Alfred, ed. William Shakespeare: The Complete Works. New York: The

Viking Press, 1975.

Jakobson, Roman. Language in Literature. Cambridge, Massachusetts: Harvard

University Press, 1987.

Rosenzweig, Gary. Special Edition: UsingMacromedia Director 8.5. Indiana: QUE,

2002.

— 228 —

