An Independence Test of a Multivariate Exponential Distribution

メタデータ	言語：
	出版者：琉球大学工学部
	公開日： $2007-09-16$
	キーワード（Ja）：
	キーワード（En）：
	作成者：Nakao，Zensho，Liu，Zeng－Zhong，仲尾，善勝 メールアドレス： 所属：
htp：／／hdl．handle．net／20．500．12000／1980	

An Independence Test of a Multivariate Exponential Distribution

Zensho NAKAO* and Zeng-Zhong LIU ${ }^{\dagger}$

Abstract

An independent test of a certain multivariate exponential distribution is done with respect to the equivalence of the marginal distributions, where simple restrictions are imposed on its parameters.

1. Introduction

Bemis et al [1] and Bhattacharyya and Johnson [2] did the independence test of a bivariate exponential distribution (BVED) with respect to the equivalence of the marginal distributions. Because the notion of a multivariate exponential (MVE) model is much more complicated than that of a BVE model, it is very difficult to do the independence test of a MVED. In this paper we perform only the independence test of a certain MVED.

Consider a model $\bar{F}\left(t_{1}, \cdots, t_{k}\right)=\exp \left(-\lambda_{1} t_{1}-\lambda_{2} t_{2} \cdots-\lambda_{k} t_{k}-\lambda_{0} \max \left(t_{1}, t_{2}, \cdots, t_{k}\right)\right\}$, $\mathrm{t}_{1} \geqslant 0, \quad \mathrm{i}=1, \cdots, \mathrm{k} ; \underline{\lambda} \in \Lambda$, where $\underline{\lambda}=\left(\lambda_{1}, \cdots, \lambda_{k}, \lambda_{0}\right), \quad \Lambda=\left\{\underline{\lambda}: 0 \leqslant \lambda<\infty, \mathrm{i}=0, \cdots, \mathrm{k}, \lambda_{0}+\right.$ $\left.\lambda_{j}>0, j=1,2 \cdots, k\right)$. We assume that $\lambda_{1}=\lambda_{2}=\lambda_{3}=\cdots=\lambda_{k}$. The notations below are the same as those in [3].

2. Notations and the model

In a parallel system of k elements, assume that T_{1}, \cdots, T_{k} indicate the failure time of elements $1,2, \cdots, k$, respectively; $\left\{Z_{1}(t): t \geqslant 0\right\}, i=1,2, \cdots, k$ is an independent Poison process with intensity $\lambda_{i} ; Z_{1}(t)$ shocks the i-th element, $i=1,2, \cdots, k ; Z_{0}(t)$ shocks simultaneously k elements. Obviously, $T_{1}=\inf \left\{t: Z_{1}(t)+Z_{0}(t)>0\right\}$. If $U_{0}, U_{1}, \cdots, U_{k}$ denote the time of the first appearing event from $Z_{0}(t), \cdots, Z_{n}(t)$, respectively, then we have $T_{1}=\min \left(U_{0}, U_{1}\right)$ according to a generalization of a theorem in [4].

Theorem: $\underline{T} \sim \operatorname{MVE}(k, \underline{\lambda})$ if and only if there exist $k+1$ independent exponential random variables $\left\{U_{1}\right\}_{1=0}^{k}$ with intensity λ_{1} and $T_{1}=\min \left(U_{0}, U_{1}\right)_{1}=1, \cdots, k$.

Assume E_{k} is a k-dimentional Euclidean space, $E_{k}^{+}=\left\{t \in E_{k}: t_{1} \geq 0, i=1,2, \cdots, k\right\}$ and the following notations will be used throughout the paper:
(i) $\mathrm{t}_{(1)}=\min \left(\mathrm{t}_{1}, \mathrm{t}_{2}, \cdots, \mathrm{t}_{\mathrm{k}}\right)$.
(ii) $t_{(k)}=\max \left(t_{1}, t_{2}, \cdots, t_{k}\right)$.
(iii) $V_{(}(\underline{t})= \begin{cases}1, & t_{1}<t_{(k)}, \\ 0, & \text { otherwise. }\end{cases}$
(iv) $\mathrm{S}(\mathrm{t})= \begin{cases}1, & \text { there exist } \mathrm{i}, \mathrm{j}(\mathrm{i} \neq \mathrm{j}) \text { with } \\ 0, & \mathrm{t}_{1}=\mathrm{t}_{j}=\mathrm{t}_{(k)},\end{cases}$

AMS(1980) Subject Classification. 62H15.

* Engineering Common Course.
\dagger General Education Division.

We use an abbreviation $V_{1}(\underline{t})=V_{1}$, and random variables are denoted by upper case letters.

Assume $\left\{\underline{T}_{j}=\left(T_{1,}, T_{2\rfloor} \cdots, T_{k}\right): j=1,2, \cdots, n\right\}$ are samples from $\operatorname{MVE}(k, \underline{\lambda}),(\underline{t},\}_{j-1}^{n}$ denote the coreesponding sample values, $V_{1 j}=V_{(}\left(\underline{t}_{\mathrm{J}}\right)$ and $\mathrm{S}_{\mathrm{j}}=\mathrm{S}(\underline{\mathrm{t}})$.

Define (i) $n_{0}=\sum_{j=1}^{n} S_{i}, n_{1}=\sum_{j=1}^{n} V_{11}$
(ii) $n^{(c)}=\sum_{j=1}^{n}\left(1-V_{11}\right)\left(1-S_{j}\right)$
(iii) $n_{0}(i)=\sum_{j=1}^{n}\left(1-V_{i j}\right) S_{j}=n-n_{1}-n_{1}^{(c)}$,
where $i=1, \cdots, k$; random variables will be denoted by the upper case letters $N_{1}, N^{(c)}$, $\mathrm{N}_{0}(\mathrm{i})$ below. The interpretation of the symbols $\mathrm{n}_{1}, \mathrm{n}_{0}, \mathrm{n}_{0}(\mathrm{i})$ above are the following: $\cdot n_{1}=$ the number of samples for which the failure time of the i-th element is strictly smaller than that of the system; $n_{0}=$ the number of samples for which at least two elements fail at the same time; $n_{0}(\mathrm{i})=$ the number of samples for which the i-th element fails with some other element at the same time; $n^{(c)}=$ the number of samples for which the i-th element fails last and fails with no other element at the same time. With the notations above we can obtain the following result.

Lemma: $\mathrm{P}(\mathrm{S}=0)=\sum_{j=1}^{k} \theta_{1}$, where $\theta_{1}=\int_{0}^{\infty} \nu_{1} \exp \left(-\nu_{1} \mathrm{t}\right) \prod_{1=0,1} \mathrm{~F}_{1}(\mathrm{t}) \mathrm{dt}, \mathrm{i}=1, \cdots, \mathrm{k}$;

$$
\nu_{1}=\lambda_{1}+\lambda_{0}, F_{J}(t)=1-\exp \left(-\lambda_{j} t\right)
$$

Proof: $\quad P(S=0)=\sum_{j=1}^{k} P\left(V_{1}=0, S=0\right)=\sum_{i=1}^{k} P\left(T_{1}>U_{j}\right.$, for all $\left.j \neq i, j \neq 0\right)$

$$
=\sum_{i=1}^{k} \int_{0}^{\infty} \nu_{1} e^{-\mu t} \prod_{j \in 0,1} F_{j}(t) d t=\sum_{i=1}^{k} \theta_{1}
$$

3. Likelyhood ratio test

As mentioned in [4], an MVED includes a singular part under the Lebesgue measure. However, it is possible that the MVE is absolutely continuous under a new measure. In [3] is defined a new measure under which the MVED is absolutely continuous and has a density. The measure is defined as follows:

$$
\begin{aligned}
& \mu(A)=\mu_{k}(A)+\sum \mu_{k-r+1}\left(A \cap\left\{\underline{t} \in E_{k}^{+}: t_{11}=t_{12}=\cdots=t_{1 r}=t_{(k)}\right\}\right), \quad A \in \beta_{k}^{+}(\text {Borel sets }), \\
& \left\{i_{1}, \cdots, i_{r}\right\} \text { takes all subsets of }\{1,2, \cdots, k\}, r=2,3, \cdots, k .
\end{aligned}
$$

The MVED has a density function given by:

$$
f(\underline{\mathrm{t}}, \underline{\lambda})=\lambda_{0}^{s}\left[\prod_{i=1}^{\mathrm{h}} \lambda_{i}^{\psi_{i}} \nu^{\left(1-\mathrm{s}\left(\mathfrak{k}_{1}-v_{t}\right)\right.}\right] \overline{\mathrm{F}}(\underline{\mathrm{t}}) .
$$

The sample likelyhood function of the $\operatorname{MVE}(k, \underline{\lambda})$ is defined by:

$$
\begin{aligned}
& L(\underline{\lambda})=\prod_{j=1}^{n} f(\underline{t}, \underline{\lambda})=\lambda_{0}^{2 s j} \prod_{1=1}^{k} \lambda^{\Sigma v_{(1)}} \nu^{\left(1 \left(-5, j\left(1-v_{(j)}\right)\right.\right.} \exp \left(-\sum_{=1}^{n} \sum_{i=1}^{k} \lambda_{1} \cdot t_{1 j}-\lambda_{0} \sum_{j=1}^{\mathrm{n}} \mathrm{t}_{(k)}\right) \\
& =\lambda_{0}^{n_{0}} \prod_{i=1}^{k} \lambda_{1}^{n_{t}(} \nu^{n_{(c)}} \exp \left(-\sum_{j=1}^{n} \sum_{i=1}^{k} \lambda_{1} t_{j J}-\lambda_{0} \sum_{j=1}^{n} \mathrm{t}_{(k))}\right) .
\end{aligned}
$$

When $\lambda_{0}=0$, we obtain:

$$
P\left(N_{0}>0\right)=1-P\left(N_{0}=0\right)=1-\prod_{n=1}^{n} P\left(S_{1}=0\right)=1-[P(S=0)]^{n}=1-\left(\sum_{i=1}^{k} \theta_{1}\right)^{n}
$$

$$
\begin{aligned}
& =1-\left\{\mathrm{k} \int_{0}^{\infty} \lambda_{1} \exp \left(-\lambda_{1} t\right)\left[1-\exp \left(-\lambda_{1} t\right)\right]^{k-1} d t\right\}^{n}=1-\left\{\left.\left[1-\exp \left(-\lambda_{1} t\right)\right]^{k}\right|_{0} ^{\infty}\right\}^{n} \\
& =1-(1-0)^{n}=0
\end{aligned}
$$

Thus, $\mathrm{N}_{0}=0$ (a.s.), and hence, $\mathrm{S}_{\mathrm{J}}=0$ for all j and $\mathrm{n}_{1}+\left.\mathrm{n}\right|^{(c)}=\mathrm{n}$. Therefore, the likelyhood function above becomes:

$$
L\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{k}, 0\right)=\prod_{i=1}^{k} \lambda_{1}^{n} \exp \left(-\sum_{j=1}^{n} \sum_{1=1}^{k} \lambda_{1} t_{1}\right)
$$

The hypothesis we want to test is, then:

$$
\mathrm{H}_{0}: \lambda_{0}=0 \longleftrightarrow \mathrm{~K}_{0}: \lambda_{0}>0
$$

Assume $\delta>0$, we first test the hypothesis:

$$
\mathrm{H}_{1}: \lambda_{0}=0 \longleftrightarrow \mathrm{~K}_{1}: \lambda_{0}=\delta .
$$

Obviously, when $\mathrm{N}_{0}>0$, we must reject the hypothesis $\lambda_{0}=0$. When $\mathrm{N}_{0}=0$, we can use the conditional lykelyhood ratio test: in accordance with the theorem of NeymanPearson, the MP test of the hypothesis is

$$
\phi=\left\{\begin{array}{l}
1, \frac{\mathrm{~L}(\lambda)}{\mathrm{L}\left(\lambda_{1}, \cdots, \lambda_{k}, 0\right)} \geq \mathrm{C}_{a}\left(\mathrm{C}_{a}>0\right), \\
0, \text { otherwise },
\end{array}\right.
$$

where $\frac{L(\lambda)}{L\left(\lambda_{1}, \cdots, \lambda_{k}, 0\right)}=\frac{\prod_{i=1}^{n} f\left(\lambda_{1}, \cdots, \lambda_{k}, \lambda_{0}\right)}{\prod_{i=1}^{n} f\left(\lambda_{2}, \cdots, \lambda_{k}, 0\right)}=\nu \sum_{n=1}^{n} y^{c} \exp \left(-\delta \sum_{j=1}^{n} t_{(k)}\right)=\nu^{n} \exp \left(-\delta \sum_{j=1}^{n} t_{(k)}\right)$.

$$
\left(\text { Note }: n-n_{0}=\sum_{i=1}^{n} n^{(c)}\right)
$$

So when $\sum_{j=1}^{n} \mathrm{t}_{(\mathrm{k}) \mathrm{s}} \leqslant \mathrm{c}\left(\alpha, \lambda_{1}\right)$, we reject hypothesis $\mathrm{H}_{0} .\left(\mathrm{c}\left(\alpha, \lambda_{1}\right)\right.$ is a constant which depends on α and λ_{1}.) Obviously, the rejection region is

$$
\left\{\mathrm{N}_{0}>0\right\} \cup\left\{\sum_{j=1}^{\mathrm{n}} \mathrm{t}_{(k))} \leq \mathrm{c}\left(\alpha, \lambda_{1}\right)\right\} .
$$

The value of $\mathrm{c}\left(\alpha, \lambda_{1}\right)$ is computed in the following: Assume the significance level is α. Then we have

$$
\mathrm{P}_{\lambda_{0}=0}\left\{\mathrm{~N}_{0}>0\right\}+\mathrm{P}_{\lambda_{0}=0}\left\{\mathrm{~N}_{0}=0, \sum_{j=1}^{n} \mathrm{t}_{(())} \leq \mathrm{c}\left(\alpha, \lambda_{1}\right)\right\}=\alpha .
$$

Due to the result above, $\mathrm{P}_{\lambda_{0}=0}\left\{\mathrm{~N}_{0}>0\right\}=0$, and hence,

$$
\alpha=P_{\lambda_{0}=0}\left\{\sum_{j=1}^{n} \mathrm{t}_{(k)} \leqslant \mathrm{c}\left(\alpha, \lambda_{1}\right)\right\} .
$$

Now, $\quad P_{\lambda_{0}=0}\left(\lambda_{1} t_{(k) J} \leq t\right)=\prod_{i=1}^{k} P\left(t_{1}<t / \lambda_{1}\right)=[1-\exp (-t)]^{k}$.
Below we find the distribution of $\sum_{j=1}^{n} \lambda_{1} t_{(k)]}$. Assume $y_{1}=\lambda_{1} t_{(k)]}$. Then $\left\{y_{j}\right\}$ is independent and the same distribution as well, $\mathrm{j}=1, \cdots, \mathrm{n}$. Performing the transformation:

$$
\left\{\begin{array}{l}
Z_{1}=\sum_{j=1}^{n} y_{l}, \\
Z_{2}=y_{2} \\
\vdots \\
Z_{n}=y_{n}
\end{array}\right.
$$

we have $Z_{1} \geqslant Z_{2}+Z_{3}+\cdots+Z_{n}$. Thus the joint density of $\left(Z_{1}, \cdots, Z_{n}\right)$ is:

$$
\begin{aligned}
f\left(Z_{1}, \cdots, Z_{n}\right)= & \prod_{=1}^{k} k\left[1-\exp \left(-y_{j}\right)\right]^{k-1} \exp \left(-y_{j}\right)\left|\frac{\partial\left(y_{1}, \cdots, y_{n}\right)}{\partial\left(Z_{1}, \cdots, Z_{n}\right)}\right| \\
= & k^{n} \prod_{j=2}^{n}\left[1-\exp \left(-Z_{j}\right)\right]^{k-1} \exp \left(-Z_{j}\right) \cdot\left\{1-\exp \left[-\left(Z_{1}-\sum_{j=2}^{n} Z_{j}\right)\right]\right\}^{k} \exp \left[-\left(Z_{1}\right.\right. \\
& \left.\left.\sum_{j=2}^{n} Z_{j}\right)\right] .
\end{aligned}
$$

So the marginal density function of Z_{1} is:

$$
\begin{aligned}
& g\left(Z_{1}\right)=\int_{Z_{1} \geq Z_{2}+\cdots+Z_{n}} k_{1}^{n} \prod_{2}^{n}\left[1-\exp \left(-Z_{j}\right)\right]^{k} \quad\left\{1-\exp \left[-\left(Z_{1}-\sum_{i=2}^{n} Z_{j}\right)\right\}^{k^{\prime}} \cdot \exp \left(-Z_{1}\right) d Z_{2} \cdots d Z_{n}\right. \\
& =\int_{Z_{1} \geq Z_{2}+\cdots+Z_{n}} k \prod_{5-2}^{n}\left[1-\left.\exp \left(-Z_{j}\right)\right|^{k} \sum_{1=1}^{n} C_{k}^{\prime} C_{1}^{\prime}(-1)^{4} .\right. \\
& Z_{1} \geq 0, i=2, \cdots, n \\
& \exp \left[-(1+i) Z_{1}\right] \exp \left(i \sum_{i}^{n} Z_{j}\right) d Z_{2} \cdots d Z_{n}=k^{n} \sum_{1,0}^{k} C_{h}^{1}(-1)^{\prime} \exp \left[-(1+i) Z_{1}\right] . \\
& \begin{array}{c}
\int \cdots \int_{Z_{i=2}}^{n}\left[1-\exp \left(-Z_{j}\right)\right]^{k-1} \cdot \exp \left(i \sum_{i=2}^{n} Z_{j}\right) d Z_{2} \cdots d Z_{n} . \\
Z_{1} \geqslant Z_{2}+\cdots Z_{n}, n, \cdots, n
\end{array}
\end{aligned}
$$

Therefore, $\mathrm{C}\left(\alpha, \lambda_{1}\right)$ is a constant such that $\alpha=\int_{0}^{\lambda_{1}\left(c a_{1} \lambda_{1}\right)} \mathrm{g}\left(\mathrm{Z}_{1}\right) \mathrm{dZ}_{1}$. In other words, if $\mathrm{c}^{*}(\alpha)$ satisfies $\alpha=\int_{0}^{(* *(\alpha)} \mathrm{g}\left(Z_{1}\right) \mathrm{d} Z_{1}$, then $\mathrm{c}\left(\alpha_{1}, \lambda_{1}\right)=\mathrm{c}^{*}(\alpha) / \lambda_{1}$, because the critical region given above does not depend on the constant δ, so the test

$$
\phi(\underline{t})= \begin{cases}1, & \mathrm{~N}_{0}>0 \text { or } \sum_{k=1}^{\mathrm{n}} \mathrm{t}_{(k)]} \leq \mathrm{c}\left(\alpha, \lambda_{1}\right) \\ 0, & \text { otherwise }\end{cases}
$$

is a UMP test of the hypothesis $H_{0}: \lambda_{0}=0 \longleftrightarrow \longrightarrow K_{0}: \lambda_{0}>0$.
Now we calculate its power function $\beta_{0}\left(\lambda_{0}\right)$:

$$
\begin{aligned}
& \beta_{p}\left(\lambda_{0}\right)=P_{\lambda} \lambda_{n}\left\{N_{1}>0\right\}+P_{\lambda+\lambda_{0}}\left\{N_{0}=0, \sum_{i=1}^{n} t_{(k)]} \leqslant c\left(\alpha . \lambda_{1}\right)\right\} \\
& P_{\lambda_{0}}\left(N_{0}>0\right\}=1-P_{\lambda=\lambda_{1}}\left(N_{0}=0\right)=1-\left[P_{\lambda=\lambda_{0}}\left(S_{1}=0\right)\right]^{n}=1-\left[P_{\lambda=\lambda_{0}}(S=0)\right]^{n}, \\
& \text { where } P_{\lambda=\lambda_{0}}(S=0)=
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\mathrm{k}\left(\lambda_{1}+\lambda_{0}\right)}{\mathrm{k} \lambda_{1}} \int_{0}^{\infty} \lambda_{0} \exp \left(-\lambda_{0} t\right) \sum_{i=0}^{k} C_{k}^{l}(-1)^{\prime} \exp \left(-\mathrm{i} \lambda_{1} t\right) d t \\
& =\frac{\lambda_{1}+\lambda_{0}}{\lambda_{1}} \sum_{i=1}^{k} C_{k}^{\prime}(-1)^{\prime} \int_{0}^{\infty} \lambda_{0} \exp \left[-\left(\lambda_{0}+\mathrm{i} \lambda_{1}\right) \mathrm{t}\right] \mathrm{dt} \\
& =\frac{\lambda_{3}+\lambda_{0}}{\lambda_{1}} \sum_{i=0}^{k} C_{k}^{\prime}(-1)^{\prime} \lambda_{11} \frac{1}{\lambda_{0}+i \lambda_{1}}=\frac{\lambda_{0}\left(\lambda_{1}+\lambda_{0}\right)}{\lambda_{1}} \sum_{i=0}^{k} C_{k}^{\prime}(-1)^{\prime} \frac{1}{\lambda_{0}+\mathrm{i} \lambda_{1}} .
\end{aligned}
$$

To calculate the density function of $t_{\mathrm{t}_{\mathrm{k}}}$, we first find its distribution function:
$F\left(t_{1}, \cdots, t_{k}\right)=\bar{F}(0, \cdots, 0)-\bar{F}\left(t_{1}, 0, \cdots, 0\right)-\bar{F}\left(0, t_{2}, \cdots, 0\right)-\cdots-\bar{F}\left(0,0, \cdots, t_{k}\right)$

$$
+\bar{F}\left(t_{1}, t_{2}, 0, \cdots, 0\right)+\cdots+F\left(0, \cdots, t_{k-1}, t_{k}\right)-\cdots(-1)^{k} \bar{F}\left(t_{1}, \cdots, t_{k}\right)
$$

Thus,

$$
\begin{aligned}
P_{\lambda=\lambda_{0}}\left(t_{(k)}<t\right)= & P_{\lambda=\lambda_{0}}\left(t_{1}<t, \cdots, t_{k}<t\right)=1-k \exp \left[-\left(\lambda_{1}+\lambda_{0}\right) t\right]+C_{k}^{2} \exp \left(-2 \lambda_{1} t-\right. \\
& \left.\lambda_{0} t\right)-\cdots+(-1)^{k} \exp \left(-k \lambda_{1} t-\lambda_{0} t\right)=1+\sum_{i=1}^{n}(-1)^{\prime} C_{k}^{1} \exp \left(-i \lambda_{1} t-\lambda_{0} t\right) .
\end{aligned}
$$

So the density function of $t_{(k)}$ becomes:

$$
f_{l k}(t)=\sum_{i=1}^{k}(-1)^{\prime} C_{k}^{l}\left(-i \lambda_{1}-\lambda_{0}\right) \exp \left(-i \lambda_{1} t-\lambda_{0} t\right)
$$

Assume $y_{j}=t_{(k)]}, j=1, \cdots, n$. By transforming

$$
\begin{aligned}
& Z_{1}=\sum_{j=1}^{n} y_{1} \\
& Z_{2}=y_{2}, \\
& \vdots \\
& Z_{n}=y_{n},
\end{aligned}
$$

we get $Z_{1} \geq Z_{2}+\cdots+Z_{n}$. Therefore, the joint density function of $\left(Z_{1}, \cdots, Z_{k}\right)$ is:

$$
\begin{aligned}
f\left(Z_{1}, \cdots, Z_{n}\right)= & \prod_{j=1}^{n}\left[\sum_{i=1}^{k}(-1)^{\prime} C_{k}^{\prime}\left(-i \lambda_{1}-\lambda_{0}\right) \exp \left(-i \lambda_{1} y_{j}-\lambda_{0} y_{j}\right)\right] \\
= & \prod_{j=2}^{n}\left[\sum_{i=1}^{k}(-1)^{\prime} C_{k}^{\prime}\left(-i \lambda_{1}-\lambda_{0}\right) \exp \left(-i \lambda_{1} Z_{J}-\lambda_{0} Z_{j}\right)\right] . \\
& {\left[\sum_{i=1}^{k}(-1)^{\prime} C_{k}^{\prime}\left(-i \lambda_{1}-\lambda_{0}\right) \exp \left(\left(-i \lambda_{1}-\lambda_{0}\right)\left(Z_{1}-\sum_{j=2}^{n} Z_{j}\right)\right)\right] } \\
= & \sum_{i=1}^{k}(-1)^{\prime} C_{k}^{\prime}\left(-i \lambda_{1}-\lambda_{0}\right) \exp \left[\left(-i \lambda_{1}-\lambda_{0}\right) Z_{1}\right] \cdot \exp \left[\left(i \lambda_{1}+\lambda_{0}\right) \sum_{==2}^{n} Z_{j}\right] . \\
& \left.\prod_{j=2}^{n}\left\{\sum_{i=1}^{k}(-1)^{\prime} C_{k}^{\prime}\left(-i \lambda_{1}-\lambda_{0}\right) \cdot \exp \left[-i \lambda_{1}-\lambda_{0}\right) Z_{j}\right]\right\} .
\end{aligned}
$$

So the marginal density function of Z_{1} is:

$$
\begin{aligned}
& h\left(Z_{1}\right)=\sum_{i=1}^{k}(-1)^{\mathrm{C}} \mathrm{C}_{k}^{\prime}\left(-\mathrm{i} \lambda_{1}-\lambda_{0}\right) \exp \left(-\left(\mathrm{i} \lambda_{1}+\lambda_{0}\right) Z_{1}\right) \cdot \\
& \int \cdots \int \exp \left[\left(i \lambda_{1}+\lambda_{0}\right) \sum_{j=2}^{n} Z_{j}\right] \prod_{j=2}^{n}\left[\sum_{i=1}^{k}(-1)^{\prime} C_{k}^{l}\left(-i \lambda_{1}-\lambda_{0}\right)\right] . \\
& Z_{1} \geqslant Z_{2}+\cdots Z_{n} \\
& Z_{1} \geqslant 0, i=2, \cdots, n \\
& \exp \left[\left(-\mathrm{i} \lambda_{1}-\lambda_{0}\right) Z_{\mathrm{J}}\right] \mathrm{d} Z_{2} \cdots \mathrm{~d} Z_{\mathrm{n}} \text {. }
\end{aligned}
$$

Finally, the power function $\beta_{\phi}\left(\lambda_{0}\right)$ is given by:

$$
\begin{aligned}
\beta_{\theta}\left(\lambda_{0}\right) & =\mathrm{P}_{\lambda=\lambda_{0}}\left(\mathrm{~N}_{0}>0\right\}+\mathrm{P}_{\lambda=\lambda_{0}}\left(\mathrm{~N}_{0}=0\right) \mathrm{P}_{\lambda=\lambda_{0}}\left\{\sum_{j=1}^{n} \mathrm{t}_{(k) j} \leq \mathrm{C}\left(\alpha_{1} \lambda_{1}\right)\right\} \\
& =1-\frac{\lambda_{0}^{n}\left(\lambda_{1}+\lambda_{1}\right)^{n}}{\lambda_{1}^{n}}\left[\sum_{i=0}^{k} \mathrm{C}_{k}^{1}(-1)^{\prime} \frac{1}{\lambda_{11}+\mathrm{i} \lambda_{1}}\right]^{n}+\frac{\lambda_{0}^{n}\left(\lambda_{1}+\lambda_{0}\right)^{n}}{\lambda_{1}^{n}}\left[\sum_{1=0}^{k} \mathrm{C}_{k}^{\prime}(-1)^{\prime} \frac{1}{\lambda_{0}+\mathrm{i} \lambda_{1}}\right]^{n} \iint_{0}^{\mathrm{c}\left(\alpha 1_{1}\right)}\left(Z_{1}\right) \mathrm{d} Z_{1} .
\end{aligned}
$$

References

[1] Bemis, B.M., Bain, L.J. \& Higgins, J.J.: Estimation and hypothesis testing for the parameters of a bivariate exponential distribution, J.A.S.A., Vol. 67, p. 340 (1972).
[2] Bhattacharyya, B.K. \& Johnson, R.A.: On a test of independence in a bivariate exponential distribution, J.A.S.A., Vol. 68, p. 343 (1973).
[3] Proschan F. \& Sullo, P.: Estimating the parameters of a certain multivariate exponential distribution, FSU Slatistics Report M256, The Florida State University.
[4] Marshall, A \& Olkin, I.: A multivariate exponential distribution, J.A.S.A., Vol. 62, pp. 30-44(1967).

