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Abstract

This paper considers the problem ofreconstructing a high-resolution image from multiple under-sampled, shifted and noisy

low-resolution frames. Using a hybrid evolutionary algorithm we attempt to reconstruct the original high-resolution image

from a sequence of images corresponding to the same scene but shifted by unknown values in both scalar directions and

degraded by Gaussian artifacts. The algorithm is easy to implement and can exploit subtle subpixel variations. It can obtain

lossy, much more acceptable results than ordinary interpolation. This is exemplified by comparing results with those
obtained through conventional interpolation.
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1 Introduction.

Many image processing applications, such as satellite, medical

and scientific imaging require high resolution detailed images.

However, physical constraints limit image resolution quality.

Current imaging systems yield aliased and under-sampled

images This is particularly true for infrared images and some

charged coupled device cameras(CCD) whose detectors are

not sufficiently dense. Although CCD cameras of more than 2

million pixels have been developed, there is still a need to

increase the resolution further. Reducing the size of the

pixels(photo-deteclors) is one obvious way. But since

decreasing Ihe size of the pixels also lessens the amount of

light available for each detector, the overall picture quality is

degraded1 u?1. The existence of shot-noise (variation of input)

is unavoidable. Inasmuch as sensor modification exacts

tremendous effort and expense, attention has turned to the use

of numerical techniques to obtain higher resolution images'31.

Superresolution attempts to produce a high-resolution

image from under-sampled, shifted, degraded images. The

reconstructed high-resolution image is not only visually

pleasing, but can be of aid to subsequent image processing

tasks such as image segmentation and recognition. The use of

more than one frame facilitate the efficient determination of

high frequency details, which ordinary interpolation can not.

Superresolution is typically a two step process involving

image registration and reconstruction14'. When frame

displacements are uncontrolled and consequently, unknown,

the low resolution frames usually do not coincide exactly. The

displacement of a frame relative to a chosen reference frame

has to be measured by some image registration process.

'I"he next phase, i.e. image reconstruction, commences

alter registration with the aim of obtaining a higher resolution

image by combining low-resolution frames and minimizing

OOOf !2
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degradation. However, the presence ofunwanted artifacts such

as noise as well as registration errors due to aliased frequency

components in the low resolution images account for the poor

quality of superresolved images.

Superresolution is an ill-conditioned and typically

underdetermined large-scale problem involving thousands of

unknowns. For example, a total of 200x200=40000 unknown

pixels in the high-resolution image is required in

superresolving a sequence of 100x100 pixels by a factor of 2

in each spatial direction. The problem's ill-posed nature

exacerbates blurring and noise effects. Although, due to

practical and theoretical importance, the reconstruction of

high resolution images have been studied extensively, some do

not adequately address computational and numerical issues15'.

Previous researches have shown that superresolution can

be recast as a twin optimization problem. By minimizing the

difference between estimated and given low resolution images,

not only can the original high resolution frame be obtained but

the relative displacements ofthe low resolution frames as well.

In this paper we present a evolutionary hybrid approach to

multisensor image superresolution. The algorithm is superior

to interpolation methods and poses as a good match for the a

modified Stochastic Relaxation method*43 presented

previously.

More of said method will be explained in Section 4. The

multi-sensor image degradation model is conceptualized in

Section 2. Section 3 presents more of the problem. Section 5

talks about the experiment and presents results. A brief

summary follows.

2 Image Degradation Model

Conceptually, superresolution, multi-channel, . and

multi-sensor data fusion are very similar problems. Quite a

number of problem models existt5]. For sake of simplicity we

chose to adopt a similar version of multi-sensor model

presented by Boo et al[6', shown below, and described as
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follows: determine the sampling positions of the observed

under-sampled images, reconstruction of the high-resolution

image becomes ill-posed if the CCD image sensor arrays are

shifted from each other in both scalar directions. For this

experiment, we assume the case that the CCD sensor arrays

are shifted from each other by an exact subpixel displacement

described by the rectangularly shaped base interval '() I.tx

T1/L2. Each of the observed under-sampled images are shifted

down-sampled versions of the high-resolution image. Thus,

for // =0,1,.. .JLrI and /, =0,1,.. .JLT1 with [//,/;>J*0, the exact

horizontal and vertical displacements of the j//,(?Jth sensor

array with respect to the [O,O]th sensor array are:

Fig. 11mage formalion systems of Boseelal using multiple CCD

sensor arrays

Consider an image formation system composed of a set of

identical CCD sensor arrays to obtain multiple observed

images. Incoming light from the taking lens is split into

multiple parts by partially silvered mirrors and passed through

the relay lenses before projection onto the set of CCD sensor

array where each array produces a single discrete

under-sampled image. Shifted under-sampled versions can be

obtained by varying the physical locations ofthe CCD sensors

GS3 Ami ofsupport of Mflti resolution Image sensor dements

123 Aroa <rf support of towretokitlonknige tensor dements

Fig. 2 Area of support for high and low image sensore; (a) low

resolution Image sensors and (b) high resolution image sensors

determine the sampling positions of the sampled images.

The size ofthe set ofCCD image sensor arrays depends on

the decimation ratio between the high and low resolution

images (Figure 2). Assuming that each of the sensor arrays

consists ofNtxN2 sensing elements ofsize Ttx T2, Each sensor

array will produce a AT, x N2 discrete image with the 2D

rectangularly shaped interval T} x T2. If the minimum size of

CCD image sensor array is Ltx L2, the original high- resolution

image can be discretized at the 2D rectangularly sampled base

interval T/LfX TJL}. Given this the size of the reconstructed
high resolution image is givenasM,xM2 whereM,=LlXN, and
M3=L2xN2.

Since the physical locations of the CCD sensor arrays

For tir\,2,...JNt and «^1,2,...,.'V?, the l'//,AJth observed

undersampled shifted image can be given as:

Where /A[x,,r2j is the continuous bandlimited

high-resolution image scene and v, „[«„«, j represents the

additive discretized noise in the [//,/?]th sensor.

The continuous model can be discretized into:

where fVt[mt,fnl].vv,[mt,nk] represent the [/,,/,|th low resolution

image and noise arrays, and h(w,x,y,z) represent the

space-variant point spread function(PSF), which determines

the relationship between high and low resolution images.

The discrete under-sampled, low resolution image model

^,j2l"i.«j]can be rePresented in vector form as follows:

Let A*' v',.'sbe resPectively the (W/Nj x 1) observed

low resolution image and noise column vectors and let f be

the desired {MtM2 xl ) high resolution image. Lot

be the ID vertical and horizontal down-sampling matrices. U)

down-sampling is defined as the Knocker product of (,V, ,V,)

the identity matrix [^ , and the transpose of e, , which is the

(L; x 1) unit vector whose nonzero element'is in the !,ih
position.

For each sensor, the discrete low resolution image model

can be written as:

where /, =0,1,..., L, -1 and /, =0,1,..., /,, _| is the
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(MM2 x MM2) Block Toeplitz-Toeplitz Block(BTrB) blur

matrix, and j)^ _ /^ ® jr> denotes the 2D down-sampling

matrix. Because of the large-scale nature of the problem,

implementing the above linear model requires sparse matrices.

If we consider blur/down-sampling as the convolution of a

source image and a space invariant PSF, superresolution (with

unknown displacements) is liken to a set of blind

deconvolution operations.

3 Superresolution as an Optimization
Problem

If the relative displacements and the down-sampling operation'

are known, several low-resolution frames can easily be

obtained from an estimated high resolution observed image.

Superresolution can then be recast as an optimization problem

involving the minimization of the difference between said

estimated and observed low-resolution images. The estimated

and observed low-resolution frames will match only if the

estimated high resolution image and the corresponding

displacements are correctly determined.

hi an attempt to recover both displacements and the

original image, we utilized the following cost function:

where:

g, current low resolution frame being compared.

/' current high resolution estimate

r() reduces estimate to obtain an estimated low

resolution frame

X regularization parameter

V/ Laplacian constraint

The Laplacian constraint is employed as a smoothing

parameter because of its proven efficacy in heuristic image

restoration191. The cost function used above is similar in form

to the Tikonov-Miller regularized conjugate gradient equation

below employed by other researchers in the field1*'3'11'.

where :

g low resolution frame being compared.

/' high resolution estimate

A estimate to obtain an estimated low resolution

frame

X regularization parameter

C highpass filter

Both equations consist of two parts: a component that

attempts to reconstruct a high resolution image by minimizing

the difference between estimated and given low resolution

frames and another component that minimizes the difference

between a pixel and its neighbors, controlling unwarranted

oscillations and noise.

4 Hybrid Evolutionary Algorithm

In recent years, soft computing methods have gained

tremendous popularity in the solution of nonlinear, ill-posed

and blind problems. From hereon , we present a hybrid

multi-parent tri-hybrid evolutionary approach'ul which can

exploit the global and local search capabilities of EA and

Stochastic Relaxation respectively. We shall briefly describe

the operations that came into play. Please refer to a previous

paper'121 should a more detailed description be deemed
necessary.

4.1 Multi-parent Th-Hybrid EA

Hybrid evolutionary algorithms were formulated to address

the convergence problems oftraditional EAs'131*11. The proper

integration of a local operator have been known to speed up

convergence and obtain more reliable results. Our real-coded

tri-hybrid method integrates the features of a multi-parent EA

with the efficiency of Simplex Method and Stochastic

Relaxation.

Simplex'l5!, a local operator, is applied to a portion of the

Fig. 3 Two dimensional concurrent simplex

population to further the speed of convergence. A concurrent

version ofthe original method, reflects in lieu ofone in lieu of

one^n-n, fa! po-2, pn*n points across the

centroid(computed from the best N points), to create p\rX.

p n+2 p '0-2. P n+Q- All the points are then re-evaluated and

a new set of best points [p\, p\ p'n.{, p'n) is

selected(Fig.2) The reflection operation is determined by the

following formula:

Pr Pg+afar Pn*\\

a, s value is set through uniform random distribution. px and/?p

represent the reflected point and centroid respectively. This

approach, termed Stochastic Simplex, eases exploration and

lets the distance between the centroid and current point to be

determined freely.

Stochastic Relaxation, method with foundations in

statistical physics, is put to use as a mutation operator. SR was

devised to study equilibrium properties of large systems of

identical "particles". When combined with an "annealing

schedule," SR can be used as a maximization tool as well. It is

robust, intrinsically parallel, and very easy to code, in the

sense that the algorithm does not depend on the details of the

imaging problem'81. The algorithm is presented in Fig. 4. fand
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E represent the annealing temperature and entropy of the

system at some instance i. AE is the energy gap or

corresponding change in entropy resulting from perturbation 8.

SR provides a mechanism for uphill climbing the probability

for this climb is given by the Boltzmann probability function:

As T is gradually relaxed, the system is less likely to

accept uphill moves in latter stages. For optimum control ofT,

we used the following exponential annealing schedule32 with
0.77<; <x£.99

With each annealing cycle, a small random perturbation,8

is added to each parameter, the value of which is defined as

the product of a random variable q e [-0.5,0.5] and some

stochastic value between [0,1]. SR mutation is applied only

once every generation.

Fig. 4 Stochastic relaxation

In integrating the abovementioned operators to EA, the

hybrid model in Fig 5 is employed. Per this model, three sets

of individuals comprise the new population112'13'141. The first
group consists top-ranking individuals (elites) from the

previous generation that are translated without changes to the

new generation1161. The second set is made up of individuals
resulting from a special local operator(Concwm?Mf Simplex)

applied to top members ofthe previous generation. Last is the

set created through conventional EA crossover and mutation.

The model, originally developed by Yen et al for Genetic

Algorithms, used simple operators and applied a concurrent

probabilistic simplex operator on top ranking individuals. The

control structure and operators have been unproved in the

proposed method without compromising the original's

strengths. The algorithms and operators are shown in Fig. 6.

For each generation, the EA generates a highly

competitive population of individuals. Only the best

individuals from each operations are chosen to form the new

population; resulting in dramatic increase in convergence.

For coventional EA reproduction, a multi-parent
Simplex-based (SPX) operator with Boundary-Extension by
Mirroring (BEM) is used1"1. Proposed by Tsuitsui et al, SPX
works by uniformly pickingNvector values from an expanded

simplex generated by N parents. In this case, we set the

number of parents is equal to the number of parameters to be
optimized. BEM is a supporting algorithm developed to

facilitate SPX and other multi-parent algorithms" location of

optimum situated near the comer of the search space.

Functional values ofpoints outside the boundary are computed

as though they belong inside die search space at points

symmetrical to the boundary. An extension coefficient, r, is

introduced to attenuate the boundary by a factor of I - rr in

each dimension.

HmtmtPopultOon

Fig. 5 Hybrid EA Architecture

SPX with BEM is reputed to work well with functions

having multi-modality and epistasis. Nonetheless,

convergence is slow as the MNT (i.e. mean number of

function evaluations where the optimum is reached) is

noticeably large, generally running to thousands. This was

improved through hybridization.

Yen's QA Simplex
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Fig. 6 Algorithms and Operators

The integration of all these operators produced an EA that

has SPX's ability to handle epistasis, Stochastic Relaxation

and Simplex' ability for local tuning and EA's global search

ability. Lastly, MPC (Multi-point Crossover) was also

developed for swapping parental sections at randomly selected

points. The tri-hybrid method was used successfully in

overlapping signal resolution.

4.2 Superresolving EA Hybrid

A flowchart of the superresolving multi-parent EA hybrid

algorithm utilizing the cost function discussed in section 3 is
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shown.

( tn

i* • ia popuu «n * m »g«i I——I*

Do Jytr iJEA

Fig. 7 Flowchart of superresolving EA hybrid

Two sets of populations representing the estimates for

displacements and high resolution image respectively are

maintained. Disjoint EA operations are applied to each. Low

resolution frames are generated for each pair of individuals.

The fitness for each pair is calculated by comparing the

calculated and observed low resolution frames using the

fitness function in section 3. An individual's final fitness will

be the best fitness value taken over all pairings with the

opposite set. This is generalized below:

E{indu) = minLZfO'J), £(/,2), E{i,3)...E(i, popsize2 )J

The optimum solution can be obtained by minimizing the

costs of both unknowns. Acceptable results can be obtained in

as little as 10 generations.

Another interesting feature is, that unlike other methods,

where the relative displacements are determined at the low

resolution image level, we have been moved the estimation up

to the source image level. By having only to estimate the

number of whole pixel shifts in the high-resolution image, the

search space is reduced from real to whole integers.

Initializing a portion of the initial population with interpolated

low-resolution images also facilitated convergence.

Lastly, computer simulation results illustrate the

effectiveness of the procedure even for frames corrupted with

Gaussian noise.

5 Experiment and Results

We carried out computer simulations to validate the

applicability of our method for superresolution. A standard 64

x 64 Lena image was used for the experiment. The original

image was sub-sampled to produce 4 (32 x 32) shifted

low-resolution images. Separate experiments simulating

noise-free and noisy conditions were conducted.

Population sizes of20 and 30 were assigned for image and

displacement estimates. Number of parents, crossover rate,

mutation rate, number of elites and a were set at3,80%, 1%, 5

and 0.0005 respectively.

The results of both experiments are shown in the

MSE

accompanying sheets. Figure 8 shows the original and

low-resolution image samples (both with and without noise).

Figure 9 compares the bicubic and b-spline interpolation

results, one obtained using a modified SR method and that of

the hybrid EA. Detailed description of interpolation kernels is

beyond the scope of this paper, but can these be found in

several image processing literature"05.

To provide analytical support to visual evaluation of

results, the Means Square Error (MSE) and Peak Signal to

Noise Ratio (PSNR) were calculated. Line profiles (Fig. 10)

and Fourier magnitude images (Fig. 11 and Fig. 12) were

likewise prepared.

\\original- estimated^

(xres*yres)

PSNR = -101og,0(A/5£ / 2551)

It can be seen from the line-profile results that new high

frequency details are introduced by the EA algorithm. Because

interpolation methods work only within the confines of the

given data, they are not capable of introducing new

information.

The value ofthe regularization parameter is determined on

a per experiment basis. A too large X results in a blurred image,

one too small, on the other hand, results in too many

oscillations.

6 Conclusion and Future Work

A tri-hybrid EA approach to image superresolution has been

proposed. This compact method has been shown to

outperform conventional interpolation based methods. Its

main merit lies in its ability to do both image registration and

restoration in one operation.

Future work include testing the benefits of pre and post

processing in improving overall image quality, determination

of a way to set the regularization parameter adaptively and

exploring the possibility ofharnessing parallel processing as a

means to simplify and speed up computation.
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Fig. 8 Images used in the experiments; (a) original 64X64 high resolution image, (b) 32x32 shifted image without noise, (c) 32x32 shifted

sub-sampled image with Gaussian noise

(a) Bicubic

MSE = 412.44

PSNR =21.98

(b) B-spline

MSE = 388.06

PSNR = 22.48

(c) Modified SR

MSE = 38.5S

PSNR = 32.57

(d) Hybrid EA

MSE =21.25

PSNR = 34.86

Fig. 9 (a-d) show results of

32x32 to 64x64 expansion using

noise-free data, (d-h) show

results from noisy frames.

(d) Bicubic (e) B-spllne

MSE =425.69 MSE =371.61

PSNR =21.84 PSNR =22.43

(f) Modified SR

MSE = 50.67

PSNR = 30.57

(g) Hybrid EA

MSE ° 58.16

PSNR c 30.48

(h)EAw/Median Filter

MSE = 57.92

PSNR = 30.50

(2)

(4)

0 13 25 38 50 63

(1)6™ row

0 13 25 38 50 63

(3) 58* column (Horizontal)

0 13 25 38 50 63

{2) 50* TOW

O 13 25 38 SO 63

(4) 24* column
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Fig. 11 Fourier magnitudes images of (a) original image (b) a low resolution frame (c) BC convolved image (d) B-spline interpolated image

(e) SR and (f) hybrid EA results. Note the addition of high frequency components.
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(a) original (b) low resolution (c) bi-cubic (d) b-spline (e) modified SR (f) hybrid EA

(a) original (b) low resolution (c) bi-cubic (d) b-spline (e) modified SR (f) hybrid EA

Fig. 12 Line profiles of Fig. 11 fourier images. Top and bottom rows show profiles for vertical and horizontal axes respectively.


