Logic Functions over Galois Field GF（4）

メタデータ	言語：
	出版者：琉球大学工学部
	公開日：2007－10－01
	キーワード（Ja）：
	キーワード（En）：
	作成者：Nakao，Zensho，仲尾，善勝
メールアドレス：	
	所属：
URL	http：／／hdl．handle．net／20．500．12000／1984

Logic Functions over Galois Field GF(4)

Zensho NaKAO*

Abstract

The elements of Galois field $\mathrm{GF}(4)$ are represented by four numerals $\{0,1,2,3\}$; it is shown that all quaternary logic functions can be expressed in a sort of standard form as polynomial functions over $G F(4)$; the two field operators of $\mathrm{GF}(4)$ are proposed as basic logic gates and are used as basic building blocks in the representation of the logic functions.

1. Introduction

In recent papers, Hachimine and Zukeran [HZ1] proposed a set of four-valued logic functions and demonstrated the completeness of the system; they also designed several quaternary logic circuits [HZ2].

The objective of this note is to show that how Galois field GF(4) (i.e., a finite field of four elements) can be used effectively to represent quaternary logic functions such as the ones studied in [$\mathrm{HZ} 1, \mathrm{HZ} 2$] in standard polynominal forms as was done in [N1, NZK].

2. Preliminaries

The set $A_{2}=\{0,1\}$ of two symbols 0,1 can be made into a Boolean algebra by furnishing it with two binary operations V, \wedge and one unary operation ${ }^{-}$which are defined by the following (truth) tables:

V	0	1
0	0	1
1	1	1

\wedge	0	1
0	0	0
1	0	1

x	\bar{x}
1	0
0	1

Table 1. Boolean operators
On A_{2}, introduce two binary operations + , • (or juxtaposition) by the (truth) tables:

+	0	1
0	0	1
1	1	0

\cdot	0	1
0	0	0
1	0	1

Table 2. Field operators

Received: October 31, 1984
*Department of Electronics Engineering and Computer Science

The algebraic operations now transform the structure on A_{2} into that of Galois field GF(2). In fact, the Boolean algebraic structure ($\mathrm{A}_{2} ; \vee, \wedge,{ }^{-}$) and the field structure ($\mathrm{GF}(2) ;+, \bullet$) are related by the following transformation formulas:

$$
\begin{array}{ll}
x \wedge y=x y & x y=x \wedge y \\
x \vee y=x+y+x y & x+y=(x \wedge \bar{y}) \vee(\bar{x} \wedge y) \\
\bar{x}=x+1 &
\end{array}
$$

Since GF(2) is a field, the operations in Table 2 define subtraction and division implicitly (namely , the charts are used backward), which are the operations impossible in the Boolean algebra A_{2}. Also, it is known in field theory that we can always enlarge $\operatorname{GF}(2)$ to the extension field $\operatorname{GF}\left(2^{\mathrm{n}}\right)$ (n is a natural number) which possesses exactly 2^{n} elements by adjoining a zero of some irreducible polynomial over GF(2).

In this note we let $n=2$ and use $G F(4)$ in studying $A_{4}=\{0,1,2,3\}$ with a quaternary logic structure. We can obtain $\mathrm{GF}(4)$ as the splitting field of the irreducible polynomial $p(x)=x^{2}+x+1$ over $\operatorname{GF}(2)$ by adjoining a solution α of $p(x)=0$ in an extension field of $\operatorname{GF}(2)$. Since $G F(4)$ is a two dimensional vector field over $\operatorname{GF}(2)$ with the base $\{1, \alpha\}$, where $\alpha^{2}=\alpha+1, \operatorname{GF}(4)$ has four elements $0,1, \alpha, \alpha+1$. For ease of reference and computation, we introduce two numerals 2 and 3 , and let $\alpha=2$ and $\alpha+1=3$; we obtain the following addition and multiplication tables which are in fact the truth tables for the binary operations:

+	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

\cdot	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	3	1
3	0	3	1	2

Table 3. Field operators
Recall that (GF(4); +) is Klein's Viergruppe (hence, not cyclic), and that (GF(4) - \{0\}; $\boldsymbol{\bullet}$) is a cyclic group of order 3; both are Abelian (i.e., the tables are symmetric with respect to the main diagonal).

It is to be noted that there are quaternary logic functions on A_{4} which cannot be expressed as standard Boolean functions, i.e., $\left(A_{4} ; V, \wedge,{ }^{-}\right)$is not a complete system.

In the rest of the section, we quote the necessary results from Galois theory:

$$
\begin{equation*}
(x+y)^{2}=x^{2}+y^{2} \forall x, y \in G F(4) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
x+x=0 \forall x \in G F(4) \tag{3}
\end{equation*}
$$

Any function from a finite field into itself is known to be a polymomial function (use Lagrange's interpolation formula, for example); the following results give us the necessary formulas for our specific purpose [T]:
(4) If $\mathrm{f}: \mathrm{GF}(4) \longrightarrow \mathrm{GF}(4)$ is a function, then f can be expressed in a polynomial form over GF(4):

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}
$$

where $a_{0}=f(0), a_{i}=\sum_{x \in G F(4)} x^{3-i} f(x),(1 \leq i \leq 3)$.
(5) If $\mathrm{f}: \mathrm{GF}(4) \times \mathrm{GF}(4) \longrightarrow \mathrm{GF}(4)$ is a mapping, then f can be realized as a polynomial mapping over $\mathrm{GF}(4)$ in two variables:

$$
f(x, y)=\sum_{0 \leq i, j \leq 3} a_{i j} x^{i} y^{j}
$$

where $a_{00}=f(0,0), a_{i 0}=\sum_{x \in G F(4)} x^{3-i} f(x, 0), a_{0 i}=\sum_{y \in G F(4)} y^{3-i} f(0, y)$,
$a_{i j}=\sum_{x, y \in G F(4)} x^{3-i} y^{3-j} f(x, y),(1 \leq i, j \leq 3)$.
Note that in formulas (4) and (5) above, all calculations must be done in Galois field GF(4), and also that (5) can be generalized to mappings

$$
\mathrm{f}: \mathrm{GF}(4)^{\mathrm{n}} \longrightarrow \mathrm{GF}(4)
$$

of $n(\geq 1)$ variables. With this rigid structure, we will be able to express all quaternary logic functions as polynomial functions on $G F(4)$ or $G F(4)^{2}$ (or $G F(4)^{n}$, if necessary) of total degree at most 6.

3. Translation of A_{4} to GF(4)

It is proved that (MIN, MAX, $x^{(0,1)}, 1,2$) forms a complete system of quaternary logic functions in [HZ1]; we are going to express all those quaternary logic functions explicitly as polynomials over $\mathrm{GF}(4)$, which is a consequence of the evident fact that ($\mathrm{GF}(4) ;+, \bullet)$ is another complete system of quaternary logic functions. The BASIC programs used are included in the Appendix.
a. $\operatorname{MIN}[x, y]$

Operation tables for the binary operators $\operatorname{MIN}[x, y]$ and $\operatorname{MAX}[x, y]$ are given below:

MIN	0	1	2	3
0	0	0	0	0
1	0	1	1	1
2	0	1	2	2
3	0	1	2	3

MAX	0	1	2	3
0	0	1	2	3
1	1	1	2	3
2	2	2	2	3
3	3	3	3	3

Table 4. MIN and MAX operators

By using formulas for $a_{i j}$ in (5), we can obtain the following results:

$$
\begin{align*}
& a_{00}=a_{01}=a_{10}=a_{02}=a_{20}=a_{03}=a_{30}=a_{11}=a_{33}=0 \tag{6}\\
& a_{22}=1, \quad a_{12}=a_{21}=a_{13}=a_{31}=2, \quad a_{23}=a_{32}=3
\end{align*}
$$

Thus we get a polynomial expression for $\operatorname{MIN}[x, y]$:

$$
\begin{equation*}
\operatorname{MIN}[x, y]=2 x y^{2}+2 x y^{3}+2 x^{2} y+2 x^{3} y+x^{2} y^{2}+3 x^{2} y^{3}+3 x^{3} y^{2} \tag{7}
\end{equation*}
$$

By using (2) and collecting like terms, we can change $\operatorname{MIN}[x, y]$ into a less formidable poly. nomial in elementary symmetric functions $(x+y)$ and ($x y$):

$$
\begin{equation*}
\operatorname{MIN}[x, y]=x y\left\{2(x+y)+2(x+y)^{2}+x y[1+3(x+y)]\right\} \tag{8}
\end{equation*}
$$

b. $\operatorname{MAX}[x, y]$

Computing similarly as in MIN $[x, y]$, we can derive the following results:

$$
\begin{align*}
& a_{00}=a_{02}=a_{20}=a_{03}=a_{30}=a_{11}=a_{33}=0, a_{23}=a_{32}=3 \tag{9}\\
& a_{01}=a_{10}=a_{22}=1, a_{12}=a_{21}=a_{13}=a_{31}=2
\end{align*}
$$

Therefore, a polynomial expression for $\operatorname{MAX}[x, y]$ is:

$$
\begin{equation*}
\operatorname{MAX}[x, y]=x+y+2 x^{2} y+2 x y^{2}+2 x^{3} y+2 x y^{3}+x^{2} y^{2}+3 x^{3} y^{2}+3 x^{2} y^{3} \tag{10}
\end{equation*}
$$

Rewriting the result above as a polynomial in $(x+y)$ and ($x \dot{y}$), we get:

$$
\begin{equation*}
\operatorname{MAX}[x, y]=(x+y)+x y\left[2(x+y)+2(x+y)^{2}+x y+3 x y(x+y)\right] \tag{11}
\end{equation*}
$$

c. $x^{(0,2)}$

The unary operator $x^{[0,2]}$ is defined by:

$$
\begin{align*}
x^{[0,2]} & =3 \text { if } x \in\{0,2\} \tag{12}\\
& =0 \text { otherwise }
\end{align*}
$$

A truth table for the operator is given below:

x	0	1	2	3
$x^{(0,2)}$	3	0	3	0

Table 5. Truth table for ${ }^{[0,2]}$
Repeated applications of the formulas for a_{i} in (4) yield:

$$
\begin{equation*}
a_{0}=3, \quad a_{1}=2, \quad a_{2}=1, \quad a_{3}=0 \tag{13}
\end{equation*}
$$

Hence, we obtain a polynomial function for $\mathrm{x}^{[0,2]}$:

$$
\begin{equation*}
x^{\{0,2\}}=3+2 x+x^{2}=(1+x)(3+x) \tag{14}
\end{equation*}
$$

Putting pieces obtained together, we demonstrated that the algebraic structure (GF(4);,$+ \bullet$) provides an effective method for deriving standard forms of the quaternary logic functions.

4. Other translations

For completeness of presentation, we include the polynomial formulas for the binary operator $\operatorname{NOR}[x, y]$; the unary operators ${ }^{(k)} x$ and $x^{(k)}$ which are discussed in [HZ2]. Their definitions follow:

$$
\begin{align*}
& \text { NOR }[x, y]=3+\operatorname{MAX}[x, y] \tag{15}\\
& \begin{aligned}
&(k) \\
& x \equiv x+k(\bmod 4), \quad k=0,1,2,3 \\
& x^{(k)}=3 \text { if } x=k \quad k=0,1,2,3 \\
&=0 \text { otherwise }
\end{aligned} \tag{16}
\end{align*}
$$

Polynomial representations for the operators are given in the following:

$$
\begin{align*}
\operatorname{NOR}[x, y] & =3+\operatorname{MAX}[x, y] \\
& =3+(x+y)+x y\left[2(x+y)+2(x+y)^{2}+x y+3 x y(x+y)\right] \tag{18}\\
(k) & =(x+k)+x k[3+2(x+k)+x k], \quad k=0,1,2,3 \tag{19}\\
x^{(k)} & =3\left[1+(x+k)^{3}\right], \quad k=0,1,2,3 \tag{20}
\end{align*}
$$

5. Conclusions

We found that all quaternary logic functions of one or two variables can be realized as polynomial functions over Galois field $G F(4)$ in one or two variables of total degree at most 6 . An obvious advantage for having polynomial expressions is that we can formally manipulate the elements of A_{4}, i.e., $\mathrm{GF}(4)$ with four arithmetic operations of $\mathrm{GF}(4)$ itself as we normally do with the real (or complex) number field.

If we can design $(x+y)$ and ($x y$) as basic logic circuit elements*, then we can easily construct other circuits such as MIN, MAX, $x^{[0,2\}}$, NOR, ${ }^{(k)} x$ and $x^{(k)}$. For illustration, take MIN, MAX and $x^{\{0,2\}}$. We introduce two logic gate symbols for the operators $(x+y)$ and ($\left.x y\right)$:

Figure 1. Circuit symbols for $(x+y)$ and ($x y$)

Then the following diagrams present one possible design for each function:

[^0]

Figure 2. MIN $[x, y]$ gate

Figure 3. $\operatorname{MAX}[x, y]$ gate

Figure 4. Logic gate for $\mathrm{x}^{\{0,2\}}$

Some properties of quanternary logic functions over $\mathrm{GF}(4)$ will be discussed further in the forthcoming paper [N 2].

References

[HZ1] Hachimine, G and Zukeran, C: A proposal for a complete set of four valued logic functions and its circuit construction, Trans. IECE (Japanese), 1981, pp. 901-2.
[HZ2] (Japanese), 1983, pp. 302-308.
[N1] Nakao, Z: A field-theoretic view of logic functions, Bull. Faculty of Engineering, Univ. of the Ryukyus, No. 28, 1984, pp. 55-66.
[N 2] \qquad : Vector-valued representation of quaternary logic functions over Galois field GF/4)(Pre-print).
[NZK] Nakao, Z, Zukeran, C and Kyan, S: Quaternary logic functions over Galois field GF(4) (Pre-print).
[T] Takahashi, I : Combinatorics and its applications (Japanese), Iwanami 1979, pp. 199-204.

Appendix

a. BASIC programs

10 PR\# 0: REM Printer off
12 HOME
14 DIM M $(3,3), A(3,3), B(3), F(3)$
16 FOR I = O TO 3
18 FOR $J=0$ TO 3
20 READ M(I, J): REM Define multiplication
22 NEXT J
24 NEXT I
26 DATA $0,0,0,0,0,1,2,3,0,2,3,1,0,3,1,2$
28 FOR I = 0 TO 3
$30 \quad$ FOR $J=0$ TO 3
32 READ A(I, J): REM Define addition
34 NEXT J
36 NEXT I
38 DATA $0,1,2,3,1,0,3,2,2,3,0,1,3,2,1,0$
40 HOME
42 PRINT "Type in: $f(0), f(1), f(2), f(3) "$
44 PRINT
46 FOR X=0 TO 3
48 INPUT $\mathrm{F}(\mathrm{X})$: REM Define the logic function
50 NEXT X
52 PRINT ,
54 PRINT "Hit any key to continue";
56 GET A\$
58 HOME
60 PR\# 1: REM Printer on
62 PRINT : REM Display the function table
64 PRINT " x "; "--->"; " $f(x) "$
66 PRINT
68 FOR X=0 TO 3

72 NEXT X
74 PR\# 0: REM Printer off
76 PRINT
78 REM The coefficients are determined
$80 \quad \mathrm{~B}(0)=\mathrm{F}(0)$
$82 \quad B(1)=0$
84 FOR X = 0 TO 3
$86 \quad \mathrm{I}=\mathrm{M}(\mathrm{X}, \mathrm{X})$
$88 \mathrm{~J}=\mathrm{M}(\mathrm{I}, \mathrm{F}(\mathrm{X}))$

```
90
    \(B(1)=A(B(1), J)\)
92 NEXT X
\(94 \quad \mathrm{~B}(2)=0\)
96 FOR X \(=0\) TO 3
\(98 \cdot \mathrm{~J}=\mathrm{M}(\mathrm{X}, \mathrm{F}(\mathrm{X}))\)
\(100 \quad \mathrm{~B}(2)=\mathrm{A}(\mathrm{B}(2), \mathrm{J})\)
102 NEXT X
\(104 \quad B(3)=0\)
106 FOR X = 0 TO 3
\(108 \quad J=F(X)\)
\(110 \quad B(3)=A(B(3), J)\)
112 NEXT X
114 REM Output the result in polynomial form
116 PR\# 1: REM Printer on
118 PRINT " \(f(x)=" ; B(0) ; "+" ; B(1) ; " x+" ; B(2)\); " \(x x+" ; B(3) ; " x x x "\)
120 PRINT
122 PR\# 0: REM Printer off
124 PRINT "Continue=any key; Stop=Q";
126 GET A\$
128 IF A\$ = "Q" THEN 132
130 GOTO 40
132 END
```

10 PR\# 0: REM Printer off
12 HOME
14 DIM $\mathrm{M}(3,3), \mathrm{A}(3,3), \mathrm{B}(3,3), \mathrm{F}(3,3)$
16 FOR I = 0 TO 3
18 FOR J=0 TO 3
20 READ M(I, J): REM Define multiplication
22 NEXT J
24 NEXT I
26 DATA $0,0,0,0,0,1,2,3,0,2,3,1,0,3,1,2$
28 FOR I $=0$ TO 3
$30 \quad$ FOR $J=0$ TO 3
32 READ A(I, J): REM Define addition
34 NEXT J
36 NEXT I
38 DATA $0,1,2,3,1,0,3,2,2,3,0,1,3,2,1,0$
40 HOME
42 PRINT "Type in: $f(0,0), f(0,1), f(0,2), f(0,3), f(1,0), f(1,1), f(1,2), f(1,3), f(2,0)$,
$f(2,1), f(2,2), f(2,3), f(3,0), f(3,1), f(3,2), f(3,3) "$
44

```
    PRINT
```

```
46 FOR I =0 TO 3
48 FOR J = 0 TO 3
50 INPUT F(I, J): REM Define the logic function
52 NEXT J
54 NEXT I
56 PRINT
58 PRINT "Hit any key to continue";
60 GET A$
6 2 ~ H O M E
64 PR# 1: REM Printer on
66 PRINT : REM Display the function table
68 PRINT "(x, y)";"--->"; "f(x, y)"
70 PRINT
72 FOR I = 0 TO 3
74 FOR J=0 TO 3
76 PRINT "("; I;", "; J;")";"--->"; F(I, J)
7 8 ~ N E X T ~ J ~
80 NEXT I
82 PR# O: REM Printer off
84 PRINT
86 REM The coefficients are determined
88
90 B}(1,0)=0:B(0,1)=
92 FOR X=0 TO 3
94 I = M(X, X)
96 J = M(I, F(X, 0)): K = M(I,F(0, X))
98 B(1,0)=A(B(1,0),J):B(0,1)=A(B(0,1),K)
NO0 NEXT X
102 B(2,0)=0:B(0,2)=0
104 FOR X = 0TO 3
106 J = M(X,F(X, 0)): K=M (X,F(0,X))
108 B(2,0) = A(B(2,0), J): B(0,2) = A(B(0,2),K)
110 NEXT X
112 B}(3,0)=0:B(0,3)=
114 FOR X = 0 TO 3
116 J=F(X, 0):K = F(0,X)
118 B(3,0)=A(B(3,0),J):B(0,3)=A(B(0,3),K)
120 NEXT X
122 B(1, 1)=0
124 FOR X = 0 TO 3
126 FOR Y = 0 TO 3
128 I I = M(X, X): I2 = M(Y, Y)
```

130	$\mathrm{J} 1=\mathrm{M}(\mathrm{I} 1, \mathrm{I} 2): \mathrm{J} 2=\mathrm{M}(\mathrm{J} 1, \mathrm{~F}(\mathrm{X}, \mathrm{Y})$)
132	$\mathrm{B}(1,1)=\mathrm{A}(\mathrm{B}(1,1), \mathrm{J} 2)$
134	NEXT Y
136	NEXT X
138	$\mathrm{B}(1,2)=0: \mathrm{B}(2,1)=0$
140	FOR $X=0$ TO 3
142	FOR $Y=0$ TO 3
144	$\mathrm{L} 1=\mathrm{M}(\mathrm{X}, \mathrm{X}): 12=\mathrm{Y}: \mathrm{K} 1=\mathrm{X}: \mathrm{K} 2=\mathrm{M}(\mathrm{Y}, \mathrm{Y})$
146	$\mathrm{J} 1=\mathrm{M}(\mathrm{I} 1, \mathrm{I} 2): \mathrm{J} 2=\mathrm{M}(\mathrm{J} 1, \mathrm{~F}(\mathrm{X}, \mathrm{Y})$)
148	$\mathrm{L} 1=\mathrm{M}(\mathrm{K} 1, \mathrm{~K} 2): \mathrm{L} 2=\mathrm{M}(\mathrm{Ll}, \mathrm{F}(\mathrm{X}, \mathrm{Y})$)
150	$\mathrm{B}(1,2)=\mathrm{A}(\mathrm{B}(1,2), \mathrm{J} 2) ; \mathrm{B}(2,1)=\mathrm{A}(\mathrm{B}(2,1), \mathrm{L} 2)$
152	NEXT Y
154	NEXT X
156	$\mathrm{B}(1,3)=0: \mathrm{B}(3,1)=0$
158	FOR $X=0$ TO 3
160	FOR Y $=0$ TO 3
162	$\mathrm{I} 1=\mathrm{M}(\mathrm{X}, \mathrm{X}): \mathrm{K} 2=\mathrm{M}(\mathrm{Y}, \mathrm{X})$
164	$\mathrm{J} 1=\mathrm{M}(11, \mathrm{~F}(\mathrm{X}, \mathrm{Y})$): $\mathrm{J} 2=\mathrm{M}(\mathrm{K} 2, \mathrm{~F}(\mathrm{X}, \mathrm{Y})$)
166	$\mathrm{B}(1,3)=\mathrm{A}(\mathrm{B}(1,3), \mathrm{J} 1): \mathrm{B}(3,1)=\mathrm{A}(\mathrm{B}(3,1), \mathrm{J} 2)$
168	NEXT Y
170	NEXT X
172	$\mathrm{B}(2,2)=0$
174	FOR X $=0$ TO 3
176	FOR $Y=0$ TO 3
178	$\mathrm{I} 1=\mathrm{M}(\mathrm{X}, \mathrm{Y}): \mathrm{I} 2=\mathrm{M}(\mathrm{I} 1, \mathrm{~F}(\mathrm{X}, \mathrm{Y})$)
180	$\mathrm{B}(2,2)=\mathrm{A}(\mathrm{B}(2,2), \mathrm{I} 2)$
182	NEXT Y
184	NEXT X
186	$\mathrm{B}(2,3)=0: \mathrm{B}(3,2)=0$
188	FOR $X=0 \mathrm{TO}_{3}$
190	FOR Y = 0 TO 3
192	$\mathrm{I} 1=\mathrm{M}(\mathrm{X}, \mathrm{F}(\mathrm{X}, \mathrm{Y})$): $\mathrm{I} 2=\mathrm{M}(\mathrm{Y}, \mathrm{F}(\mathrm{X}, \mathrm{Y})$)
194	$B(2,3)=A(B(2,3), 11): B(3,2)=A(B(3,2), 12)$
196	NEXT Y
198	NEXT X
200	$\mathrm{B}(3,3)=0$
202	FOR $X=0 \mathrm{TO} 3$
204	FOR $Y=0 \mathrm{TO} 3$
206	$\mathrm{B}(3,3)=\mathrm{A}(\mathrm{B}(3,3), \mathrm{F}(\mathrm{X}, \mathrm{Y})$)
208	NEXT Y
210	NEXT X
212	REM Output the result in polynomial form
214	PR\# 1: REM Printer on

216 PRINT " $f(x, y)=" ; B(0,0): "+" ; B(1,0): " x+" ; B(0,1) ; " y+" ; B(2,0) ; " x x+" ; B(1,1)$; "xyt"; B(0, 2); " $y \mathbf{y}+$ "; $B(3,0)$; "xxx+"; B(2, 1); "xxy+"; B(1, 2); "xyy+"; B(0, 3); "ууy+"; B(3,1); "xxxy+"; B(2,2); "xxyy+"; B(1,3); "xyyyt"; B(3, 2); "xxxyy+"; B(2,3); "xxyyy+"; B(3, 3); "xxx"

b. Logic gates

Figure A. 1. $(x+y)$ gate

Figure A.2. (xy) gate

[^0]: *The logic circuit elements were designed by Mr. Chotei Zukeran, Department of Electrical Engineering, Ryukyu University; and are included as Figures in the Appendix.

