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The technique that constructs strain ellipsoid from three
strain ellipses measured on non-parallel sections based
on the least square method and the factors that control

precision of strain

Daigoro HAYASHI*

Abstract

The least square strain technique that was developed by Hayashi (1994) and is based on
the least square method is explained in detail. The technique uses the strain ellipses on three
non-parallel section planes of oriented rock samples to construct strain ellipsoid. Three series
of model are prepared to examine what kind of factor controls the precision of strain where
the axial ratio of initial strain marker ellipsoids is assumed to scatter as normal distribution.
Three series of model are produced to test three factors; (1) The sample size of markers. (2)
The mean of axial ratio of makers and (3) The standard deviation of axial ratio of markers.
Results of the simulation are; (1) When the sample size of the initial strain marker ellipsoids
is large, higher the precision of strain analysis is. (2) When the mean of axial ratio of the
initial strain marker ellipsoids is small, higher the precision of strain analysis is. (3) Although
the standard deviation of axial ratio of the initial strain marker ellipsoids varies, the precision
of strain analysis does not change.

1. Introduction

There are several techniques that are developed to construct strain ellipsoid by using
strain ellipses on three section planes. The techniques that construct strain ellipsoid using
strain ellipses on three mutually perpendicular planes, were described by Ramsay(1967),
Oertel(1970), Roberts and Siddans(1971) and Shimamoto and lkeda(1976). Since the strain
ellipse that is measured on a section plane includes error, the shape of the strain ellipse does
not coincide the projection of strain ellipsoid to the plane. We can theoretically obtain six
strain ellipsoids from the three measured strain ellipses (Hayashi;1994,1995). If the
measurement of the three strain ellipses does not include error, the six strain ellipsoids equal
to each other. Thus the techniques that use the strain ellipses on the mutually perpendicular
planes are derived from the idea. The shape tensor of the strain ellipsoid is given as the mean
of the shape tensor of the six strain ellipsoids. Thus we agree that the strain ellipses that we
will measure, do not necessarily lie on mutually perpendicular planes.
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From the point of view, Milton(1980), Owens(1984), De Paor(1990) and Hayashi(1994)
have developed the methods that construct strain ellipsoid using strain ellipses on non-
parallel planes by means of the least square method except for Milton. Although
Hayashi(1994) has described the technique of three dimensional strain analysis based on the
least square method in detail, he has not examined the precision of the technique.

In the present paper I have explained the strain analysis technique that was developed by
Hayashi (1994). The technique is called here “least square strain technique”. Then I have
simulated three series of strain analysis to examine the relation between the precision of the
least square strain analysis and the three factors. The shape of the strain markers is assumed

to be ellipsoid. Their axial ratio Ri(= %) is supposed to show normal distribution. Three

factors are (1) the variation of sample size of strain markers, (2) the variation of mean of the
axial ratio (R)) of strain markers and (3) the variation of standard deviation of the axial ratio
(R)) of strain markers. The simulation is performed as follows. (1) Several hundred randomly
oriented marker ellipsoids are produced. (2) They are deformed to have (R,r, ¢) data. (3)
Strain ellipsoid is calculated using the (R/, ¢) data by means of the least square strain
technique.

2. Least square strain technique

2.1 Two dimensional strain analysis

The methods how to obtain strain ellipse using marker ellipses on each non-parallel
plane, that is, the techniques of two dimensional strain analysis were developed by many
researchers. The techniques of two dimensional strain analysis are divided into two
categories. One is the shape method where we treat strain markers as if their shape is ellipse,
and the other is the direction method where we use any suitable lines, for example, mineral
grain boundary, as a strain marker. The shape methods were described by Ramsay(1967),
Dunnet(1969), Elliott(1970), Dunnet and Siddans(1971), Matthews et al. (1974), Shimamoto
and Ikeda(1976) and Lisle(1977,1985). The direction methods were published by
Sanderson(1977), Fry(1979) and Panozzo(1984). We can use one of them to obtain strain
ellipse on a section plane of oriented rock samples.

2.2 GS method

When we want to construct strain ellipsoid using strain ellipses on mutually non-parallel
u

planes, we should describe the long and short axial length of
the strain ellipses on non-parallel planes by the ratio of axial
length assuming a certain axial length of a certain strain
ellipse to be unity. To do this, I have used the method
® developed by Gendzwill and Stauffer(1981). The method is
eunce Called here “GS method”. The method was originally
developed in order to calculate the ellipse on the plane that
includes the center of the ellipsoid, if a given ellipse lies on a
o= ) . plane that does not include the center of an ellipsoid. I have
::f;ssﬁ; m’&:&miﬁmﬁﬁlmwm used the GS method to obtain rela?ive axial length of ellipses
arbitrarly cut. Thre vectors x, y and are the interscting ©1' MUtually non-parallel plane sections.
Tines of two planes among the hree planes. As shown in Fig.1, let cut arbitrarily an ellipsoid through

S plane A
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4’ three section planes A, B and C that include the center of

y a — ' the ellipsoid, and let define the intersecting line between A
‘ and B as vector x . The elongation along vector x on both
dia! ratio & planes A and B must be €qual. If the plane A does not

plano C

include the center of the ellipsoid, the shape of the ellipse

Q' ’ on the plane A is similar but its area is constricted than
y 7 ‘ \Q“ that of the ellipse on the plane. The plane is parallel to A
QA x and passes through the center of the ellipsoid.

LT asiat vatio 5 As shown on the plane A in Fig.2, considering the
plane A plone length of x as I,, the point (IA cosaq, Is sin a) is a tip point

Fig:2 Stran elipse on three planes A, B and C. See of x in t'he coordln?te system where the .long axis anfl the
text for detail short axis of the ellipse are taken as abscissa and ordinate,

respectively. Since the tip point lies on the arc of the
ellipse, supposing the axial ratio of the strain ellipse on the plane A to be R, the tip point
satisfies the relation

x 2
(7)1
Then we have

I cos’a

e * Idsin*a =1
1

This is modified to

lﬁ%=l-[l- Rl;2 ] coszq.

For the case of plane B, considering the length of x to be Iz and the strain ratio on B to be
Rz, we have

1 1
T =1- [1“};‘] 6052/9.
The section multiplier p of the plane A to the plane B is obtained from s = pls as p = %— .
B

I have taken the same approach described above to estimate the section multiplier q of
the plane C to the plane A. Suppose that (1) the intersecting line of the planes A and C is
vector y, (2) on the plane A the length of y is I4 (3) on the plane A the angle between long
axis of strain ellipse and y is o', (4) on the plane C the length of y is I/ (5) on the plane C
the angle between long axis of strain ellipse and y is ", and (6) the strain ratio is R; on the
plane C. Then the section multiplier q of the plane C to the plane A is obtained from the
relation

li=qlc as q-= ;—:. where

—#-=1- [IRLE] cos’a.
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#=1- [1 --ﬁ] casfy’.

Supposing the length of the short axis on the plane A to be unity, we have relative length
of the long and short axial length on all the planes as (1) X=R; and Y=1 for the plane A, (2)
X=Rzp and Y=p for the plane B and (3) X=Rsq and Y=g for the plane C.Thus the GS method can
be used to calculate relative axial length on the section planes by using the section
multipliers p and q.

Incidentally relative principal reciprocal quadratic extensions A, and A, are written
according to their definition as A= % = 7;—2 and A= —%: = —}—}—z , respectively.
2.3 Least square strain technique

The least square strain technique that extrapolates strain ellipsoid using the relative
axial length of strain ellipses on mutually non-parallel planes, is explained as follows. Any
ellipsoid is written as

axz+2bxy+2czx+dy2+2eyz+hzz=l.

Consider the next function

fayzabedeh) = ax® + 2bxy + 2cax + dy + 2ey2 + bzt - 1 = 0. (1)
The problem that we should solve is to obtain the shape tensor
a b ¢
[od i)
sym h

of the ellipsoid by measuring coordinate of points that are believed to consist the ellipsoid.
The points are practically the points that are scattered on the arc of the strain ellipse on a
section plane. To accomplish this purpose Hayashi(1994) proposed the next approach.
Supposing the measured coordinate of the points that consist the surface of the ellipsoid as
(X;, Y, Z) and the true coordinate as (v, y;, z) where i takes from 1 to sum of the points, residuals
are
Ve X -x,
Vy=Y-y
Vy=Z,-z
The formula are changed to
X=X -v,
Yi=Y-v, @
q=4-v,
The true value (x;, 3, z) satisfies Eq.(1)
S, vi, 25 2, b, ¢, d, e, B)=0.
Supposing the approximate value of the six coefficients a, b,..., & as a', ¥',...,k’ and considering
Ea, Eby..., &y as error, we have
a=a'-¢,
b=b'-¢,

&)

h=h'-¢,
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It is worth to note that we can previously determine the six coefficients a’, b',....,2’ by using the

coordinate (X;, ¥;, Zi ) of six arbitrary measured points.

Substituting Egs.(2) and (3) into Eq.(1), we have

f X0, Yy, Ziv,a™-€,,b"- E,6- €., d- E48- ELB'-E,) =0

Expanding this by the Taylor expansion and abbreviating the terms that are under the second
af )

differential, we have
[ af af
X Y, Zabcdehn)- ( ) ( —(—] v —(—) £,
AX X2, ax), < \ay az), "= \3a),

(58], o0l e

This is rewritten as

O = S = SV SV = [iVa = fu€a = o6, — L. — Julbs — oo — foEs = O (C))]
where

fu =X X 250 b ' d ¢ h')

afy . (af\ . (af
fa (ax) IR (ay) b s (az)

afy . (afy . (af ®)
Lo (an R (ab) ﬂf‘(ac)ﬁr

any (L) ., (3
fa= (ad) P fan (ae)x e [ah)'ﬂf

Supposing the weight of each measurement as px , p» and p= , “sum of weighted square
residuals” S is

Sa 2l(pﬂvn,z +Pvy + P vn.’) . 6)

Thus to minimize Eq.(6) under the condition Eq.(4), we minimize

&= —S zzﬂ’t

using the Lagrangean multiplier A ; . From the condition we have

a

a_‘il =PVt Afi=0 7.1

dg

3—- =PVt NS, =0 (7.2)

33

9_1‘,; =pVy+ Sy =0 @3

_g - z A, =0 (7.4)

28 - Ellfb. (7.5)
iml

a—g-zl,f‘, =0 (7.6)

c 1=l
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a_g n

2, 21 S = (7.7
a n

e gz., fu=0 7.8)
ag S-S -0 7.9

A Af, A
Eqs. (7.1), (7.2) and (7.3) are changed into V.= __;i‘a. Vy = -71 , and v; = ——;&- .
respectively. Substituting these into Eq.(4), we have = Y Y

fd*(%ﬁ—fﬂ"'ﬁ

2, Ivﬁ-]a, = Ji€a = fules = L. = ufa = LE. - s =O. @
e Py

Using the next equation

X _fuba  Side Sify
Po Py Py Py

, Eq.(8) becomes
Ay = Pl fia + Sy + L+ fia + fuE+ Sl = £). ©)

Substituting Eq.(9) into Eqs.(7.4) to (7.9), we have

S Pl i+ I+ Lt fut st L4 Fus - £) =0
S Putul 184 s+ i+ Su s L4 Fyty - £) 0
gp.,f,.(f,,,e bt L+ Suat L+ ua = ) =0

gp,,fa(fde S+ St ua b o+ Sy = fu) =0

zpaf.‘ Julat S+ £+ [+ LB+ [y - fu) =0
E'Po:fu(fuea +ffy + L4 [yl + LE. + fi6, _fol) =0

Rearranging them regarding g, €,...., £, we have

lp.ir)e+[pott e+ p. st Jer [ponr)et [p st et [P st ] 6m [ ]
[p.sit)er [Pt et [p. bt Jer [posit)et [psif ) e+ [P fih | 6= [pufif]
[r.r e+ [potir e (oot Jer [p st et [p s et [pot ) 6= pufit]
(Potit e[ st )er [p. £ )t [P fis et [P bt )6+ [P S )&= 2 £t ]
[posit)et[p st ]t [posir et [pofis et (oot f )et [P f ) erm [P 1]
[port)etlphir)ear[p. 5 et [Pt et [Pofif )et [Pt ) e [P 1 1)

(10
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Symbols that describe Eq.(10) are defined as
[pr b] = ‘-Elpafufas = PaSosfor + ParSuafor + - % PonSinJon

And so forth.
We can calculate g, €,,..., &, by solving Eq.(10). Then substituting &, &;,..., &, into Eq.(3),
we can finally obtain a,b,...,A.

For example in the case of ellipsoid, let calculate the concerning differential coefficients of
the function f of the ellipsoid by using Eq.(1) as follows.

3—£=2(ax+by+cz)

af
3y =2(bx+dy+ez)

af
oz =2(cx+ey+hz)

af .. 9f . 9f Lo8f . 9f L 9f
Ja "% p TV G G o= =T

Then Eq.(5) becomes

Lo =aX2+26XY, +20ZX, + d'Y + 2¢¥Z, + HZ} -1

Ju =-2(a'X, +b'Y+ c'Z,)

fu=2(bX, + aY, + €Z,)

fu=2(cX, + Y, + 1'Z,)

fu=XPy fu=2XY: fi=2ZX,: fu=Y': fu=202; fu=2Z'.

The expression of p; is

L - fuku + fyif;l + fg’fg R
Pou  Pu Py Py

Supposing all the weights to be unity, that is, p«i = py = p= = 1, the simpler expression of pe
becomes

1

pﬂaf.;z"‘ ,11+f;;2.

2.4 Procedure of three dimensional strain analysis by means of the least square strain technique

(1) Cut out three non-parallel planes from oriented rock samples and name them as planes A,
B and C.

(2) Calculate the direction of long axis and the axial ratio of the strain ellipses on the planes
A, B and C by means of the two dimensional strain analysis,

(3) Calculate the relative axial length of the strain ellipses by the GS method.

(4) Calculate the shape tensor of the strain ellipsoid that is constructed from the strain
ellipses by the least square strain technique.
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(5) Calculate the axial lengths X, Y and Z using the eigen values of the shape tensor C of the
strain ellipsoid. Supposing that A,, A, and A; are the eigen values of C and that

A|<lz< As

,we have the axial lengths of the strain ellipsoid as

x-fr. r-fr. oz fE

,where X>Y>Z.

(6) Calculate the direction of X, Y and Z of the strain ellipsoid using the eigen vectors of C.
The direction of X, Y and Z equals that of the eigen vectors that correspond with A ,, A, and
A3, respectively.

3. Precision of three dimensional strain analysis performed by the least square strain
technique

3.1 Property of strain marker
Strain marker is assumed to have the following properties.
(1) Shape of the marker is ellipsoid.
(2) There is no competency contrast between the marker and the matrix.
(3) Direction of the initial principal axes of the marker is random.
(4) Markers are homogeneously deformed.
(5) Markers do not change their volume during deformation (refer to Appendix A).

(6) The axial ratio (Ri= -)Z(f;) of the markers shows normal distribution.

The assumptions from (1) to (4) are the same those in the case of two dimensional finite
strain analysis using ellipse-shape strain markers. I have supposed that the conditions of (5} and
(6) are reasonable for the natural strain markers.

3.2 Models

I have examined how the following three factors affect to the precision of the least square
strain technigue, assuming that the axial ratio of the strain markers shows normal distribution.
(1) Variation of the sample size of the strain markers
(2) Variation of the mean of the axial ratio of the strain markers
(3) Variation of the standard deviation of the axial ratio of the strain markers

Three series including twelve models are produced to perform the aim. Ten models within
the twelve’s are independent because the model 38 is used repeatedly third times in the different
series.

(1) Series A
The sample size (#) of the markers varies, though the mean (#) of the axial ratio of the
markers is fixed as 2 and the standard deviation (o) of the axial ratio of the markers is fixed
1 .. .
as - The series is composed of the following four models.
model 44 # = 100
model 38 # =300
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model 45 # = 600
model 46 2z = 1000

(2) Series B ‘

The mean () of the axial ratio of the markers varies, though the sample size(#) and the
standard deviation (g ) are fixed as =300 and ¢ = % . The series includes the following
three models.
model 38 m =2
model 39 m =3
model 40 m =4

(3) Series C
The standard deviation (g )of the axial ratio of the markers varies, though the sample

size (1) and the mean (m) of the axial ratio of the markers are fixed as #=300 and m=2. The
series includes the following five models.

model 38 o= % .

model 50 ¢ = % .
model 51 g = % .
model 52 ¢ = % .
model 41 ¢ =0.

3.3 Preparing marker ellipsoids
3.3.1 Producing normal random numbers whose mean is m and standard deviation is O

Normal random number is produced from uniform random number by the Box and
Miiller method. Using two uniform random numbers #; and ;. , the normal random numbers
2z and z,; whose mean and standard deviation are m and @, are calculated by the equations.

z = J-2logu, (cos27)(u,, )0 + m
Guy= J‘2 logu, (sin 2”")(“1‘1)*' m Xit=)
-

The axial ratio (R)of marker ellipsoids is assumed to the 4
normal random number.

Rinm=Xi/Zi
Ri=mal

3.3.2 Producing two axial lengths of marker ellipsoid whose axial 2
ratio is R;
Being different to the case of a point of strain ellipsoid -
(strain point), a point of marker ellipsoid (marker point) ! 1
does not lie on the curve X; Zi=1 on X; Z; diagram (refer to > Ziw
Appendix A). Thus we cannot locate the marker point by R, 1
but we should represent the marker point on the X; Z; Fo3 X Z dagran. ¥t is deined to be waity P is the
. ial lengths. X; and Z . Wi ttenti intersecting poinl of a line y=mx and a line y=1. By is the
diagram by the two axial lengths, X; and Z; . We pay attention infersecing pont o y=mx and xeL, The distance between A
that Y; is defined as unity. On the X; Z; diagram (Fig.3), the andPyisuity.

fength=1

marker point (Zi, Xi)
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intersecting point of a line Xi=R; Z; and a line Xi=1 is P and the intersecting point of a line
Xi=Ri Z; and Zi=1 is P,. The distance between P, and P is assumed to be unity. We define
arbitrarily a marker point (Z;, Xi) by producing a random number among 0 to 1 as follows. On
the X; Z; diagram, let rewrite the variable Z; to x as abscissa and variable X; to y as ordinate,
and R; to m. Since the point P, is the intersection of both the lines

y=mx
{ y=1
1 . . L . .
, we have the coordinate of P as (;, l) . Similarly for the point P; which is the intersection
of

Y = mx
x=1

, we have P; as (1, m). Therefore, when we divide equally the distance between P, and P; into
n parts, the both increments of x and y are

_m=)

Yine
L n

We have the coordinate (x, w)of the & th point as

{ 1 1\ k
x, n;#-(l—;);

Y- 1+(m-1)£
L n

If we want to produce random points ranging between P and P: on the line y=mx, we
exchange a value of % to a random number among 0 to 1. If we have calculated the coordinate
(42, y) in this manner, the (x, ) could be the coordinate of a random marker point (Z;, X3). Since
Y=1 on the XiZ; diagram, three axial lengths of the marker ellipsoid are obtained as X;, 1 and Z;
Thus the distribution of initial marker points regarding a couple of typical model is illustrated in

Fig 4.
@ ©
N ‘ s+ - -
o ! Co
! N | T R A
L | bl
T 3 P

Xi

| o
e - 24— AR . _.,i .- :
| I
R 14+ . ! e 2
|
S

I
|
|

e
| .
i —
a s 0 3 4

2i Zi Zi
Fig.4 Distribution of initial marker points on X;Z; diagram.
a : model 46 (sample size is 1000) as an example of the series A. b : models 38,39 and 40 (m is 2, 3 and 4) of the

O
0 S
1 3

(=]
[ S—
X T S S ——

. .1 .
series B. c:model 52 ( 0 is 1z ) as an example of the series C.
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3.3.3 Random distribution of principal axes of marker ellipsoid

Producing the marker ellipsoid whose axes are randomly oriented has the same meaning
that we produce an orthogonal XYZ system that rotates arbitrarily around an orthogonal Xyz
coordinate system. If the direction of the X axis is indicated by the Euler angle (®, 83, 7), we
have

cos’@ + cos? B + cos? T =1

The formula is changed into

08y = 24l - cos’ &t - cos B.

The X, Y and Z axes are calculated by the following procedure.

(1) Define @ and 3 randomly.

(2) Define 7 using the above formula. Then X axis is obtained.

(3) Repeat the calculation from (1) to (2), and define the other axis which is called P axis.
(4) Define Y axis as the intersection of two planes whose poles are X and P axes.

(5) Define Z axis as the vector product of X and Y axes.

3.3.4 Representation of marker ellipsoid in xyz system

Taking the orthogonal XYZ system that is produced at the section 3.3.3 to the present
coordinate system, we write marker ellipsoid as follows.
XTAX =1
The equation of the ellipsoid can be changed to the equation that is presented in the other
coordinate xyz system if we know the transform tensor between the two coordinate systems. The
transform tensor is supposed here as

X="Tx
where

cosf, cosf, cosf,
T=|cos@, cos0,, cosl,]|.
cos@, cos@,, cosb,,

The Euler angle of X axis is (cos @11, cos @12, cos 013) and those * ~_

of Y and Z axes are (cos @2, cos 02, cos 023) and (cos @2, cos @ ™~

2, cos O), respectively as illustrated in Fig.5. The marker
! ellipsoid described in

4

the Xyz system is . .
. * (IXTA(TX) =1 Fig.5 Two orthogonal coordinate
xT(TTADx = 1. systems, xyz and XYZ.

3.4 Deformation of marker ellipsoid

/ y Showing in Fig.6, let transform a place vector x into
X' by the deformation tensor G (refer to Appendix D).

Fig.6 A place vector x presented in xyz x'=(Gx
coordinate system. The vector x is transformed
into vector x' by deformation tensor G. We rewrite it to
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x=G'x'\

Supposing the marker ellipsoid before deformation as
xTAx =1

, the marker ellipsoid after deformation becomes
xT(GHT AGX' = 1.

For each model the marker ellipsoid is deformed ninety times varying the axial ratio (R) of strain
ellipsoid from 1.1 to 10 at interval 0.1.

3.5 Precision of models of each series

Regarding three series including twelve models described in the section 3.2, strain ellipsoid
is calculated by the least square strain method. We cannot clearly recognize the difference
between the calculated strain and the true strain on the normalized Flinn diagram** since the
difference is small. Thus I take the distance between the calculated and the true strain points on
the normalized Flinn diagram as a parameter of strain precision, which is called “distance
precision”.

3.5.1 Distance precision of models of each series

In order to compare the models of each series, I have used the diagram where the distance
precision is taken as ordinate and the axial ratio (R) of true strain is taken as abscissa. It seems
that the strain precision does not depend on the sample size from Fig.7a*** for the series A.
When the value of strain is larger, the order of the distance precision of each sample size changes.
Thus the sample size does not clearly depend on the strain precision. From Fig.7b for the series
B, when the mean of the axial ratio of marker ellipsoids is small, the strain precision is high. From
Fig.7c for the series C, the standard deviation of the axial ratio of the marker ellipsoids does not

@ (®) ©
oIt po 03T | 03 > 3
(o _moseias] i o mode) 38 ‘ model
; I o model 50
Cimewl |
5 [> mosel 45 ' g P—— - o model S1|
§ 0.2t : I g o2 o [ g . - =
- = d ' g‘ 5 model 41
8 ; 8 M g
g o.104 E. ey . - .g 0.104+ ‘. :g .10 ¥
[ 0 { + 1 i o

Fig.7a Distance precision of models for series A Fig.7b Distance precision of models Fig.7¢ Distance precision of models
Distance precision is taken as ordinale. Abscissa shows for series B. Others are same as in for series C. Others are same as in
true strain ratio R, The distance precision is the distance Fig.7a. Fig.7a.

between the calculated and the lrue strain points on the

normalized Flinn diagram.

** The normalized Flinn diagram is the Flinn diagram where the length of Y axis is defined unity. As a
result the abscissa is 1/Z and the ordinate is X in this diagram.

*** One or two points near R=1 on Fig.7a is deviated from the curve. This might be due to the instability
of the calculation,
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relate to the strain precision.

3.5.2 Angle precision of models of each series

In order to compare the angular precision of the models of each series, I have used the
diagram whose ordinate is angle precision and abscissa is R. The angle precision is the difference
between the direction of the long (X) axis of the calculated and the true strain ellipsoid. Since the
tendency of three principal axes X, Y and Z are almost the same, the tendency with regard to the X
axis is described as the representative of the three axes.

Fig.8a for series A shows that the angle precision of X axis is low in the model of 100 sample
size than that of other sample sizes, and among the other sample sizes the angle precision of them
is almost same. Fig.8b for series B indicates that when the mean of the axial ratio of marker
ellipsoids is small, the angle precision of X axis becomes high. Fig.8c for series C shows that the
angle precision of X axis is independent of the standard deviation of the axial ratio of marker

ellipsoids.
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Fig.8a Angle precision of models for serics A Fig.8b Angle precision of models for Fig.8¢ Angle precision of models for
Angle precision is taken as ordinate. Abscissa series B. Others are same as in series C. Others are same as in
indicates true strain ratio R. The angle precisionis Fig.8a. Fig.8a.

the difference of angle between the X axis of the

calculated and the true strain ellipsoid.

Three items are concluded from the description of the sections 3.5.1 and 3.5.2 that (1) the
relation between the strain precision and the sample size of marker ellipsoids is unclear, (2) the
strain precision is high, when the mean of the axial ratio of marker ellipsoids takes a small value,
(3) the strain precision is independent of the standard deviation of the axial ratio of marker
ellipsoids.

3.6 Method to estimate the normalized distance of surface point
The normalized distance is the concept of another precision of strain described by the

calculated and the true strain ellipsoids themselves. The method was originally developed by
Hayashi(1995). The method is described briefly as follows. As shown in Fig.1 , let cut a strain
ellipsoid through non-parallel planes A, B and C. If we divide one twelfth every 30° the arc of a
strain ellipse as illustrated in Fig.9 where the strain ellipse is a section of the strain ellipsoid, we
have located 36 points on the three planes. I call the 36 points “surface points” since they lie on
the surface of the strain ellipsoid. In Fig.10, we represent any vector p as

X
P=|¥|-

z



60 Daigoro HavasHI

2or3

4o0r5

3or2

S9or8

11or10

Fig.9 Twelve surface points on a strain ellipse. ~ Fig.10 A direction vector p is denoted by Euler angle (.8.7)
They divide the ellipse at interval of 30°. and its coordinate is (x.y,2). An intersecting point between p and
the surface of the ellipsoid shows distance / from the origin.

We have the next relation with regard to any vector p
ol =V 4y + 2

where

x y z
COSO ==, COS Bm = COSY =7=:.
[p!

el Il
Suppose that p lies on the ellipsoid

a b clfx

(x z)[ d e[y]-l- (11)
sym hi\z

Eq.(11) is rewritten as

ax®+ 2bxy + 2czx + dy? + 2eyz + hz?= 1.

Suppose the distance between the surface point and the center of the ellipsoid to be /. The surface
point is the point that intersects the vector p and the surface of the ellipsoid. We have relations

x=Ilcos @,y=1Icos B,z=Icos 7
and
P(a cos? @ +2b cos @ cos 3 +2c cos 7 cos@® +d cos? B+2e cos B cos T +hcos? ¥)=1. (12)

I have calculated by using Eq.(12) the distance (E) of a point (P) that lies on the surface of the
true strain ellipsoid measured from its center. I have also calculated the distance (E.) of a point
(P that lies on the surface of the calculated strain ellipsoid measured from its center. If the
direction of both the points P and P is same, the difference between E: and E: are denoted Ex
(=E. -Ej). When E. is divided by E, I call it Ne. Net is the value that is the normalized distance
between a surface point of the true strain ellipsoid and that of the calculated strain ellipsoid, and
I call Ner “normalized distance of surface point”.

Fig.11 shows the normalized distance of the 36 surface points at R=1.1 for the model 38. In Fig.11
the surface point number is taken as abscissa and the normalized distance (N) as ordinate. In the
figure, the line Nu=0 indicates the surface of the true strain ellipsoid. The open circles represent
the normalized distance (Ne) of the 36 surface points. When the open circle approaches toward

































