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Zensho NAKAO*

Abstract The elements of Galois field GF(4) are represented by four numerals

{0, 1, 2, 3}; it is shown that all quaternary logic functions can be expressed in a

sort of standard form as polynomial functions over GF(4); the two field operators

of GF(4) are proposed as basic logic gates and are used as basic building blocks in

the representation of the logic functions.

1. Introduction

In recent papers, Hachimine and Zukeran [HZ1] proposed a set of four-valued logic functions

and demonstrated the completeness of the system; they also designed several quaternary logic circuits

[HZ2].

The objective of this note is to show that how Galois field GF(4) (i.e., a finite field of four

elements) can be used effectively to represent quaternary logic functions such as the ones studied in

[HZ1, HZ2] in standard polynominal forms as was done in [Nl, NZK].

2. Preliminaries

The set A2 = {0, 1} of two symbols 0, 1 can be made into a Boolean algebra by furnishing it

with two binary operations V, A and one unary operation ~ which are defined by the following

(truth) tables:

V

0

1

0

0

1

1

1

1

A

0

1

0

0

0

1

0

1

X

1

0

X

0

1

Table 1. Boolean operators

On A2, introduce two binary operations +, • (or juxtaposition) by the (truth) tables:

+

0

1

0

0

1

1

1

0

•

0

1

0

0

0

1

0

1

Table 2. Field operators
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The algebraic operations now transform the structure on A2 into that of Galois field GF(2). In

fact, the Boolean algebraic structure (A2; V, A, ~) and the field structure (GF(2); +, •) are related by

the following transformation formulas:

(1)

x A y =xy

x V y- x + y + xy

x=x + l

xy = x A y

x + y = (x A V (jc A y)

Since GF(2) is a field, the operations in Table 2 define subtraction and division implicitly (name

ly, the charts are used backward), which are the operations impossible in the Boolean algebra A2.

Also, it is known in field theory that we can aJways enlarge GF(2) to the extension field GF(2n) (n is

a natural number) which possesses exactly 2n elements by adjoining a zero of some irreducible

polynomial over GF(2).

In this note we let n = 2 and use GF(4) in studying A4 = {0, 1,2, 3} with a quaternary logic

structure. We can obtain GF(4) as the splitting field of the irreducible polynomial p(x) = x2 + x + 1

over GF(2) by adjoining a solution a of p(x) = 0 in an extension field of GF(2). Since GF(4) is a two

dimensional vector field over GF(2) with the base {1, a}, where a2 = a + 1, GF(4) has four elements

0, 1, a, a + 1. For ease of reference and computation, we introduce two numerals 2 and 3, and let

a = 2 and a + 1 = 3; we obtain the following addition and multiplication tables which are in fact the

truth tables for the binary operations:

+

0

1

2

3

0

0

1

2

3

1

1

0

3

2

2

2

3

0

1

3

3

2

1

0

•

0

1

2

3

0

0

0

0

0

1

0

1

2

3

2

0

2

3

1

3

0

3

1

2

Table 3. Field operators

Recall that (GF(4); +) is Klein's Viergruppe (hence, not cyclic), and that (GF(4) - {0}; •) is a

cyclic group of order 3; both are Abelian (i.e., the tables are symmetric with respect to the main
diagonal).

It is to be noted that there are quaternary logic functions on A4 which cannot be expressed as

standard Boolean functions, i.e., (A4; V, A, ~) is not a complete system.

In the rest of the section, we quote the necessary results from Galois theory:

(2) (* + y)2 = x2 + y2 V x, y G GF(4)

(3) x+x = 0Vx€ GF(4)

Any function from a finite field into itself is known to be a polymomial function (use Lagrange's
interpolation formula, for example); the following results give us the necessary formulas for our
specific purpose [T]:



(4) Iff:GF(4)

GF(4):
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> GF(4) is a function, then f can be expressed in a polynomial form over

f(x) = a0 + ajX + a2x2 + a3x3,

where a0 = f(0), a, = 2 x^x), (1 <. i <. 3).
xfcw ifl)

(5) If f: GF(4) x GF(4) >GF(4) is a mapping, then f can be realized as a polynomial

mapping over GF(4) in two variables:

f(x,y)= 2 ajjxV,
0£i,K3

where a00 = f(0,0), ai0 = ^^x^x, 0), aoi = ^(0, y),

Note that in formulas (4) and (5) above, all calculations must be done in Galois field GF(4), and

also that (5) can be generalized to mappings

f:GF(4)n >GF(4)

of n (> 1) variables. With this rigid structure, we will be able to express all quaternary logic func

tions as polynomial functions on GF(4) or GF(4)2 (or GF(4)n, if necessary) of total degree at

most 6.

3. Translation of A4 to GF(4)

It is proved that (MIN, MAX,x{0>1), 1,2) forms a complete system of quaternary logic functions

in [HZ1]; we are going to express all those quaternary logic functions explicitly as polynomials over

GF(4), which is a consequence of the evident fact that (GF(4); +, •) is another complete system of

quaternary logic functions. The BASIC programs used are included in the Appendix.

a. MIN[x, y]

Operation tables for the binary operators MIN[x, y] and MAX[x, y] are given below:

min

0

1

2

3

0

0

0

0

0

1

0

1

1

1

2

0

1

2

2

3

0

1

2

3

MAX

0

1

2

3

0

0

1

2

3

1

1

1

2

3

2

2

2

2

3

3

3

3

3

3

Table 4. MIN and MAX operators
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By using formulas for a^ in (5), we can obtain the following results:

a0O = aOJ = a10 = a02 = a20 = a03 = a3O = al 1 = a33 = 0

a22 = 1, a12 = a21 = a13 = a31 = 2, a23 = a32 = 3

Thus we get a polynomial expression for MINfx, y]:

(7) MIN[x, y] = 2xy2 + 2xy3 + 2x2y + 2x3y + x2y2 + 3x2y3 + 3x3y2

By using (2) and collecting like terms, we can change MlN[x, y] into a less formidable poly

nomial in elementary symmetric functions (x + y) and (xy):

(8) MIN[x,y] = xy {2(x + y) + 2(x + y)2+xy[l+3(x + y)]}

b. MAX[x, y]

Computing similarly as in MIN[x, y], we can derive the following results:

(9)
a0o ~ a02 " a2o = ao3 = a30 ~ an = a33 = 0, a23 = a32 = 3

aoi = aio = a22 = 1, a12 = a21 = aJ3 = a3| =2

Therefore, a polynomial expression for MAX[x, y] is:

(10) MAX[x, y] = x + y + 2x2y + 2xy2 + 2x3y + 2xy3 + x2y2 + 3x3y2 + 3x2y3

Rewriting the result above as a polynomial in (x + y) and (xy), we get:

(11) MAX[x, y] = (x + y) + xy [2(x + y) + 2(x + y)2 + xy + 3xy(x + y)]

c. x{0'2)

The unary operator x{0*2} is defined by:

(12)

= 0 otherwise

A truth table for the operator is given below:

X

X<°'2>

0

3

1

0

2

3

3

0

Table 5. Truth table for x{0'2)

Repeated applications of the formulas for a{ in (4) yield:

O3) aft=3 a =2 fl -1 , -ndo ^» *i -l, a2- 1, a3 = 0

Hence, we obtain a polynomial function for x{0(2}:
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Putting pieces obtained together, we demonstrated that the algebraic structure (GF(4); +, •)

provides an effective method for deriving standard forms of the quaternary logic functions.

4. Other translations

For completeness of presentation, we include the polynomial formulas for the binary operator

NOR[x, y]; the unary operators (k)x and xw which are discussed in [HZ2]. Their definitions

follow:

(15) NOR[x,y] =3+MAX[x,y]

(16) (k>x=x + k(mod4), k = 0,1,2,3

(17) x(k) = 3ifx = k k = 0,1,2,3

= 0 otherwise

Polynomial representations for the operators are given in the following:

N0R[x,y] =3+MAX[x,y]

= 3 + (x + y) + xy [2(x + y) + 2(x + y)2 + xy + 3xy(x + y)]

(19) (k>x = (x+k) + xk[3+2(x+k) + xk], k= 0,1,2,3

(20) x<k> = 3[l+(x + k)3], k = 0, 1,2,3

5. Conclusions

We found that all quaternary logic functions of one or two variables can be realized as poly

nomial functions over Galois field GF(4) in one or two variables of total degree at most 6. An

obvious advantage for having polynomial expressions is that we can formally manipulate the elements

of A4, i.e., GF(4) with four arithmetic operations of GF(4) itself as we normally do with the real (or

complex) number field.

If we can design (x + y) and (xy) as basic logic circuit elements*, then we can easily construct

other circuits such as MIN, MAX, x{0'2}, NOR, ^>x and xw. For illustration, take MIN, MAX and
x{o,2} We introduce two logic gate symbols for the operators (x + y) and (xy):

(x + y)=

Figure 1. Circuit symbols for (x + y) and (xy)

Then the following diagrams present one possible design for each function:

*The logic circuit elements were designed by Mr. Chotei Zukeran, Department of Electrical Engine

ering, Ryukyu University; and are included as Figures in the Appendix.
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MIN[x,y]

Figure 2. MIN[x, y] gate

Figure 3. MAX[x, y] gate

Figure 4. Logic gate for x{0'2}

MAX[x,y]

r{0,2}

Some properties of quanternary logic functions over GF(4) will be discussed further in the forth
coming paper [N2].
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Appendix

a. BASIC programs

10 PR#0: REM Printer off

12 HOME

14 DIMM(3,3),A(3,3),B(3),F(3)

16 FOR I = 0 TO 3

18 FOR J = 0 TO 3

20 READ M(I, J): REM Define multiplication

22 NEXT J

24 NEXT I

26 DATA 0,0,0,0,0,1,2,3,0,2,3,1,0,3,1,2

28 FOR I = 0 TO 3

30 FOR J = 0 TO 3

32 READ A(I, J): REM Define addition

34 NEXT J

36 NEXT I

38 DATA 0,1,2,3,1,0,3,2,2,3,0,1,3,2,1,0

40 HOME

42 PRINT "Type in: f(0), f(l), f(2), f(3)"

44 PRINT

46 FOR X = 0 TO 3

48 INPUT F(X): REM Define the logic function

50 NEXT X

52 PRINT •

54 PRINT "Hit any key to continue";

56 GET A$

58 HOME

60 PR#1: REM Printer on

62 PRINT : REM Display the function table

64 PRINT "x"; " >"; "f(x)"

66 PRINT

68 FOR X = 0 TO 3

70 PRINT X; " >"; F(x)

72 NEXT X

74 PR#0: REM Printer off

76 PRINT

78 REM The coefficients are determined

80 B(0) = F(0)

82 B(l) = 0

84 FORX=0TO3

86 I = M(X,X)

88 J = M(I, F(X))
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90

92 NEXT X

94 B(2) = 0

96 FOR X = 0 TO 3

98 J=M(X, F(X))

100 B(2)=A(B(2),J)

102 NEXTX

104 B(3)=0

106 FORX = 0TO3

108 J = F(X)

110 B(3) = A(B(3), J)

112 NEXTX

114 REM Output the result in polynomial form

116 PR# 1: REM Printer on

118 PRINT "f(x)="; B(0); "+"; B(l); "x+"; B(2); "xx+"; B(3); "xxx"

120 PRINT

122 PR# 0: REM Printer off

124 PRINT "Continue=anykey;Stop=Q";

126 GET A$

128 IF A$ = "Q" THEN 132

130 GOTO 40

132 END

10 PR#0: REM Printer off

12 HOME

14 DIM M(3, 3), A(3, 3), B(3, 3), F(3, 3)

16 FOR 1=0 TO 3

18 FORJ = 0TO3

20 READ M(I, J): REM Define multiplication

22 NEXT J

24 NEXT I

26 DATA 0,0,0,0,0, 1,2, 3,0,2, 3,1,0,3,-1,2

28 FOR I = 0 TO 3

30 FOR J = 0 TO 3

32 READ A(I, J): REM Define addition

34 NEXT J

36 NEXT I

38 DATA 0,1,2,3,1,0,3,2,2,3,0,1,3,2,1,0

40 HOME

42 PRINT "Type in: f(0, 0), f(0, 1), f(0, 2), f(0,3), f(l, 0), f(l, 1), f(l, 2), f(l, 3), f(2,0),

f(2, 1), f(2,2), f(2,3), f(3,0), f(3,1), f(3,2), f(3,3)"

44 PRINT
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46 FOR I = 0 TO 3

48 FOR J = 0 TO 3

50 INPUT F(I, J): REM Define the logic function

52 NEXT J

54 NEXT I

56 PRINT

58 PRINT "Hit any key to continue";

60 GET AS

62 HOME

64 PR# 1: REM Printer on

66 PRINT : REM Display the function table

68 PRINT "(x, y)";" >"; "f(x, y)"

70 PRINT

72 FOR I = 0 TO 3

74 FOR J = 0 TO 3

76 print "(";i;V;J;")";" >";F(i,j)

78 NEXT J

80 NEXT I

82 PR# 0: REM Printer off

84 PRINT

86 REM The coefficients are determined

88 B(0,O) = F(0,O)

90 B(1,0) = 0: B(0,1) = O

92 FORX = 0TO3

94 I = M(X,X)

96 J = MO, F(X,' 0)): K = M(I, F(0, X))
98 B(l, 0) = A(B(1, 0), J): B(0,1) = A (B(0,1), K)

100 NEXT X

102 B(2,0) = 0: B(0,2)=0

104 FORX = 0TO3

106 J = M(X, F(X, 0)): K = M (X, F(0, X))

108 B(2, 0) = A(B(2, 0), J): B(0,2) = A(B(0,2), K)

110 NEXTX

112 B(3,0)=0: B(0,3)=0

114 FORX = 0TO3

116 J = F(X,0): K = F(0,X)

118 B(3, 0) = A(B(3, 0), J): B(0,3) = A(B(0,3), K)

120 NEXTX

122 B(l,l) = 0

124 FORX = 0TO3

126 FORY = 0TO3

128 I1 = M(X,X): I2 = M(Y,Y)
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130 J1=M(I1,I2): J2 = M(J1,F(X,Y))

132 B(l, 1) = A(B(1,1),J2)

134 NEXTY

136 NEXT X

138 B(l,2) = 0: B(2,l) = 0

140 FORX=0TO3

142 FORY = 0TO3

144 11 = M(X, X): 12 = Y: Kl = X: K2 = M(Y, Y)

146 Jl = M(I1,12): J2 = M(J1, F(X, Y))

148 LI = M(K1, K2): L2 = M(L1, F(X, Y))

150 B(l,2)= A(B(1,2),J2);B(2, 1) = A(B(2, 1), L2)

152 NEXTY

154 NEXTX

156 B(l,3) = 0: B(3, 1) = 0

158 FORX=0TO3

160 FORY = 0TO3

162 I1=M(X,X): K2 = M(Y, Y)

164 Jl = M(I1, F(X, Y)): J2 = M(K2, F(X, Y))

166 B(l, 3) = A(B(1,3), Jl): B(3,1) = A(B(3, 1), J2)

168 NEXTY

170 NEXTX

172 B(2,2) = 0

174 FORX = 0TO3

176 FORY = 0TO3

178 11= M(X, Y): 12 = M(I1, F(X, Y))

180 B(2, 2) = A(B(2, 2), 12)

182 NEXTY

184 NEXTX

186 B(2,3) = 0: B(3,2) = 0

188 FORX = 0TO3

190 FORY = 0TO3

192 II = M(X, F(X, Y)): 12 = M(Y, F(X, Y))

194 B(2,3) = A(B(2, 3), II): B(3,2) = A(B(3,2), 12)

196 NEXTY

198 NEXTX

200 B(3, 3) = 0

202 FOR X = 0 TO 3

204 FOR Y = 0 TO 3

206 B(3,3)=A(B(3,3),F(X,Y))

208 NEXT Y

210 NEXTX

212 REM Output the result in polynomial form

214 PR#1: REM Printer on
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216 PRINT "f(x, y) ="; B(0, 0): "+"; B(l, 0): *x+"; B(0, 1); "y+"; B(2,0); "xx+"; B(l, 1);

"xy+"; B(0,2); "yy*-";B(3,0); "xxx+"; B(2,1); "xxy+"; B(l,2); "xyy+"; B(0,3);

"yyy+"; B(3,1); "xxxy+"; B(2,2); "xxyy+"; B(l,3); "xyyy+"; B(3, 2); "xxxyy+";

B(2, 3); "xxyyy+"; B(3, 3); "xxx"

218 PRINT

220 PR#0: REM Printer off

222 PRINT "Continue=any key;Stop=Q";

224 GET A$

226 IF A$ = "Q" THEN 230

228 GOTO 40

230 END

b. Logic gates

+ 5V +5V

x+y

Figure A. 1. (x+y) gate
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+ 5V
1

xy

Figure A.2. (xy) gate


