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Abstract

Ths paper considers the problem of reconstructing a high-resolution image from multiple under-sampled, shifted and noisy
low-resolution frames. Using a hybrid evolutionary algorithm we attempt to reconstruct the original high-resolution image
from a sequence of images corresponding to the same scene but shifted by unknown values in both scalar directions and
degraded by Gaussian artifacts. The algorithm is easy to implement and can exploit subtle subpixel variations. It can obtain
lossy, much more acceptable results than ordinary interpolation. This is exemplified by comparing results with those

obtained through conventional interpolation.

Keywords: superresolution, stochastic relaxation, hybrid EA, concurrent siraplex, image restoration, interpolation kernels

1 Introduction.

Many image processing applications, such as satellite, medical
and scientific imaging require high resolution detailed images.
However, physical constraints limit image resolution quality.
Current imaging systems yield aliased and under-sampled

images This is particularly true for infrared images and some |

charged coupled device cameras(CCD) whose detectors are
not sufliciently dense. Although CCD cameras of more than 2
million pixels have been developed, there is still a need to
increase the resolution further Reducing the size of the
pixels(photo-deteciors) is one obvious way. But since
decreasing Lhe size of the pixels also lessens the amount of
light available for each detector, the overall picture quality is
degraded!"*™). The existence of shot-noise (variation of input)
is unavoidable. Inasmuch as sensor modification exacts
tremendous effort and expense, attention has turned to the use
of numerical techniques to obtain higher resolution images'™.

Superresolution attempts to produce a high-resolution
image from under-sampled, shifted, degraded images. The
reconstructed high-resolution image is not only visually
pleasing, but can be of aid to subsequent image processing
tusks such as image segmentation and recognition. The use of
more than one frame ftacilitate the efficient determination of
high trequency details, which ordinary interpolation can not.

Superresolution is typically a two step process involving
jmage registration and reconstruction”. When  frame
displacements are uncontrolled and consequently, unknown,
the low resolution frames usually do not coincide exactly. The
displacement of a frame relative to a chosen reference frame
has to be measured by some umage registralion process.

The next phase, ie. image reconstruction, commences
alter registration with the aim of obtaining a higher resolution
image by combining low-resolution frames and minimizing
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degradation. However, the presence of unwanted artifacts such
as noise as well as registration errors due to aliased frequency
components in the low resolution images account for the poor
quality of superresolved images.

Superresolution is an ill-conditioned and typically
underdetermined large-scale problem involving thousands of
unknowns. For example, a total of 200x200=40000 unknown
pixels in the high-resolution image is required in
superresolving a sequence of 100x100 pixels by a factor of 2
in each spatial direction. The problem’s ill-posed nature
exacerbates blurring and noise effects. Although, due to
practical and theoretical importance, the reconstruction of
high resolution images have been studied extensively, some do
not adequately address computational and numerical issues'.

Previous researches have shown that superresolution can
be recast as a twin optimization problem. By minimizing the
difference between estimated and given low resolution images,
not only can the original high resolution frame be obtained but
the relative displacements of the low resolution frames as well.
In this paper we present a evolutionary hybrid approach to
multisensor image superresolution. The algorithm is superior
to interpolation methods and poses as a good match for the a
modified Stochastic  Relaxation method!”l presented
previously.

More of said method will be explained in Section 4. The
multi-sensor image degradation model is conceptualized in
Section 2. Section 3 presents more of the problem. Section 5
talks about the experiment and presents results. A brief

summary follows.

2 Image Degradation Model

Conceptually,  superresolution,  multi-channel,  and
multi-sensor data fusion are very similar problems. Quite a
number of problem models exist . For sake of simplicity we
chose to adopt a similar version of multi-sensor model
presented by Boo et al’®l, shown below, and described as
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follows:
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Fig. 1!mage formation systems of Bose el al using multiple CCD
sensor arrays

Consider an image formation system composed of a set of
identical CCD sensor arrays to oblain multiple observed
images. Incoming light from the taking lens is split into
muitiple parts by partially silvered mirrors and passed through
the relay lenses before projection onto the set of CCD sensor
array where each amay produces a single discrete
under-sampled image. Shifted under-sampled versions can be
obtained by varying the physical locations of the CCD sensors

BB Aroa of support of high resolution Image sensor elements
51 Area of support of low resolution image sensor dements

Flg. 2 Area of support for high and low image sensors; (a) low
resalution image sensors and (b) high resolution image sensors
determine the sampling positions of the sampled images.
The size of the set of CCD image sensor arrays depends on
the decimation ratio between the high and low resolution
images (Figure 2). Assuming that each of the sensor arrays
consists of N;xN; sensing elements of size T;x T, Each sensor
array will produce a N; x N; discrete image with the 2D
rectangularly shaped iqterval T;x T, If the minimum size of
CCD image sensor array is L, x L, the original high- resolution
image can be discretized at the 2D rectangularly sampled base
interval Ty/L,x Ty/L, Given this the size of the reconstructed
high resolution image is given as Mp\f; where M, =L, 1xN;and
M;=L) XN;.
Since the physical locations of the CCD sensor arrays

determine the sampling positions of the observed
under-sampled images, reconstruction of the high-resolution
image becomes ill-posed if the CCD image sensor arrays arc
shifted from each other in both scalar directions. [or this
experiment, we assume the case that the CCID) sensor armrays
are shifted from each other by an exact subpixel displacement
described by the rectangularly shaped basc iterval 7,/ x
To/L; Each of the observed under-sampled images are shifled.
down-sampled versions of the high-resolution image. Thus,
for 1, =0,1,....L-1 and [, =0,1,....L1 with [{,,[]20, the exact
horizontal and vertical displacements of the [/,.4;]th sensor
array with respect to the [0,0]th sensor array are:

5 =

]

Il 5’: = _?._/‘.7

For n/=12,.. N, and n;=1,2,.. N, , the [/,./x]th observed
undersampled shifted image can be given as:

5 (n|+;1+5,: ta, ‘21” 5":

Sia,In,m )= I _[fq(xr-’:z )k, d, v, g

l'.(u,-%)oé,x !';('q-;-l'ﬂi
Where  f(x,x,] i the conlinucus bandlimited

high-resolution image scene and v, , [n,,n,] Tepresents the
Kay e 7

additive discretized noise in the [/;, J2]th sensor.
. The continuous model can be discretized into:
f;ilz[mnmz]=Zzh(’.l»"z;mumz)Qﬁ-{ixaizl"'vf,.z:[”ﬁ””z]
A

where Syl )v,, Im,.m,] EPTESENL the [{,.1>|th low resolution

image and noise arrays, and A(wxyz) represent lhe
space-variant point spread function(PSF), which determines
the relationship between high and low resolution images.

The discrete under-sampled, low resolution image model
Joplmm]can be represented in vector form as follows:

Let Fon® Vau, be respectively the (MN- x 1) observed
low resolution image and noise column vectors and let /, be
the desired (MM, x1 ) high resolution image. Let

D, =1,®e, D =1, 8¢

be the 1D vertical and horizontal down-sampling matrices. 1)
down-sampling is defined as the Knocker product of (¥, \5)
the identity matrix 7 w, » and the transpose of & . » which is the
(Ly x 1) unit vector whose nonzero element is in the {;ih
position.

For each sensor, the discrete low resolution immage model
can be written as:

S, =D, H A V0
where HM’ 4 =0,1,...,L; -1 and L=01,..., L.l is the
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(MM x MiM;) Block Toeplitz-Toeplitz Block(BTTB) blur
matrix, and D, =D, ®D, denotes the 2D down-sampling

matrix. Because of the large-scale nature of the problem,

implementing the above linear model requires sparse matrices.

If we consider blur/down-sampling as the convolution of a
source image and a space invariant PSF, superresolution (with
unknown displacements) is liken to a set of blind
deconvolution operations.

3 Superresolution as an
Problem

Optimization

If the relative displacements and the down-sampling operatiori
are known, several low-resolution frames can easily be
obtained from an estimated high resolution observed image.
Superresolution can then be recast as an optimization problem
involving the minimization of the difference between said
estimated and observed low-resolution images. The estimated
and observed low-resolution frames will match only if the
estimated high resolution image and the corresponding
displacements are correctly determined.

In an attempt to recover both displacements and the
original image, we utilized the following cost function:

Enn=|g, -r(f.5,.8)] + /[

where :
& current low resolution frame being compared.
£ current high resolution estimate
r() reduces estimate lo obtain an estimated low
resolution frame
A regularization parameter
Vf Laplacian constraint
The Laplacian constraint is employed as a smoothing
parameter because of its proven efficacy in heuristic image
restoration’®!. The cost function used above is similar in form
to the Tikonov-Miller regularized conjugate gradient equation
below employed by other researchers in the field?®>""],

P(f) = minfg - Af]; +2%|Cf

2
2

where :
g low resolution frame being compared.
/" high resolution estimate
A estimate to obtain an estimated low r
frame
A rcgularization parameter
C highpass filter

Both equations consist of two parts: a component that
attempts to reconstruct a high resolution image by minimizing
the difference between estimated and given low resolution
[rames and another component that minimizes the difference
between a pixel and its neighbors, controlling unwarranted
oscillations and noise.

4 Hybrid Evolutionary Algorithm

In recent years, soft computing methods have gained
tremendous popularity in the solution of nonlinear, ill-posed
and blind problems. From hereon , we present a hybrid
multi-parent tri-hybrid evolutionary approach!'? which can
exploit the global and local search capabilities of EA and
Stochastic Relaxation respectively. We shall briefly describe
the operations that came into play. Please refer to a previous
paper!'? should a more detailed description be deemed
necessary.

4.1 Multi-parent Tri-Hybrid EA

Hybrid evolutionary algorithms were formulated to address
the convergence problems of traditional EAs!13.14). The proper
integration of a local operator have been known to speed up
convergence and obtain more reliable results. Our real-coded
tri-hybrid method integrates the features of a multi-parent EA
with the efficiency of Simplex Method and Stochastic
Relaxation.

Simplex!'*, a local operator, is applied to a portion of the

Fig. 3 Two dimensional concurrent simplex

population to further the speed of convergence. A concurrent
version of the original method , reflects in lieu of one in lieu of’
ONepPn+t, Pmezr - Pa-a  Peeq Doints  across the
centroid(computed from the best N points), to create p',.;.
P2 'wed o P'a-2 P wa. All the points are then re-evaluated and
a new set of best points (p', p% ... Phi Ph) is
selected(Fig.2) The reflection operation is determined by the
following formula:

P pgt Upg- Poer),
a.'s value is set through uniform random distribution. p; and p,
represent the reflected point and centroid respectively. This
approach, termed Stochastic Simplex, eases exploration and
lets the distance between the centroid and current point to be
determined freely.

Stochastic Relaxation, method with foundations in
statistical physics, is put to use as a mutation operator. SR was
devised to study equilibrium properties of large systems of’
identical “‘particles”. When combined with an ‘‘annealing
schedule,” SR can be used as a maximization tool as well. It is
robust, intrinsically parallel, and very easy to code, in the
sense that the algorithm does not depend on the details of the
imaging problem!®. The algorithm is presented in Fig. 4. T and
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E represent the annealing temperature and entropy of the

system at some instance i, AE is the epergy gap or

corresponding change in entropy resulting from perturbation .

SR provides a mechanism for uphill climbing the probability

for this climb is given by the Boltzmann probability function:
p = e—AEIl'

As T is gradually relaxed, the system is less likely to
accept uphill moves in latter stages. For optimum control of T,
we used the following exponential annealing schedule™ with
0.77< .99

T,

i+l

With each annealing cycle, a small random perturbation,d
is added to each parameter, the value of which is defined as
the product of a random variable ¢ € [-0.5,0.5] and some
stochastic value between [0,1]. SR mutation is applied only
once every generation.

=aTI

Fig. 4 Stochastic relaxation

In integrating the abovementioned operators to EA, the
hybrid model in Fig 5 is employed. Per this model, three sets
of individuals comprise the new population{'*'*!4]. The first
group consists top-ranking individuals (elites) from the
previous generation that are translated without changes to the
new generation!'. The second set is made up of individuals
resulting from a special local operator(Concurrent Simplex)
applied to top members of the previous generation. Last is the
set created through conventional EA crossover and mutation.

The model, originally developed by Yen et al for Genetic
Algorithms, used simple operators and applied a concurrent
probabilistic simplex operator on top ranking individuals. The
control structure and operators have been improved in the
proposed method without compromising the original’s
strengths. The algorithms and operators are shown in Fig. 6.

For_ each generation, the EA generates a highly
competitive population of individuals. Only the best
individuals from each operations are chosen to form the new
population; resulting in dramatic increase in convergence.

For coventional EA reproduction, a multi-parent
Simplex-based (SPX) operator with Boundary-Extension by
Mirroring (BEM) is used!”. Proposed by Tsuitsui et al, SPX
“.mrks by unifermly picking N vector values from an expanded
simplex generated by N parents. In this case, we set the
RUISIb?T of parents is equal to the number of parameters to be
optimized. BEM is a supporting algorithm developed to

facilitate SPX and other multi-parent algorithms’ location off
optimum situated near the comer of the search space.
Functional values of points outside the boundary are computed
as though they belong inside the search space at poiuts
symmetrical to the boundary. An extension coefficient, r, is
introduced to attenuate the boundary by a laclor of - r, In
each dimension.
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Fig. 5 Hybrid EA Architecture

SPX with BEM is reputed to work well with functions
having multi-modality and epistasis.  Nonetheless,
convergence is slow as the MNT (i.e mean number of
function evaluations where the optimum is reached) is
noticeably large, generally running to thousands. This was

improved through hybridization.
Yen's GA Simplax EA Simplex Algorithm Hybrid EA
Algorithm Operators
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Fig. 6 Algorithms and Operators

The integration of all these operators produced an EA that
has SPX's ability to handle epistasis, Stochastic Relaxation
and Simplex” ability for local tuning and EA’s global search
ability. Lastly, MPC (Multi-point Crossover) was also
developed for swapping parental sections at randomly selected
points. The tri-hybrid method was used successfully in
overlapping signal resolution.

4.2 Superresolving EA Hybrid

A flowchart of the supemesolving multi-parent EA hybrid
algorithm utilizing the cost function discussed in section 3 is
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shown.
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Fig. 7 Flowchart of superresolving EA hybrid

Two sets of populations representing the estimates for
displacements and high resolution image respectively are
maintained. Disjoint EA operations are applied to each. Low
resolution frames are generated for each pair of individuals.
The fitness for each pair is calculated by comparing the
calculated and observed low resolution frames using the
fitness function in section 3. An individual’s final fitness will
be the best fitness value taken over all pairings with the
opposite set. This is generalized below:

E(ind,,) = min| E(i,1), E(i.,2), E(i,3)...E(i, popsize,) |

The optimum solution can be obtained by minimizing the
costs of both unknowns. Acceptable resuits can be obtained in
as little as 10 generations.

Another interesting feature is, that unlike other methods,
where the relative displacements are determined at the low
resolution image level, we have been moved the estimation up
to the source image level. By having only to estimate the
number of whole pixel shifts in the high-resolution image, the
search space is reduced from real to whole integers.
Initializing a portion of the initial population with interpolated
low-resolution images also facilitated convergence.

Lastly, computer simulation results illustrate the
effectiveness of the procedure even for frames corrupted with
Gaussian noise.

5 Experiment and Results

We carried oul computer simulations to validate the
applicability of our method for superresolution. A standard 64
X 64 Lena image was used for the experiment. The original
image was sub-sampled to produce 4 (32 x 32) shifted
low-resofution images. Separate experiments simulating
noise-free and noisy conditions were conducted.

Population sizes of 20 and 30 were assigned for image and
displacement estimates. Number of parents, crossover rate,
mutation rate, number of elites and a were set at3, 80%, 1%, 5
and 0.0005 respectively.

The results of both experiments are shown in the

accompanying sheets. Figure 8 shows the original and
low-resolution image samples (both with and without noise).
Figure 9 compares the bicubic and b-spline interpolation
results, one obtained using a modified SR method and that of
the hybrid EA. Detailed description of interpolation kemels is
beyond the scope of this paper, but can these be found in
several image processing literature!").

To provide analytical support to visual evaluation of
results, the Means Square Error (MSE) and Peak Signal to
Noise Ratio (PSNR) were calculated. Line profiles (Fig. 10)
and Fourier magnitude images (Fig.11 and Fig. 12) were
likewise prepared.

MSE = |original - estimated)
(xres* yres)
PSNR = -10log ,(MSE /255%)

It can be seen from the line-profile results that new high
frequency details are introduced by the EA algorithm. Because
interpolation methods work only within the confines of the
given data, they are not capable of introducing new
information.

The value of the regularization parameter is determined on
a per experiment basis. A too large A results in a blurred image,
one too small, on the other hand, results in too many
oscillations.

6 Conclusion and Future Work

A tri-hybrid EA approach to image superresolution has been
proposed. This compact method has beer shown to
outperform conventional interpolation based methods. Its
main merit lies in its ability to do both image registration and
restoration in one operation.

Future work include testing the benefits of pre and post
processing in improving overall image quality, determination
of a way to set the regularization parameter adaptively and
exploring the possibility of hamessing parallel processing as a
means to simplify and speed up computation.
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Fig. 8 Images used in the experiments; (a) original 64X64 high resolution image, (b) 32x32 shifted image without noise, (c) 32x32 shifted
sub-sampled image with Gaussian noise

Fig. 9 (a-d) show results of
32x32 to B4x64 expansion using
noise-free data. (d-h) show
results from noisy frames.

{a) Blcubic (b) B-spline (c) Modifled SR (d) Hybrid EA

MSE =412.44 MSE =388.08 MSE =3858 MSE =2125
PSNR =21.98 PSNR =22.48 PSNR =23257 PSNR =34.86

(d) Biub!c {e) B-spline {f) Modified SR () Hybrid EA (h) EA w/Median Filter
MSE =425.69 MSE =371.61 MSE =5067 MSE =658.16 MSE =5792
PSNR =21.84 PSNR =22.43 PSNR =3057 PSNR =30.48 PSNR =3050
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Fig. 10 The ideal line profiles are shown in 1-4. The line profile set of a 32x32 image Is given in (a). Resuts for bicubic, b-spline,
improved SR and hybrid EA are given in (b-e). Line profiles of SR and hybrid EA results using hoisy are given below.
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Fig. 11 Fourier magnitudes images of (a) original image (b) a low resolution frame (c) BC convolved image (d) B-spline interpolated image
(e) SR and (f) hybrid EA results. Note the addition of high frequency components.
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fig. 12 Line profiles of Fig. 11 fourier images. Top and bottam rows show profiles for vertical and horizontal axes respectively.



