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Abstract

This paper presents a GA algorithm for function optimization that combines the features of Simplex

crossover and Simulated Aannealing. Hybridization with a local search tool like Simplex directs the GA to

more promising search spaces while preventing premature local minima convergence. The use of

Simulated Annealing(SA) as a mutation operator further enhances the GA's overall capability. This elitist

real-coded multi-parent model is able to address the issue of slow convergence rate very well and is robust

in optimizing epistatic multimodal problems. In addition to test functions, our model was applied to the

resolution of overlapping signals.
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1 Introduction

Genetic algorithms (GA) occupy a growing niche in the

area of search and problem optimization, having wide

applications in many fields specifically engineering and

science1. Since Holland's first GA2, GA's of numerous
forms and classes have been proposed and research has

continued with unending fervor.

One of the principal obstacles in GA research has to do

with GA's slow convergence rate. Enormous initial

population, complex selection, crossover and mutation

operator requirements do drive computation costs above

acceptable limits. GA's convergence rate is slower than

most direct methods but have the advantage of being

more "globally oriented". Direct search methods like

Gradient Search3031, Simplex3 and Simulated

Annealing4"32-33, though efficient fine tuners, concentrate
on local information, thereby increasing the risk of

premature local minima convergence.

Toward amending GA's convergence problem, there

have been several efforts at combining GA with local

search algorithms1*3'* in the hope that resulting the hybrid
system can explore a better tradeoff between

computational cost and the global optimality of the
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solution found. Another way of addressing the

convergence dilemma is to work on improving the

operators or representation7'8.

It has been reported that GAs utilizing only binary and

gray representations can not obtain accurate solutions

compared to other techniques. Although fairly slower

computation-wise, real-coded vectors offer better

performance and have, over the years been studied and

shown to outperform traditional bit string

operations7-9-10-11-12'1"8.

Furthermore, the No Free Lunch Theorem, dismissed any

hope of rinding better bit representation, by establishing

that all search algorithms possess the same performance

over the set of all functions18.

Of real-coded GAs, Eschelman's real-coded BLX-a12
has been noted to get relatively good results. However, it

behaves poorly on epistatic or nonseparable functions19.
This is attributed to the fact that with real-coded GA's,

offspring may not get to inherit parental characteristics

properly. The design of algorithms whereby children

suitably inherit useful parental characteristics is of

paramount importance20.

Ono's Unimodal Normal Distribution(UND) crossover

operator which employs N>2 parents, preserves parental

characteristics better and moves free of the coordinate

system. In this case, offspring are generated using a

normal distribution defined by 3 parents. UND has been

shown to outperform the BLX-a14. Other multi-parent

operators like Center of Mass Crossover (CMX)15, Multi-
parent Feature-wise Crossover(MFX), Seed

Crossover(SX)16, and Simplex-based Crossover(SPX)17
have been developed and shown to do better. In this

paper, we will also present a real multi-parent crossover
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called Multi-parent Uniform Arithmetic

Crossover(MAC), its operations will be discussed in the

next section.

Multi-parent algorithms as above, are not new and

several studies depicting their relative advantages over

traditional 2 parent recombination have been done21. In

the case ofEiben and Bach22, it was observed that though

the performance of algorithm depended on the particular

combination of operators and objective functions, there

was a substantial gain as the number of parents

increased.

Toward the objective of improving the convergence rate

and efficiency of GA, we introduce a hybrid approach

that combines a real-coded multi-parent GA with a

concurrent simplified variant of Yen's probabilistic

simplex'CPS). Simulated Annealing is likewise used in

place of traditional mutation operators.

Although our basic architecture bears close resemblance

to that proposed by Yen et al, it differs in the type of

operators,used(Tablel). As experiment results show, the

choice of operator contribute significantly to the hybrid's

overall performance. We tested our GA-simplex hybrid

using SPX and SA, alongside the following, with

functions commonly found in literature, and compared

the results.

Simulated Annealing4 alone

SPX17 alone
Yen's GA-simplex hybrid1

GA-simplex hybrid using SPX

GA-simplex hybrid using MAC

The proposed model was also utilized in resolving

overlapping signals. Please refer to succeeding sections

for additional information regarding this.

Model

/Operator

Crossover

Mutation

Hybrid

Selection

Others

lable

SA

NA

NA

NA

NA

Non

e

1 Operator Differences in Test Models

SPX

s'RT

RM

NA

Elitist

BEM

Yen's

GA-

Slmplsx

Hybrid

2P AC

RM

Concurrent
PS

Elitist

None

MAC-

SImplex

Hybrid

MAC

RM

Concurrent

SS

Elitist

BEM

SPX-

Slmplex

Hybrid

SPX

RM

Concurrent

SS

Elitist

BEM

SPX-

Slmplex

+SA

SPX

SA

Concurrent

SS

Elitist

BEM

The next section provides a brief description of key

processes. An explanation of the employed hybrid

architecture is given in Section 3. Experiment using

standard GA test functions and results are presented in

Section 4. Section 5 discusses the successful application

of our model in overlapped signal resolution. The

summary and future plans are in Section 6.

2 General Concepts

2.1 Genetic Algorithms

Genetic Algorithms belong to a class of methods

patterned after natural evolution23-7, developed to solve a
wide range of optimization problems. Simply put, they

operate by maintaining a set of candidate solutions2
where each parameter to be optimized is encoded as a

binary string or real vector called a chromosome.

Crossover, mutation, and selection operators facilitate

exchange of genetic information, generating new and

better individuals (i.e. solutions) over time. The

convergence property for string-based GA can be

mathematically demonstrated using the Schema

Theorem7-11.

To identify and safeguard good solutions, an objective

function is utilized to evaluate each potential candidate

and resulting fitness values are assigned. The cycle of

evaluation, selection and reproduction continues till an

acceptable solution is found or when an acceptable

criterion is met.

What makes GA, a promising optimization tool is that it

is inherently parallel. GA provides for several search

space points to be explored in simultaneously.

Furthermore, the presence of mutation operators, to a

certain extend, forestalls local minima entrapment (a

Waterloo for most linear optimization algorithms).

As cited previously, multi-parent real GA

implementations have gained tremendous following in

recent years. Since the discussion of the merits of real

over traditional string implementation and multiple

parent over dual parent is beyond the scope of this paper,

it is encouraged that the reader refer to other sources for

this purpose.

2.2 Elitist Selection Scheme

Selection schemes influence the GA treatment of

potential solutions. An Elitist Selection Scheme24 is one

where the best estimates (chromosomes) are, sans

modifications, copied directly to the next generation.

This operation guarantees that low cost/high fitness

individuals are preserved, (i.e. do not disappear during

the course of evolution.)

Non-elite chromosomes are selected via a roulette wheel

selection process. Since the scheme simulates a roulette

wheel with slot sizes proportionate to fitness values, the

best chromosomes obtain more copies, average ones stay

even and worst ones die off. The wheel is executed
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popsize-n times, where «is the number of elites.

2.3 Crossover Operators

Crossover operators play a critical role in the proper

interchange of genetic information. Crossover combines

the features of parent chromosome by swapping

corresponding parental segments. It allows uniform

exchange of different potential solutions.

Relevant to our experiment, we shall be discussing two

real multi-parent crossover operators namely a Multi-

parent Uniform Arithmetic Crossover (MAC) and

Tsutsui's Simplex-based crossover (SPX).

2.3.1 Multi-parent Arithmetic Crossover (MAC)

In the case of simple uniform arithmetic crossover24, an

offspring is a linear combination of two parents. If b'

and c' are to be crossed, the resulting offspring are

b'+;=#»' +(1-0 c' and c'+;=0c' +(\-<j>) b'. Parameter <f>
can have a predefined value, or can obtain its value by

means of some random process.

Multi-parent Arithmetic Crossover (MAC), extends this

operation to A'>2 parents. Thus a random set of TV parents

is selected from the set of M parents selected for

crossover. N' offspring (linear combinations of N

parents) are produced. Therefore, given b to be

collection of N parents, and a, a random set of

coefficients adding up to unity, a child Cj is given as:

2.3.2 Simplex-based Crossover (SPX)

and

Figure 1. SPX-2-3-C

The SPX algorithm, proposed by Tsutsui et al, works by

uniformly picking vector values from an expanded

simplex generated by N parents17. This expanded simplex

is constructed the following manner: Lets consider a 3-

parent SPX in a 2D search space as shown in Fig.l,

where x(1}, x(2) x(3) are parameter vector of three parents.

Then, these vectors form a simplex. We then amplify this

simplex for each direction (xw-O) by (1+e) (e £0) times,
where O is the center of mass of the 3 parents calculated

as

Y0) forms the expanded simplex. Three offspring can

thus be produced from three parents by randomly

selecting values from Y®. The SPX method is specified
as SPX-n-m-e, where n is the number of parameters of

the search space, m is the number of parents and e is a

control parameter that defines the expanding rate. In the

case above, the SPX given as SPX-2-3-& M can be less

than or equal to N+l.

SPX is deputed to work well with functions having

multimodality and epistasis. Nonetheless, convergence is

slow as the MNT (i.e. mean number of function

evaluations where the optimum is reached) is noticeably

large, generally running to thousands17.

2.4 Mutation Operators

To induce some degree of variability into the population,

two mutation operators namely Random Mutation and

Simulated Annealing (SA) were employed. Although SA,

is by itself considered as a separate optimization tool, it

is presented here as a mutation operator.

2.4.1 Random Mutation (RM)

Random mutation creates a new chromosome by

changing the value of its gene component. The new

gene's value is computed as:

gJ = xl + P{xh-xl)

where xh and xL are the lower and upper limits of the

parameter x; j3 is can be a random or predefined value

between 0 and 1.

2.4.2 Simulated Annealing

Simulated annealing (SA)32*33-4 is an optimization tool

that works well on a wide variety of practical problems.

It is usually preferred over GA, especially for problems

that may inherently require a large number of state

transitions for a near-optimal solution to be found. In

such cases, genetic search is rendered infeasible given

the high cost of computing a single iteration in the

enlarged state-space.

SA1 s ability to find the optimum depends as much on the

temperature schedule and perturbation rate as on the

initial sample. Since SA works on a singleton

population, we attempted to use SA as a mutation

operator.
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Lastly if pTis not worse than pnH but is worse than pn>

/?cw, close to the centroid but on the opposite side is

generated(Fig. 4).

The new points are obtained as follows. Figure 4

illustrates the position of said points.

P= /7g+a0

Pr />g+P(P
Pa= Pt+T(P

PoT Pe.+ K

V/'iH-lX a=2

'g-A»l). P>2
»g-/?n+,X 1<Y<2

P.-A+jX o<5<1

(1)

(2)

(3)

(4)

(8, p) and y are expansion and contraction coefficients

respectively.

2.5.2 Probabilistic Simplex Method (PS)

Yen et al, introduced a probabilistic version of N-M

simplex whereby the distance between pg and pt is

determined stochastically1. With this, the aforementioned
four equations are thereby reduced to:

t~ P%+ ot(Pg' /Vi)" Probabilistic Expansion

= p%+ p(pg- pn+l)- Probabilistic Contraction

a, and p obtain values from intervals [0,2] and [0,1]

respectively based on a predefined probability

distribution. In this case, a triangular probability density

function that peaks at 1 and reaches 0 probability at 0

and 2 and another that peaks at 0.5 were used

respectively.

Probabilistic simplex is assumed to be more flexible as it

enabled the search space to be explored unhindered.

2.5.3 Stochastic Simplex Method (SS)

By constraining a, and (5 to ranges [0,2] and [0,1]

respectively, we simplified PSM even further by

allowing a, and fts values to be defined through

uniform random distribution. This approach eases

exploration and lets the distance between centroid and

pt be even more liberally set.

2.5.4 Concurrent Simplex

Concurrent simplex1 is a simplex variant which utilizes
N+Q points, where £2>1. In lieu of a single point, pn+l,

Pn+2. ■■■- P n+o-i. /W points are reflected across the
centroid(computed from the best N points), to create/? '„+,,

P'n+2. -. P'n+n-i. P'n+a- All the points are then re-
evaluated and a new set of best points (p\, p\ .... p\.y,

p '„) is selected(Fig. 5) The process is then iterated for a

predefined number of times.

Although, with each iteration, concurrent simplex

requires £2-1 more point evaluations than conventional

simplex, it provides for a more rigorous search of new

frontiers.

2.6 Boundary Extension by Mirroring (BEM)

Boundary Extension by Mirroring (BEM)15 was

introduced by Tsutsui et al, to enable SPX, CMX and

similar algorithms to suitably cover optimum situated in

the corner of the search space or beyond.

Figure 6. Boundary extension by mirroring

(BEM)

Functional values of points outside the boundary are

computed as though they belong inside the search space

at points symmetrical to the boundary. An extension

coefficient. re is introduced to attenuate the boundary by

a factor of /+ re in each dimension. In our case, we set

re to its maximum (1).

Thus, the functional value of each parameter of vector

X0 is obtained as:

where

-r E'

f '

Figure 5. 2-dimensional concurrent simplex

/jcj'):jc/ <min

2msx.J-xij):xJ >max

jc!'1}: otherwise

Min and max represent the minimum and maximum

values allowed for each parameter. Tsutsui et al, went

on to show that while BEM improves the algorithms
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The simulated annealing algorithm we employed is

shown in Fig.2 . T and E represent the annealing

temperature and entropy of the system at some instance /,

AE is the energy gap or corresponding change in entropy

resulting from perturbation 825.

For a minimization problem, the SA provides a

mechanism for uphill climbing which prevents it from

being trapped in local minima. The probability for this

climb is determined using the Boltzmann probability

function:

E(px)>E(p2)>..>E(pJ>E(pBH).

Figure 3. 2-dim ensional sim plex

Since T is always decreased gradually as the annealing

proceeds, the system is less likely to accept uphill moves

in latter stages. For optimum control of T, we used

the following exponential annealing schedule32 with
0.77< <x<.99

With each annealing cycle, a small random

perturbation^ is added to each parameter, the value of

which is defined as the product of a random variable q

e [-0.5,0.5] and some stochastic value between [0,1]. SA

mutation is applied only once every generation.

Figure 2. Simulated Annealing Flowchart

2.5 Simplex Method

A simplex is defined as a set of N+1 independent points

where N is the number of dimension of a given search

space. The simplex method, developed by Spendley et

al27, is a local search technique that evaluates simplices

to determine promising search directions.

In the basic method, we evaluate a simplex of N+1

pointsfo, p2, p3, ..., pw Pnn) to get corresponding fitness

estimates £(/?,), E(p2),.., £(?„), £(?„+,). We then order the

points from best to worst accordingly.

We create new simplices by replacing the worst point,

denoted by /Vi> with a new point pt, generated by

reflecting pn+h over the centroid pg of the remaining

points

where

1^

Tlie new simplex contains all the points of the previous

one except the worst one which is replaced by pt. The

cycle is continued until the step size becomes less than a

predefined value or the simplex circles around the

optimum271. Figure 3 demonstrates the operation for 3

points.

2.5.1 Nelder-Mead Simplex

Figure 4. 2-dim ensional N-M Simplex

The Nelder and Mead Simplex3-29 is a modification of the

original simplex method that allows the procedure to

adjust its search step in accordance with the evaluation

result of the new point generated. This is done through

expansion, contraction and reflection.

New points pt, pct pw pm are created to replace pnH. If

the new point pt is better than the best point /?,,

expanding further along the reflection direction creates

pointpe.]fptis worst thanp„+,, contraction produces pa

which is close to the centroid on the same side as p „+,..
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performance when it comes to finding optimum located

on the corner or beyond the search space, it does not

have any detrimental effects on functions having their

optima within and around the search space.

3 Hybrid Architecture

Several researchers in the field have endeavored

juxtaposing GA and other optimization techniques under

the pretext that hybridization increases the reliability and

speed of GA convergence5'34*35"36.

The type and degree of hybridization are difficult to

establish and depend largely on experience and testing.

Too much of a local technique causes the system to carry

on behavior like of that technique, i.e. becoming too

locally adapted. While too less, on the other hand, makes

it no better than an ordinary GA.

Figure 7. Elitisi GA-Simplex Hybrid arch lecture

Yen et al's, Elite-based GA-simplex hybrid1 (Fig. 7) is of

particular interest to us. Per this architecture, three sets of

individuals make up the new population.

Yen's QA Simplex Algorithm

(Initialize) Generals a random population of

sizsP.

Repeat

• (Evaluate and Ranking) Evaluate

the fitness of each chromosome. Rank

them based on fitness results.

• (N Elites) Copy N elites to the next

generation.

• (Simplex) Apply probabilistic simplex

to the lop S-N chromosomes and copy

generated chromosomes to the next

generation.

• (Selection) Select P-S chromosomes

based on ranking or fitness and copy to

the next generation.

• (Mutation) Apply mutabon with the

mulalion probability lo the P-S

chromosomes.

• (Crossover) Apply 2 parent crossover

wilh the crossover probability to the P-S

chromosomes.

Unlil a termination condition is set.

Modified QA- Simplex Algorithm

(Initialize) Generate a random population of

size P.

Repeat

• {Evaluate and Ranking) Evaluate

the fitness of each chromosome. Rank

them based on fitness results.

• (N Elites) Copy N elites to the next

generation.

• (Simplex) Apply stochastic simplex

lo the top S chromosomes and copy

the best S-N chromosomes lo me next

generation.

• (Selection) Select P" chromosomes

Itom old generation via roulette wheel

for reproduction.

• (Crossover) Apply multi-parent

crossover with the crossover probability

lo the P" chromosomes.

• (Mutation) Apply SA mutabon with

the mutation probability to the P'

chromosomes

• (Selection) Select P-S best

chromosomes from P' and tronoler to

next generation.

Unlil a termination condition is set.

Fig. S Algorithmic Differences

The first group consists top-ranking chromosomes(elites)

from the previous generation that are translated without

changes to the new generation. The second set is made

up of individuals resulting from a special operator

applied to top members of the previous generation.

Lastly is the set created through conventional GA

crossover and mutation.

Yen's GA-simplex hybrid operates by applying a

concurrent version of probabilistic simplex operator on

top ranking chromosomes. The operator is applied to the

top S-N chromosomes of the population to produce S-N

children, N being the number of elites. The remaining P-

S, chromosomes are generated using ordinary GA

reproduction.

In our proposed method, we varied the architecture

slightly while retaining many of its advantageous

features. Similarly, we introduced SPX and SA as GA

crossover and mutation operators. The algorithms are

shown in Figure 8.

Whereas the former architecture restricted operations to

S-N, P-S individuals, we used the S individuals for

concurrent simplex and P individuals for GA. The best

S-N and best P-S results are copied to the next

generation. Coupled with SA mutation, the new

population contains the so-called best results of these

various operations. The population is re-evaluated, sorted

and the cycle is repeated anew.

4 Simulation Using Test Functions

4.1 Test Suite

We have relied on test functions commonly found in GA

literature to evaluate our modified GA-hybrid. These

functions include the well-known Dejong test suite and

other notables like Rastrigin, Schwefel, Griewank, etc.,

which were introduced over the years2617. These

functions cover a variety of characteristics that affect

algorithmic performance.

Fl, more properly known as the Sphere function, is

unimodal with global minimum at (0,0,0). F2

(Rosenbrock's Function), whose minimum is at (1,1). is

a nonlinear function that possess strong interaction

(epistasis) between parameters. F3 is a discontinuous

function with a minimum function value of -30. F4 has

minimum at (0,0,...0,0) but the presence of Gaussian

noise makes finding it difficult. F5 is a multi-modal

function with several local optima.

F6, called Rastrigin's function, contains several local

optima around the global minimum,(0,0,..0,0).

Schwefel's function(F7) is a multi-modal function with

global minimum at (420.968746,...,420.968746), very

close to the corner of the search space. F8

(Griewank's function) is a scalable nonlinear and
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Table 2 GA Test Suite

Function

F1

F2

F3

F4

F5

F6

F7

F8

F9

F1O

/(*.Uij)=1OO(*ii-jcj) + (1-j:1)1

/(*.i,-..s)=SL*J
i-i

/<*.i..i.i > -

' 30

.1-1

0.002 + 2

+ Gauss(0,l)

i

/(*,U* ) = (W1O)+|Xj:12 -lOco^nx,) 1

/(*,ii-i.w )=£-*, sin(vk|)

/(*,U)=o.5
sin!^xf+xf-0.5

1 [l.O + 0.001(x,2+Xj2)]2

A*iUj) = («f +^)0!*[smi(50<*,1 +*J)") + LO]

Domain

x,e[- 512,5.11]

*,e [-2.048.2.047]

a:, e [-5.12,5.11]

x, e[-1.28,1.27]

x, e [-05.536,65.535]

x, 6 [-5.12,5.11]

x,€ [-512,511]

x,e [-5.12,5.11]

x, 6 [-100,100]

x,e[-100,100]

Characteristics

unlmodal with global minimum at center

highly epistatic with global minimum at center

highly discontlnous w/ global minimum at corner of search space

noisy with global minimum a! center

nonseparble with global minimum bet. center and corner

highly multlmodal with global minimum at center

multlmodal with global minimum at corner

multlmodal with global minimum at corner

epistatic, nonlinear and multlmodal with global minimum at center

epistatic, nonlinear and multlmodal with global minimum at center

nonseparable multi-modal function having minimum at 0.

F9 and F10 are known as the Sine Envelope Sine

wave and the Stretched V Sine wave functions.

Fl, F3, F5, F6, F7 and F4 (in the absence of Gaussian

noise) are separable functions. Of nonseparable

(epistatic), nonlinear problems F2, F9, F8 and F10, only

F8 is scalable. However, F8 is found to exhibit

undesirable properties as the dimensionality of the

function increased. With increased dimension, the

contribution of the product term of F8 becomes smaller

and the local optima induced by the cosine term

decreases, the function then becomes easier to solve

for numeric real valued representation26.

4.2 Simulation Parameters

Table 3 lists the parameters used for each model in the

experiment. We performed a total of 40 runs of 500

generations each for each problem and model. A

population size of 150 was used for problems Fl, F2,

F3, F5 while 300 was used for the rest. Except for

Tsutsui's SPX, the number of parents is equal to the

number of problem parameters.

With Og and R representing theoretical global optimum

and the actual optimum reached after 500 generations

respectively, we compute the fitness to be

fitness =
1

If the theoretical global optimum is obtained, fitness

equals 1. Given the fitness, we then proceeded to

calculate the percent perturbation from die optimum,

using:

*'" '100%

When fitness is 1, diff equals 0. Exhibit 1.0 shows

the number of trials in which diff falls within a specific

range. The more trials in the upper ranges, the better the

model. The diff ranges are 0, (0,0.05],

(0.05>0.5],(0.5,2],(2,5], and above 5.0%.

Table 3 Parameters set In experiment

Inita!

temperature

torsions

Alpha

Genetic Algorithm

Population

Patents

Biles

Xov«r Prob.

Mutation Prob.

Concurrent Simplex

% ol PopUnBon

Bites

Iternlono

Simplex Type

Concurrent

Points

Others

Trials

200

1000

Rondom

1

40

150/300

2-4

1

80%

2%

40

1507300

Max. no. of

vnrs.

D

80%

2%

50%

5

10

PS

.5P-S

40

150/300

Max.no.

ol vars.

0

80%

2%

50%

5

10

SS

.5P-5

40

1 SO/300

Max.no.

ol vars.

0

80%

2%

50%

5

10

SS

.5P-5

40

ZOO

1000

Random

150/300

Max. no. ol

vars.

O

80%

2%

50%

5

10

SS

.5P-5

40

4.3 Results of Simulation

Simulation results are presented in Fig. 9 and Table 4.
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Table 4 Simulation Results for Test Functions

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

*Ava

Std

•Ava

Std

*Ava

Std

*Ava

Std

*Ava

Std

*Ava

Std

*Ava

Std

*Ava

Std

•Ava

Std

*Ava

Std

Models

SA

0.000002

0.000003

0.1785051

0.145382

0.0

0.0

0.001414

0.005836

0.0

0.0

0.006737

9,13991

0.527019

0.500243

0,0QQQ37

0.000055

0.015927

0,152p4

0.211107

0.79385

SPX

0.000004

0.000007

0.442331

0.014566

0.0

0.0

0.562473

0.001053

0.572473

0.258421

0.989852

0.001568

0.999506

0.000177

0.001973

0.001177

0.008457

0.003241

0.000085

0.00015

Yen's GA-Hvbrid

0.000480

0.001707

0.015494

0.040532

0.0

0.0

0.005177

0.004379

0.456444

0.339771

0.81519

0.059026

0.945361

0.084910

0.056086

0.027614

0.006589

0.004216

0.000013

0.000081

MAC-Simolex

0.000031

0.00011

0.00706

0.018239

0.0

0.0

0.00472

0.004023

0.352104

0.361023

0.706878

0.180166

0.567621

0.372935

0.002616

0.007702

0.006267

0.006716

0.039348

0.069976

SPX-Simolex

0.000005

0.000015

0.000219

0.000364

0.0

0.0

0.006956

0.00587

0.09268

0.215657

0.0

0.0

0.371442

0.382261

0.0

0.0

0.0

0.000002

0.002041

0.004164

SPX-Simolex-SA

0.0

0.0

0.000001

0.000001

0.0

0.0

0.005446

0.005745

0.0

0.0

0.0

0.0

0.000002

0.000004

0.0

0.0

0.0

0.0

0.998520

0.005363

" avg diff (In %).
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Fl, with its single central peak, is relatively easy to solve.

Though all models came within 0 to 0.05% of the

theoretical minimum, Yen's hybrid performed

comparably less.

F2 has strong inter-parameter linkage. Thus, after 500

generations, SPX hadn't yet managed to converge.

Meanwhile, the others (in descending order of

performance: SPX-Simplex-SA, SPX-Simplex, Yen's

GA-Simplex, MAC-Simplex, and SA) did relatively

well.

Discontinuous F3 posed no problem for all the models;

all having reached the theoretical minimum accurately.

SA's small perturbation adjustments contribute to its

splendid performance in F4(a noisy function), so did the

multi-parent addition model(MAC-Simplex). Yen's

model, our SPX-Simplex-SA model, and SPX-Simplex

came next. Finally, SPX came last.

SA and our SPX-Simplex-SA hybrid came within 0.05%

of F5's theoretical minimum for all trials. SPX-SA-

Simplex, SPX-Simplex, MAC-Simplex, Yen's model,

and SPX followed.

Rastrigin's function (F6) with its numerous local minima

was a severe test for our models. Nonetheless, SPX-

Simplex and SPX-Simplex-SA outperformed the rest. SA

followed closely behind. SPX, which normally converges

in the several thousands17 for complicated functions
didn't come within 5% of theoretical minimum. Yens

model and MAC-Simplex likewise performed poorly.

Our model outstood the rest in Schwefel's F7 (another

multimodal variant). SA and SPX-Simplex are on equal

footings while the rest remained unconverged.

Yen's 2-parent model did comparably worst for

Griwank's problem. Multi-parent models and SA showed

better to best results. Special mention goes to SA and

our model, both having reached within 0.05% of the

global minimum and to SPX which did surprisingly well

here.

Dejong's Sine Function(FP) and the Stretched V Sine

wave function (F10) are both epistatic and multimodal.

In F9, the simplex hybrids did well. They are followed

by Tsutsui's SPX and by SA respectively. In F10 Yen's

model nearly reached the minimum for all trials. SPX did

well, our SPX-Simplex-SA hybrid, SPX-Simplex, MAC-

Simplex and finally SA, succeeded.

5 Application in Resolution of Overlapping
Signals

overlapped of other signals and noise, the resolution

thereof into constituent signals, is critical for quantitative

component analysis.

Assuming that the function of component signals to be

known, signal resolution can be taken as an optimization

problem. When the estimated signal is made to come as

close as possible to the observed signal using Genetic

Algorithms, component signal can be determined. With

this in mind, let us assume all signals to be Gaussian.

The estimated signal as well as the observed one can be

defined using:

N r -I

= £«, exp{- {x - bt f lc))+dx + e

at, bj and c, are and parameters of component signals

and dx+e is the background. By optimizing the cost

function below, optimal values for parameters at,bit and c,

are obtained. y(x) and f(x) represent the observed and

estimated signal respectively.

fitness = \\y(x)-f(x) \f

5.1 Simulation and Simulation Results

For this experiment, parameters as,b}ch a*b2c2t

...,ahhbNcN^Q coded as alleles. Inasmuch as N(no. of

signals) is unknown, a large N is opted.

The observed signal and the same signal with noise are

shown in Fig. 10. A population size of 500 is used and

the total number runs is 1000. SA, SPX and N-M

Simplex are also used for comparison.

Costs after 5 runs for each model are shown in the figure

below. The best graphs for each model, with the original

signal superimposed are likewise shown in Fig 11. Our

model was found to not only outperform the others could

10000

1000|

rr 100^

CO
m

CO 10;

i Average

Simplex SA Arith SPX Hybrid

Fig 12. Fitness Values after 5 runs

obtain near perfect results even in the presence of

degrading noise.

In many experiments, the observed signal is an
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6 Conclusion and Future Work

As far as our experiment with test functions is concerned,

although the models behaved diversely subject to the

problem set, to some extent, our SPX-Simplex hybrid

model with SA mutation did better than the rest in all

problems.

Tsutsui's model (utilizing SPX alone) can address

multimodality and epistasis, but convergence is slow.

Yen's 2-parent model has similar convergence problems.

By substituting Yen's 2-parent addition crossover

operator with MAC(yielding MAC-Simplex,) we

noticed improvements in Fl, F2, F4, F5, F7, F8 and F9.

Except F10, the use of more than 2 parent, even for

restrictive crossover operations like Uniform Arithmetic

Crossover, improved overall performance.

Since MAC doesn't do well with epistatic problems,

substituting MAC with SPX(yielding SPX-Simplex)

showed more suitable results(see F1,F2,F5,F6,F7,F8, F9,

and FIO^ SPX-Simplex, combines the coordinate-free,

parent adaptive features of SPX and the speed and

direction determining ability of the Simplex hybrid. Also,

SPX-Simplex exceeds Tsutsui's SPX in performance.

Simulated Annealing (SA) works well for noisy

functions but not as well on epistatic or multimodal

functions. When juxtaposed with SPX-Simplex, it

extended the model's fine tuning capabilities (see

F1,F2,F4,F5,F7,F8, andFP).

In summary, our experiment validated the following

hypotheses:

• Multi-parent crossover, in certain respects, is far

superior to 2-parent crossover.

• Combining multi-parent SPX and the GA-Simplex

hybrid proved mutually beneficial. Also, SA

mutation extends the overall fine tuning capability of

the GA model.

• The modified hybrid architecture encourages

competition and catalyzes convergence as the best

p' results from various operations(e.g. SPX

crossover, SA mutation and Concurrent SPX)

comprise the next generation.

Not discounting the subtle effects of CSS and BEM, all

things considered, our SPX-Simplex-SA(S3) model not

only converges faster but is effective for

nonseparable(epistatic), multi-modal problems as well.

When applied to real problems like signal resolution, our

model performed robustly as expected. Even for N=4, a

near perfect resolution was obtained after 1000

generations. As an extension, we are currently exploring

the hybrid's applicability in solving more specific signal

separation problems like the determination of wind

velocity from mixed Doppler radar data; initial tests of

which, showed promising results.
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