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Finite Strain Analysis on Geology

Daigoro HAYASHI*
*Department of Marine Sciences, University of the Ryukyus, Okinawa 903-01, Japan

Abstract

Basic concept of deformation and strain is described. Strain ellipse and reciprocal stra-
in ellipse are then introduced as the interface between deformation and strain. Mohr's circle
is explained as the magnificent tool to obtain axial ratio and direction of axis of strain
using graph instead of calculation. Practical techniques in field are described to measure
axial ratio and direction of axis of strain. Practical techniques are the methods that use
the strain grid, glass shard and fossils. The famous R./¢ technique is explained that the
method is invented from applying the theory of superposition of homogeneous strain.

Introduction

There are two variations in finite deformation theory, one is called general finite
deformation theory, the other is called homogeneous finite deformation theory. They are
also called non-affine deformation theory and affine deformation theory, respectively.

The homogeneous finite deformation is, in a word, the deformation in which a line is
transformed into a line and a plane is transformed into a plane. Other deformations
except homogeneous finite deformation belong to general finite deformation.

Deformation that occurs in nature is inhomogeneous finite deformation. Any geological
large deformation thus should be treated with the general finite deformation theory. The
general theory is, however, too complex to handle the geological strain in practice.l treat
therefore of the geological large deformation as homogeneous deformation. Thus, the
deformation described in the paper is the homogeneous finite deformation. Theory of 3-
dimensional deformation is not described here.

I consider the concept of homogeneous deformation and the definition of technical terms
of deformation, and then show how to construct the concept of strain. Several methods
are introduced to get strain in field, for example, strain grid and glass shard and so forth.

All the methods explained here are different ones than those described by Ramsay
(1967) and Ramsay and Huber (1983) in terms of using strict definition of the sign of
angles. The paper describes clearly how to measure angles clockwise or anticlockwise,
and from which direction to which direction. The famous R (/¢ technique is considered as
an applied examples of the theory of superposed finite strain.

I wish to express my thanks to J.C.Jaeger, J.G.Ramsay, M.I.Huber and W.D.Means,
because I write the paper by referring their works (Jaeger,1956;Ramsay,1967;Means,1976;
Ramsay and Huber,1983).

Special Finite Deformation
Dilatation, contraction, pure extension, pure shear and simple shear are well known as
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special deformation.
(1) Dilatation is the deformation where an object extends to two directions at the same
rate. Representation is,

{x;=(1+e)x
» (1 +e)y

where a point P(x, y) is deformed to P: (z:, y) and e is a positive constant indicating

extension ratio.

(2) Contraction is the deformation where an object contracts to two directions at the
same rate. Representation is same as that of dilatation, but e is negative.

(3) Pure extension is the deformation where an object stretches to one direction but
doesn’t change in other direction. Its representation is,

¥x1=(1+e)x
»n = Yy

(4) Pure shear is the deformation where an object extends to one direction and

—(1.2)

contracts to the other direction.

i.’A:|=(1+ex):l:
i = (1 + e ) »

where e: and e, are the constants which indicate the extension ratio for x and y

-—--(1.3)

directions respectively. (1+e:) (1+ey) =1 is the condition of constant volume.
(5) Simple shear is the deformation without volume change and is realized by the next
transformation.

le =z + y tand .
»n = Y

This shows the simple shear parallel to x axis but if it is a simple shear parallel to

—--(14)

y direction, its formula is

b=y + % tanb, ——as)
Furthermore, when these deformations are superposed each other, many deformations
are produced as the cases of general deformation. They are called as superposed
deformation.
(6) Superposed deformation S,+ S,
After suffering simple shear S, parallel to x axis, suffering the other simple shear
S parallel to y axis, representation of the deformation is,

|x,=x+ytan¢.
»n = y

S, "_(1-6)

’xz = x)

Sit+35: v + xitand,

—(1.7)

¥z
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The deformation S+ S: is thus written by original coordinates x and 3.
x; = y itan¢ + x
Si+S: l;yz =y (1+ tanp. tand, ) + x land . (1.8)
(7) Superposed deformation S:+ S,
When the order of deformation is changed,
x, = x
S {yl =y + z tand . — .9
S,+5, Ixz =2z + y tang . - (110)
¥ = »n ’
S:+ S, is represented by the original coordinates x and y.
22 =2 ( 1+ tand. tand, ) + y tand .
S:+ S, |yz = 2 tand, +y —(1.11)
(8) Superposed deformation S+ P
Superposing pure shear P to simple shear S parallel to z axis,
S iJc. =z + y tang ——(1.12)
»n = y
2= (14 e ) =
S+P *yz —(1+ &) (1.13)
Representing S+ P by the original coordinates x and y,
22 = (1 4+ e ) (x+ ytand )
S+P ——(1.14
*}'2 = (14 &) ¥ ( )
{9) Superposed deformation P+ S
Exchanging the order of deformation above,
2= (14 e ) 2
pyB T o TelrE :
*yx=(1+ey)y (1.15)
pts (& = B+ o tend —-(1.16)
y: = n '
Showing P+ S by the original coordinates x and
P+S|zz=(1+ex)x+(1+ey)ytan¢ —(117)
yr = )

(1+ e )y

It should be noted that the final representation of deformation is different due to the
order of superposition.

For example, superposed deformation S;+S: is different to S:+ S, shown by (1.8)
and (1.11). The rule is right not only for the same kind of superposition of deformation,
but for the different kind of superposition. Say pure shear and simple shear, the change
of order of deformation affects to the final representation formula. This is clear from

the examples of superposition S+ P and P+S.
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General Finite Deformation
General deformation means the deformation that is realized by the affine
transformation. The representation is,

xr=azx+ by

y=cx+ dy (@)

where quantities after deformation are described with bar above their symbol.

Transform matrix of (2.1) is defined as

[a b
c d
Reciprocal representation is,
_dx— by
{ . —ca::ci_-l-bca y —(2.2)
YT ad — be
Deformation of a line
Transforming a line y=max+k& by (2.1), we have
Deformation of a circle
Transforming a unit circle x* + 3* = 1 by (2.1), we have
(c*+d°) #—2(ac+bd)xy + (a®+b)y = (ad—bo)? —-—(24)
This is called as strain ellipse.
Deformation of an ellipse
Transforming an ellipse /x> —2mxy + ny?=1 by (2.1), it becomes
prt—2qz y+ryt=1 ——(2.5)
where
_ 1d*+2med+ nc’
{ad—bc)?
o= m (ad+(l;c; ;i- bl(l:)dz-l-nac e (2.6)
16* + 2mabd+ na?
=T (ad—bo)?

If this ellipse becomes a unit circle, the original ellipse is called as reciprocal
strain ellipse. The condition for the case is p=7r=1 and ¢=0. Then the reciprocal
strain ellipse is written as

(a*+c?)x* + 2(abtedzy + (b2+d)y = 1 —-(2.7)
Principal axis of strain

A principal axis of strain means the direction where the original perpendicular
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direction keeps its perpendicularity. The line that is normal to y=mz is y=— z
m.

Since the gradient of y=mx after deformation has already given as ::I: by (2.3), the
gradient of y=~— iafter deformation is obtained by replacing _T}z to m in the former
formula. The result is mc:(z .If these two lines are perpendicular each other, we have

md+c me—d

mb+a ma—b I ~—(28)

Then we get
at—=bt+c'—d*
2 -— =0 e
m?+ whtod m—1=0 (2.9)

where m should have two real solutions. The directions of m and —_nlt are called as

o + —d
principal axzes of strain before deformation,while the directions of Z: +: and :;_ pare

called as principal axes of strain after deformation.

We can now obtain the principal direction of strain from m that is calculated from
(2.9).

It is clear, omitting its proof here, that the principal axis of strain before
deformation coincides with the principal axis of reciprocal strain ellipse and that of
after deformation corresponds to the principal axis of strain ellipse. We thus call the
ellipse, which has to be called as deformation ellipse because it was deformed from a
unit circle, as a strain ellipse.

Axial length of strain ellipse

In order to seek axial length of strain ellipse, let consider the intersection of a
strain ellipse and a circle.

(c?+d?) 2* — 2(ac+ bd) x y+ (a® + b2) 32 = (ad— bc) *

{ FAy=r T (2.10)
Eliminating constant terms in the simultaneous equation (2.10),
we have
(czz’fdz - ?7)12—2"“:‘“ 2y + "“;f’z ¥=0 —-(2.11)
where
h*=ad— be. —-(2.12)

If the strain ellipse and the circle contact at two points each other, the quadratic
curve (2.11) denotes a line. Its condition is that the equation (2.11) is a perfect square.
If this is the case,  becomes axial length of the strain ellipse. The formula D with

which we judge the equation to be perfect square or not is
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_ qactbd s td I\ st b Iy
b= (5 -G - G -P= (213)
Rearranging the equation with regard to r, we have
r—(a?+b+c2+d*) ¥ +h' =0 -—---(2.14)

Supposing the solution of r* to be X* and Y? (X=Y), we have next equations from
the relation of root and coefficient.
X+YV=a+b+c+d -—-(2.15)
X*Y*=ht ——-(2.16)
Then we have XY=A* from (2.16). It should be noted that A* means the ratio of
dilatation. From this relation and (2.15), we get

| (X+Vi:=(at+d)?+(b—0)*
(X—V2=(a—d)*+ (b+0¢)*

X and Y are given by solving simultaneously these equations.

-—(2.17)

Transform Matrix Realizing Irrotational Strain is Symmetric
As described in the section "Principal axis of strain”, the principal axis before
deformation doesn't generally coincide with that of after deformation. Strain is
generally rotational. They however coincide together in a special case. This case is
called as the state of irrotational strain. The condition for the case is

'md+c=
mb+a
mc—d=_ 1 -——-(2.18)
ma—b m
Rewriting them, we have
2 —_— —_—=
bm*+ (a—d)m—c=0 —(2.19)

cm’+ (a—d)m—b=0
In order to hold these two equations simultaneously, the condition b=c is necessary
and enough.

Definition of Finite Strain
There are two kinds of finite strain. One is called as longitudinal strain which
corresponds to change of length, the other is named shear strain which corresponds
to change of angle.
The longitudinal strain has three variations. When length lochanges to /,, they are
defined as follows.
£.,—¢,__di
Lo deo

(1) Extension e=

(2) Quadratic elongation A = (%)2 = (1+e¢°
0

(3) Natural strain € = f;l d¢ = log%= log (14 ¢)
[
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which is also called as logarithmic strain or true strain.

The quadratic elongation is conveniently used to describe large homogeneous finite

strain.

On the other hand, shear strain is defined by ¥ =ten$ where if right angle is
deformed to lose its perpendicularity, the deviation from the right angle is called as

angle of shear ¢.

Let consider a unit circle x*+y*=1 which is deformed to an ellipse. If we considert

Mathematical Representation of Finite Strain

he irrotational deformation, generality doesn’t lose, thus we can use Fig.l.

2=

‘s

tefore defarmation

lel |+Y2/12=1
A /
/ ¢
VA &
ﬁ %8 S

after deformation

Fig. 1. Deformation from a unit circle to a strain ellipse.

A point P is moved to Pin Fig.l, then with respect to the point P we have

A=at+y

and also

| x=x/A 1 =cosf /A,

§=y\//1_z=sin9

V.

—--(4.1)

——(4.2)

where A, and A . are principal quadratic elongations (A ,= A.).

A=2Acos’ @ +

This represents A by the angle before deformation @. It is necessary to indicate A

Aasin® @

by the angle after deformation 8. Modifying (4.2) to

cosf =

<2 §||¥il

inf = ——==
sin P

\/zl_cos 6
VA

min
VA

>

Substituting (4.4) to sin’ 8§ +cos* @ =1 , we have

N

——(4.4)
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1 cos? 8 sin*8
FURY A ——(4.5)
A" =A\cos* 8+ Azsin® 8

where 1,

Avand A are called as reciprocal quadratic elongation and principal
. 1
reciprocal quadratic elongation that are defined as A =

. 1 . 1
=—, =" and A, =—"—
A AT, e A=

Next, we will write shear strain in mathematical form. The contact line at the point
Pis

The equation of the contact line at the point _13(;,3/) is

g3
+

z
L

It is written as

—(4.8)
Substituting (4.2) to (4.8), we have

x cos@  ysing

/Y T

Thus the length of p is

p=/cosﬂ + sin® @

A

-—(4.9)

--—(4.10)
From Fig.l we have

secp = SpE

~—--(4.11)
Substituting (4.11) to (4.10), we have

cos® 8 sin® @
= /A +
sect ‘/( A A2 )

—-(4.12)
While from the definition of 7
Yi=tan*$ =sec*¥¢ -1 e (4.13)
Substituting (4.13) to (4.12)
2 Jarl
yroa( el sin’fy —-(4.14)
A A2

Substituting (4.3) and (cos* @ +sin’8)* =1 to (4.14), we

get
=(A,—A:)cosd sin8

-----(4.15)
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where

RP=4/414, -—-=-(4.16)

This is the representation of shear strain 7 with respect to the angle before
deformation @.

In order to describe ¥ by the angle after deformation &, substituting (4.4)to (4.15),
we have
1

3 ) sin@ cosf —(4.17)
1

Y_ 1
A (Az

This is written as

7 =(A%— X)) sin8 cos@ —-(4.18)
where
L _ Y o
7= (4.19)

Representation of Finite Strain by Means of Mohr’s Circle
Representing A" and 7 with respect to the angle after deformation #,we get next
equations from (4.5) and (4.18)

A =2cos? 8+ Asin* @
{ , . , - = --—(5.1)
Y =(A— A1) sin@ cosf
Considering next two relations,
cost f = l+co;2 [
., l1—cos2 8 —62)
sint g =—————
2
,the equation for A’ is written as
A.= /11+AZ +AI_AZCOSZ§ ___(5.3)
2 2
This is further changed to be
- A'1+A‘z _A'l_l“z -
A= 2 =", cos2 6 (5.4)
While, we have the equation for ¥  as
7 = LZ’“ sin2 6 ——(5.5)

which is equal to (4.18). After squaring (5.4) and (5.5), adding them for each side

Lt daye 4 ypan (izdeye e (5.6)
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This realizes the circle shown in Fig.2. As the equations (5.4) and (5.5) are
modified to

PR VS - PR Vi FRSP
— A‘\_A'z ----(5.7)

T

(A=A /2

|

‘-(.\'1+/\'2)/2—>

Fig. 2. Mohr's circle with which we get values of strain parameters for after deformation.

,the sense of 2 #_is such that clockwise is positive. While, when A and 7 are
written by the angle before deformation #, from (4.3) and (4.15) we obtain

A=A ,cos* 0 + A ;sin* 8
{h27=(/11—:lz)cosﬁ sin@ -——(5.8)

Modifying them similarly as former case

}{—A1+A2 =A'_Azco.920

2 2

A=A ——(5.9)
Ry = “*2—_2 sin2 6

Squaring them and adding them for each side, we have

AI+A2 2 7 R AI_AE
(s ()= (R e

The quadratic curve (5.10) shows the ellipse illustrated in Fig.3. The angle 28 is
here measured such that anticlockwise is positive. If ordinate is calibrated as A*7, the
ellipse is drawn as a circle. When ordinate is calibrated as ¥, we have an ellipse,
where length of axis is given from 7...“=% (k27 nax=R), where R= %Az
is the radius of a circle.
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h<4
7nax=9/h2
{(Ay-45)/2

Fig. 3, Mohr's circle with which we get values of strain parameters for before deformation.

Relation between Strain Ellipse and Mohr's Circle

We will consider the case that a circle is deformed to an ellipse where A,=1.44
and A .=0.49 as shown in Fig4.

y
unit circle $oax  _
b,
85
24
AN X

strain ellipse

Fig. 4, Strain parameters are illustrated on a strain ellipse where A ,=1.44 and 1 .=0489.

(A) Quantities after deformation, which are obtained from the Mohr's circle.
ALt A, A=A,
A= 2 + 2 cos2 8§

—-(5.3)
= “—;*’sinz ] —n(5.5)

(1) Considering the definition ¥ = '1;— , then if A" =1, we have ¥ =7. The direction
# . to which ¥ is maximum after deformation is thus the direction of a contact point

between the circle and a contact line. As we know 28 .= +60.5° from Fig5, we get
8.=+30.25" .

(2) As ¢...=295" from Fig5, ¥ a.x=057
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’
/ﬁm 28 A
A'|\1 Ay

Fig. 5, Mohr's circle for after strain.

(3) The direction #; to which no length changes is the direction of the contact point of
the circle and the line
A1 =1, direction of which is same as that of A,=1, As 28 ;= +57°

from Fig5, §.=+285" .

(4) Strain of any direction after deformation, say 8 =10° , is obtained as follows.
From Fig.5 we have A" =0.73 and 7" =0.23, then we can get A =1.37 and 7 =0.315.
Also we obtain the length of the present direction is \/IT7=1.17 and ¢ = arcian

(0.315)=175" .

(B) Quantities before deformation calculated from the Mohr's ellipse

A_R|+Ag - A'_AzcosZ P
2 E— (5.9)
A [ A 2

Y = ’T sin2 8

(1) The direction &: to which ¥ is maximum before deformation. From Fig.6 we have
28.=%90° , that is, # ,==+45" . It should be noted that the value is constant.
(2) We obtain $...=29.5" and 7 ...=0.565 from Fig6.

Y

Fig. 6, Mohr's ellipse for before strain.
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(3) The direction #: to which no length changes is the direction of intersections of the
circle and the line A,=1, that is, R, and R.. We have 2§ ;=+86" from Fig6, that
is, § =143 .

(4) Strain of any direction before deformation is easily obtained. Say 8 =16.8° , we
have A =1.36 and 7 =0.312 from Fig6. Thus the length of the direction is 4/1.36 =
1.17and ¢ =arcten(0.312) =17.3° . All the quantities obtained are shown on a physical
space of Figd.

Superposed Finite Strain
Superposed homogeneous finite deformation becomes again homogeneous deformation.
Superposition of deformation is usual in geological phenomena.
Axial ratio of initial marker ellipse is described R as shown in Fig.7.If the marker’s
long axis intersects with an angle # to z axis as shown in Fig.8, and if we transform
Avix?+ 2% y°=1 by rotation @, angle of which is #, we have

Avi(x2c0s0 +y:5in8)*+ Az (—225inf +y.c0s8)2=1 -—(6.1)
where A'1iand A':iare the principal reciprocal quadratic elongations (Raz = A—Z)

I{l|

Expanding and rearranging (6.1) for z; and y;
(A1scos? @+ A%2.5in®0)x°—2(A5,— A1) sin8 cosB x::
+(Ahisin® @+ 2. cos* @) y.°= -——(6.2)
/l '11X2+ A 'ziy2=

Y
A2y

\_1 m Xix

Fig. 7, Marker ellipse described by ', and 21,

Aax¥-27 "ixy# A yyl=1

Fig. 8, Marker ellipse rotated its long axis to & anticlockwise from z axis.
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Replacing each coefficient as

Avi=2A4i cos* @+ Azsin®® eeeea (6.3)

Avi=2d,, sin®@+ 2%,cos* 8 —-(6.4)

Y =(A%2,—A'1:)sin8 cosé ——(6.5)
we get

Aviz? =27 2y + Ay yi=1 -----(6.6)

This is the equation denoting the ellipse where the axial ratio is Ri,and leng axis
of which directs # from x axis as shown in Fig.8.

When a circle, radius of which is r, and which encloses the ellipse of Fig.9, suffers
irrotational finite deformation R. as shown in Fig.10, the principal direction of the

y

W

)
Yi !\
/< b

e

&~ —>
Fig. 9, A rotated marker ellipse and a circle of which the radius is ~ and which encloses the rotated
ellipse.

Alyx®=27 "y A gy
Y

%, Yfﬂ—;f ,//Q\H
| i AN

-

=l

-

.//

rJXy

Fig. 10, Ellipses which are deformed from a rotated ellipse and a circle.

ellipse changes from 6 to ¢ and the axial ratio is modified from R, to R;. The
problem is how to represent # and R, by the known values R., R. and #.
We deform the ellipse (6.6) irrotationally by replacing x: by 4/As 2: and y by

+/A%: y; where R.2= i—' =%. We have a deformed ellipse as follows.
2s 1s
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/l'n/l}.xsz—27} A.ls A'zs xsys+llyiA’zaysz=1 """ (6.7)
Replacing each coefficient as
Asi=A%: A0, ---—(6.8)
A'Yl= A'y ) A'z- ----—(6.9)
7’r=7'i ‘\/ll‘u A‘zs "-‘-(6.10)
we have
A'.(xa’—zY'. x;y3+/1'y,y=3=1 ----- (611)

The equation (6.11) is that of the ellipse shown in Fig.10.
If we use the Mohr's circle of Figll, 24,1, and A%, are graphically obtained,
and R, is given from R/ = M We however try to get these values by calculation
1

hereafter.
(1) Introducing 2 ¢
It is clear from Fig.11 that
Y

tan2 ¢ = —/———
Ayi=As
)

-----(6.12)

7"
! l\'“ 2¢(| \A'at g

-2¢ 4

Fig. 11, Mohr's circle.

Considering the equations (6.3, 6.4, 6.5) and (6.8, 6.9, 6.10), and replacing each
coefficient as

Axe=(A": cos* @+ A% sin*@) A\, —-{6.13)
Avi=(A": sin® @+ A% cos’8) A7 v -—-—-(6.14)
7}=m(/l'“-l‘,i) sin @ cos 8 -—--(6.15)
we get
tan2¢ = — 2 m (.A‘Zi _4 21)sind cost? - ; -—-(6.16)
(A1isin®@+A22,c05°8)A2-(A icos* @+ A2isin®8) s
Dividing numerator and denominator by A). and A., and from the replacement
Az Azs

Ri= 1 and RSZ—A. , we have
1i 1s
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2R. (R?—1)sin8 cosd

tan2 § = (sin® @ + R?cos* 8 ) RZ— (cos®* 8 + R%sin* 8) —==(6.17)
Representing (6.17) by using2 4
T
tan2 é = 2R.(Rt—l)sin2¢ (6.18)

(R$+1) (R:—1)+(R?}—1) (R¥+1)cos28
(2) Introducing R.
We know A = A'1cos’§ + A sin® @ as written in (4.5). Then we have next relation
for the ellipse (6.11).
Aii=2A%icost$+ Az sint $ ——(6.19)
Asi=2A1:8in* b+ A cos* d ---—-(6.20)
Dividing (6.19) by (6.20), we get
Ase _ Aiqcos®$+ Asinté

Ave  Avisin®d+A2icost4 T (6.21)
where Ri#= % Then, dividing denominator and numerator by A, we have
11
Axe _ cos’d +Risin® ¢
Ave  sin®d +Rcos* ¢ 622)
Dividing a denominator and numerator by cos® ¢, we get
A'x o 1+Rlztanz ¢
A ‘y 1 - tanz ¢ '|'R(z (6.23)
Thus, we have
A'&‘l_ A‘xl tanz ¢
2 — ————
! A ’x = A ‘v f tanz ¢ (624)
Substituting (6.13,6.14,6.15) to (6.24) and considering
A ’Z i A '2 s
'2 _— 32 — _‘—
R 1, and R 1. we have
2 2 2 __ 2 2 2
Rp= (tan’ 8 +R*)R.*— (1+ R’ tan® §) tan® § —(6.25)

1+R%tan* @ — (tan* 8 + R*)R.2 tan® @

Deformation of Strain Grid
Strain grid means a network with which we measure deformation during short period
(around 1 year) by using survey instrument. Glacial flow is an example. We set up thest
rain grid being a regular triangle as far as possible. After adequate period, we
calculate strain by measuring the deformed network. The network shown in Figl2 is a
strain grid before deformation, while that of Fig.13 is a strain grid after deformation.
(1) Define D and E as CDLAB and AEL BC on Fig.l2.
(2) Define D and E on Fig.13 to hold the next relations.
AD AD BE B E
Bb-BD ™ E¢T EC
(3) Then,we have #4s and ¢ cc from Figl3. 7 .: and 7 sc are also calculated from
Yas=tand sz and ¥ sc=1iand ac.
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A

Fig. 12, Triangle before strain. Fig. 13, Triangle after strain.

(4) Aas and Asc are obtained from the definition, that is,

Aap = (ATBE)Z and Agzc= (%)2

(5) Make an arbitrary ¥ /A coordinate on Fig.l4.

’
(A 5c, ¥ 'sey
Pac
Ay e A% A
-0
pAB 29_13
(A'4e. 7 sl

Fig. 14, Mohr's circle for deformation of strain grid.

(6) Calculate the coordinates of Pas (A'ss,7xs) and Psc (A%5c,? sc).

(7) Draw the points P.s and Pjc in Fig.l4.

(8) Draw a circle which connects two points Pis and Psc, center of which lies on
A’ axis. .

(9) Confirm the relation, angle(Pis,0,Psc) =22,

(10) Then, we obtain 28 1s. 8 s is the principal direction.

(11) Calculate A, and A: from A and A%.

Deformation of Glass Shard
Glass shard is a set of three joints that intersect 120° together. We thus know two
angles @ and B before deformation and we get two changed angles @ and B after
deformation. The technique how to get strain is described here.
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(1) Draw a line AB on Fig.15.

(2) Make a triangle AABC by using @ and 8.

(3) Draw a line CD as ABL CD.

(4) Make a triangle AABC by using @ and 8.

(5) Draw C D.

(6) Then we obtain $ .5, which is the angle of shear for the side AB.

(7) Do similarly in Fig.16 to obtain the angle of shear # . for the side AC. We know
so far the angle of shear ¢ .5 for the side AB, ¢ .c for AC and the angle @ between
AB and AC.

B B’
A\
8
D J c
¢A8
C
) a
A A
Fig. 15, Triangles of before and after strain Fig. 16, ‘Triang]es of before and after strain with
with respect to the side AB. respect to the side AC

(8) Obtain % from Fig.17.
2

(9) Calculate R*= 4 from L
A 2 A 2
v
¢AC A y 0 k'g
Y ANZE > A
2a
$an
Pac
Pe

Fig. 17, Mohr's circle for deformation of glass shard.
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This is the method where we use only graph to get strain. The other method where
we need calculation to get strain is described from (8).
(8) Supposing the angle between AB and long axis to be @, we have

Siﬂ¢ AB Sl'ﬂ¢Ac—3iﬂ¢An Sl'n(f,«c‘i'z-&.)
C0$(¢Ac+2?)5in¢ AB—COS¢ AB sin¢ AC

tan 26 =

from which we can calculate & . It should be noted, however, that since the relation

is introduced geometrically from Fig.17, we have to use absolute value for any angle.

(9) Draw a figure according to Fig.l7 to get L

2

(10) Calculate R from %
2
Deformation of Fossil
Plotting length of hinge line ks or median line mo of brachiopod as abscissa and fre-

quency as ordinate, points show normal distribution. Points on the frequency (ordinate)
. h . . el
and ratio of 7= ~mu— (abscissa) diagram show narrower normal distribution than those
]

of the former.
It is sometimes difficult to distinguish whether a fossil is adult or immature, because
shape of the adult and of immature is not always same. We sometimes distinguish them

by plotting a frequency/ 7 diagram.

‘ Deformation of 1 Fossil
Let us consider bilateral fossils such as brachiopod, trilobite etc. When we know the
direction of long axis of strain ellipse, we get 8 and ¢ where @ is the intersect angle
between the long axis of strain ellipse and the symmetric axis of the bilateral fossil
and ¢ is the shear angle for the symmetric axis.
(1) Draw ¥ /A coordinate shown as Fig.18.

y

Fig. 18, Mohr's circle for deformation of one fossil.
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(2) Draw OP by using 95_
(3) Draw PC by using 248
(4) Draw a circle of which radius is CP
L _ 01‘42
A 2 o Cll'l
The other method to get R is the one using the Breddin graph (¢, 8 diagram).
When @ is changed to 6, 90°— @ is changed to 90°— @ — $.As we know the relation

(5) Calculate the value of R from R*=

tan@ =R tan;, we have
: tanf
T tan®
. _ 1an(90°— ¢ —¢)
tan(90°— @)

Multiply both sides separately, we have

tan 8 tan(90°— 4 — ¢)
tan @ tan(90°— 8)
Since tan(90°— §) =cot f, the denominator equals 1, thus the equation is
tan?
tan(g + ¢)

When we draw the curve defined by the above equation, a graph of the curves is
called as the Breddin graph with abscissa # and ordinate ¢.We get easily the value of
R by using the graph, though the smaller the angle ¢, the obscure the R value. When
$=0, R =1, that is, R=1. We get also the R value by calculating the last equation

e tan 8

tan(g + ¢)
@=—65 and ¢ =—15" , we get R =0.289, thus R=1.859. Since we don't know

the principal direction of strain in field, this method is not the practical one.

R =

' 2= tan @ tan(90°— @ — $)=

without using the graph. For example, from deformation where

Deformation of 2 Fossils

If two fossils are different species each other but are bilateral together, we can
getthe R value. There are three methods to get the R value.
(1) Calculation

2 tang
tan(g+ 9 1)
_1- tanf tand .

tan'g +tand .

tan(§ +a)
tan(g+a+ ¢5)

1—tan 8 tan(@ + $,) (tan8 + tan@)
tang + tan(g + ¢ 5) (1—tang tana)

tan 5

R:=

We get the R value by solving the equations numerically with R and # as unknowns.
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The equations are changed to a 4th order equation, thus the method is not the practical
one.
(2) Mohr's diagram

When we know two shear angles $. and ¢, for each side A and B, and the
intersect angle @ between the side A and B, we will get the long axis direction 8 of
strain ellipse by applying the values $., $: and @ to the Mohr's diagram as

illustrated in Fig.19. v

Fig. 19. Mohr’s circle for deformation of two fossils.

(3) Breddin graph (¢./ 6 diagram) _
When we know the same values as the method of Mohr's diagram, we get & by apply-
ing the values to the Breddin graph where we should take angle as absolute value.

Deformation of more than 2 Fessils

In this case we use the former methods mentioned in the sections “Deformation of
1 fossil” and “Deformation of 2 fossils” to get R value. The other methods, which use
only for deformation of more than 2 fossils, are described as follows.

(1) L/ @ diagram (/@ or m/ @ diagram)

The condition of the method is that the fossils are the same species and A is constant,
but their bilaterality is not necessary. Let an arbitrary line PQ be a reference
line. Measure angles intersecting the reference line and hinge lines and call the angles
as @, hy is length of hinge line before deformation. Replacing F by @ — @, in the
equation A = A cos® G+ A% sin 0 we have

A'=(ﬂ) _cos t(a—4, )+ sin? (@ — 8 ,)

h A Az
where 6, is the angle between PQ and the long axis X of strain ellipse. Since
R'= L“‘, we have
. A 2

/ AL
V1+ (R —1)sin*(g—3))

h=h,
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When we plot the curve with a as abscissa and h as ordinate, we get a diagram,
where the highest point of the curve is hs4/A, and the lowest is h,4/A . We get the
value of R by

The direction of the highest point is the long axis X of strain ellipse. Though we use
here hinge lines to get R, we can use median lines instead.
(2) ¢ /@ diagram
The condition of the method is that fossils are bilateral, but the size of the fossils
is not necessarily equal together and fossils of different species are possible to use in
the method.
tan ¢ = _7_ = (%'2- A_'I_)Si'i(;_?,),c%l(g_f)
A Aicos’ (g—a)+ Ausin® (g—7a)

Dividing the denominator and numerator by A'isin(8 —@) cos(@ — @), and considering

I
the relation R*= ,1_2 we have
1

(R*—1) tan(@ — @)
1+than(3—3)

tan$ =

We get the direction 8, of long axis X of strain ellipse and the angle 6 . from long
axis to the direction #... from the curve as its intersect point to @ axis and its
maximum point, respectively. R is calculated from the equation R=cot 8 1, usinggz,or
from the next equation.

R=142(tand z2:) *+2ian ¢ nax 5€CP nax

It is described in the later section “Deformation associate with radial spherulitic

texture” how to get the equation.

3) r/ | ¢ | diagram i
The condition of the method is that fossils are the same species and 7, =m—°)
¢

is constant. mo is the length of median line before deformation. The diagram is shown

. . h . . .
with | ¢ | as abscissa and r (= ;) as ordinate. Since the largest value of ris 7 R

ToR

and the smallest is ro B, we get the value of R from R*= R
0

(4) Wellman method

This is a fully graphical method, background of which is described on the textbook
after Wellman (1973).
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Deformation from Circular to Elliptical Objects

General case

When we plot points (X:,Y:) in the X. /Y, diagram with X, as ordinate and Y. as
abscissa, gradient of the line represents the mean axial ratio R. X: and Y, are length of
short and long axis of elliptical object after deformation, respectively.

Since the method is simple, it is convenient to get a rough R value by the method.
If the amount of deformation is great, however, it is difficult to measure the size of
pebbles because edges of the pebbles are broken.If the amount of deformation is small, on
the contrary, it is difficult to distinguish between long axis and short axis of the pebbles.

The method that is described as follows (method of 3 direction) is more precise than
the simple X:,/ Y diagram method.

(1) Mark central points of all the elliptical objects.

(2) Consider three arbitrary reference lines which are not parallel together. Draw three
lines inside each elliptical object. The lines pass through a central point of the
elliptical object.

(3) Add length of the lines which are parallel each other for all objects,
a=2a, b=3b,, c=Z2c.

(4) Since the ellipse is deformed from a circle, the next relation holds assuming k as
the radius of the circle. Consider the ellipse which contacts the three lines of which

lengths are e, b and c.

L4
k

(5) Thus the case is same as that described in the section“Deformation of strain grid”.

. . = (2,.. o f 8y 2.
Az Av:de (k) (=) .(k) a’:b:c

(6) We get the principal direction and axial ratio R of strain from the method of the

section “Deformation of strain grid”.

Deformation Associated with Pressure Solution

Changes of length among the center points of spherical objects (ooid etc.) represent
bulk deformation on the section plane. Even if the objects do not associate with pressure
solution, we can apply the method to get strain, if the objects were homogeneously
scattered on the plane or if we know heterogeneous distribution of the objects before
deformation. When we plot the distance D as ordinate, which is the distance among center
points of objects before deformation, and the angle @ as abscissa, which is the angle
measured from an arbitrary reference line, the points (@ ,D) are scattered along a line of
mean distance m. When we draw D,/ « diagram after deformation by measuring the value

of D and a, values D reflect the stretch directed to a.Thus we see that the direction of

x

maximum elongation is @, and that of minimum is @, and obtain R from R=
¥
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Deformation Associated with Radial Spherulitic Texture

We recognize sometimes fan-like streak lines as chords that pass through the center
points of elliptical objects. We thus measure angles « that are the angle between an
arbitrary reference line and the streak lines. A shear angle ¢ for the angle « is
obtained as the difference between the angle @ before deformation and the angle @
after deformation. We draw ¢/: diagram from the values of ‘@ and shear angle ¢
for the direction @. The principal direction of strain is indicated by the two points that
are the intersect points to the curve (¢/:) and @ axis (¥ =0). If we obtain the

angle 8 . between principal axis of strain and direction of 7 ..., we calculate R from
— } : 1
tanf@ .=R where R = R The other method to calculate R value from using only the
II | A 2

2¢/A 1 A:

$ ... value is described as follows. From the relation ¥ msx=tand asx=

we have
‘ A A
dtan* o= — + — — 2
an’ § A. A
. . A, .
Since R*= 1. e change the equation as

R:‘ _ZRZ (2!0.112 ¢ max +1) +1=0
Solving the equation with regard to R*, we have

R2=1+2lﬂ'nz ¢mnx +2taﬂ¢ maxSeC¢ max

Deformation from Elliptical to Elliptical Objects
Owing to the data of 144 thin sections performed by Cloos (1947) we see that the
maximum angle of long axes of deformed ooids from the long axis of strain (fluctuation=
2¢ ...) decreases when the value of axial ratio R. of strain ellipse increases. It means
that after strong strain, the long axis's directions that are initially distributed randomly
tend to converge to a certain direction, which is of the long axis of strain X.. The axial
ratio R, and the direction of long axis after deformation of the objects that are elliptical

objects before deformation depend on the next three factors.

(1) Axial ratio of initial object ellipse R.= %
Xﬁ

(2) Axial ratio of strain ellipse R.= a

(3) Principal direction of initial object ellipse &
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Axial Ratio R, of Initial Ellipse is Constant

The conglomerate pebbles, the axial ratio R: of which is constant before deformation,

direct their long axes randomly. When they are suffebred strain Ra=& they deform their

shape to be flat. Deformed more strongly, they change their form to be more flat
than ever. We see that the stronger the strain the long axes of pebbles after deformation
are rearranged more parallel direction. We make a R; /¢ diagram from the values
R, R. and 8 by using (6.18) and (6.25). The maximum and minimum values of R, are
obtained from (6.18) and (6.25) as follows.

When we take the values 8 = ¢ =0° , we have

Rlun:=Rs'Rn
When we take the values § = ¢ =90° , we have
Rlnin=g_: (R3>R|)
R;
=R, (R.<R))

Thus we can seek out the strain R. and the axial ratio R; of initial object ellipse by
drawing the R,/$ diagram of deformed conglomerate pebbles in field. If the R,/¢
diagram shows a closed curve, that is, the "onion curve”, the relation R.>R; holds.

The R,/ ¢ diagram method
(1) Take an arbitrary reference line
(2) Measure individual angles ¢ between the reference line and

long axis of marker ellipse.

(3) Calculate R,= X

’

(4) Draw the R./ ¢ diagram

{(5) We get the direction of long axis of strain ellipse as a symmetry axis of the
R,/ ¢ curve.

(6) Since the relations hold as

Rlu;l=RsR‘|

Rs
Ialm.‘n—_Rfi (R3>R|)
Rlnin= IR;: (Rl(Rl)

,we have the value R. and R: from the equation

Rs=1/lenx‘Rfmin (R3>R|)

—. leax .
R.=: /_Rm;.. (R.<Ry)
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Axial Ratio R, of Initial Ellipse is not Constant
When R: takes value ranging 0O<Ri....<Ri<Riw.:, the next relations hold.
Rllﬂﬁl=Rﬁ‘leﬁl

le.u= ‘Rs (R3>Rtnux)
Rim:\x
= Rs (R:«<R|mux)

Thus we can calculate the values R. and Ria.x by the above equation as well as
the former deformation with constant R.. We cannot get Rin:. on the contrary to the fo
rmercase of deformation.
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