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Finite Element Formulation of a Linear
Viscoelastic Material

Daigoro HAYASHI*

Abstract

Rock bodies are assumed to be composed of a two elements Maxwell
and a generalized Maxwell model. The finite element formulation of these
two viscoelastic materials is that viscous term within constitutive
equation of the materials is regarded as initial strain and the un-
known displacements are calculated for suitable time interval by the
stiffness equation which is derived from the variational principle of elas-
ticity. The resultant computer program of the two elements Maxwell
model is adopted to a simple problem of stress response in order to be
tested. Numerical and analytical solutions fit well together. It is inter-
esting that tensile stress is observed parallel to contractive strain in
this test.

Introduction

Time affects strongly the formation of all the geologic structures. Therefore any
analysis on tectonics must necessarily include the time as a variable. From this point
of view, a geologic rock material should be regarded as a time dependent material,
e. g. a viscoelastic material or a viscous fluid. Lee and other workers solved some
viscoelastic problems with simple boundary conditions using the correspondence principle
(Lee, 1955 ; Lee et al., 1959). The correspondence principle is described in the next
section.

Since many geologic bodies have the complicated structures and shapes, the analy-
sis of them is too difficult to solve analytically. But the finite element method is a
powerful technique throughout the analysis of continua (Zienkiewicz and Cheung, 1967).
The finite element method for the viscoelastic problem is more difficult to be formu-
lated than the elastic problem, because the constitutive equation of viscoelasticity
is more complicated than that of elasticity.

The writer has extended the FEM computer program of elasticity into that of
linear viscoelasticity by the increment method using the FACOM 230-60 computer of
the Hokkaido University Computing Center. The program is of the Maxwell type
because this type is more convenient to treat with stress than the Voigt type.
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The FEM formulation is similar to the method developed by Zienkiewicz and others
though they treated with the Voigt type (Zienkiewicz et al., 1968). The formulation
developed by the present writer is briefly explained that a viscous term of the con-
stitutive equation is considered to be an initial strain, and the stiffness equation includ-
ing the initial strain and being the differential form is used to calculate the unknown
displacements repeatedly for the suitable time interval.

When the assumption is given that a rock body is composed of a viscoelastic
material, marvellous phenomena appear. One of them is that tensile stress occur
parallel to contractive strain field. In this case, tension cracks can not more signify
field of tensile stress simultaneously.

The writer is grateful to Prof. K.Kizaki of Ryukyu University for his geological
suggestions of the time dependent problem.

Theory of Linear Viscoelasticity

The fundamental equations of linear viscoelasticity are identical to those of
elasticity except for a constitutive equation and a dependence on time. They are
composed of the equilibrium equation (eq. 1), constitutive equation (eq.2) and boundary
conditions (eq. 3) as follows.

2oulenl) 4/ (rn= o ‘)

0% (X t)= Gy () »de; (xnt) (i) (2.1)
O (Xx,8)= Gz(f) *de i (au ) (2.2)
€is (e t)=Ji(t)*doi; (xx,1) (i#J) (2.3)
€ii (xut)= o (t) v doii (xn,t) (2.4)
Oi; (xn )11, = P; (o) on Sg (3.1)
tt; (xut)= Q; (x4.8) on S, (3.2)

where symbols and notations of the formulae are referred to Table 1. The equi-
librium equation and boundary conditions are not necessarily explained here because
they have the same meaning as on elasticity except for time dependence.

Constitutive Equation of the Linear Viscoelasticity

Stress and strain tensors of the second order, gi;(x«, £} and e&;;(xx f), are defined
in the time region —oo<{<oo at the point x, where the subscripts / and j run
through 1 to 3. So far as the displacement u,(xx.f) is infinitesimal, the strain tensor
ei;{xudf) is derived from the differentiation of . (x..?) as follows.

1 [ duts (xw,t) N dus () |
2[ 6‘1, 611‘

(4)

Eij (Ik.t)=
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Table 1 Notations and symbols.

65

© x: ; Cartesian coordinate

t; time

s ; parameter transformed from ¢ by the Laplace transform
u;(xx.t) ; displacement

fi(xx.t) ; body force

n; ; unit normal vector

0:;(xa t) ; stress tensor

0i;(xa t) ; deviatoric stress tensor

€:;(xs t) ; strain tensor

&i;(xa.t) ; deviatoric strain tensor

di;; Kronecker's delta

P;(x..t) ; given traction

S ; closed surface

Ss ; part of S where external force is given
Q:(xs.1) ; given displacement

Sy ; part of S where displacement is given
S=Ss+S,

A, ¢ ; Lame's constants

E ; Young's modulus

v ; Poisson’s ratio

x ; bulk modulus

Giixe ; tensorial relaxation function

Jisae ; tensorial creep function

u(¢) ; displacement in vector form

f(#) ; external force in vector form

o(f) ; stress in vector form

e(#) ; strain in vector form

D ; stress-strain matrix

C ; stress-strain rate matrix

B ; strain-nodal point displacement matrix
K ; stiffness matrix

v ; three dimensional domain

Ox{t) ; kth element stress vector of the generalised Maxwell model

D, ; kth element stress-strain matrix
C. ; kth element stress-strain rate matrix

« ; composite product

- ; Laplace transform

df ; total differential of f (f;certain function)
f'=df/a't (f(¢) ; certain vector)

F-' ; inverse matrix of F (F; certain matrix)
Ya, b, ¢) ; column vector of (a, b, )

‘B ; transposed matrix of B
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which is called the strain-displacement relation. The linear viscoelasticity is defined
by the stress and strain tensors using the convolutional or hereditary integral as
follows.

O'"j(xh.t)=f_; Gisnelxn t— T)W‘IT (5.1)
etj(xk,t)=f_‘:jx'jkl (xe,t— T)%ik'r)dr (5.2)

where k and / take the number 1 to 3. The equation 5.1 is called the relaxation type,
while eq. 5.2 the creep type.

If movement occurs at ¢= 0, oi;{xe.t)=0 and &,;{xs )= 0 holds within /< 0, egs.
5.1 and 5.2 are written as

0i; (xn, 8)= Gijne(xa,t) €xe(Xn, + 0)""/:: Gijni(xe t— T)%:k't)df (6.1)

90kt (xn, T) dr

Eii(xu, 8)=Jisnt (X0, 8) Oui(xa, +0)+f+;jx'jkt {rs.t—17) ar

(6.2)

A composite product s has the following property
A1) dit)=plt) 40)+ [ ott— )22 47 (7)

where ¢{#) and ¢{f) are certain functions. Using this property, eq.6 is simplified to
Ois(xa. )= Gisnilxn, t) s deni (x4, t) (8.1)
€is(xn )= Jisne (xn.t)sdowi(xa. t) (8.2)

If the stress and strain tensors are symmetric, the following relations hold.
Gisnt(2,8)= Gjint (X0, 8)= Gijinlxa,f) (9.1)
Jiintr, )=Jiini (xn,8)=Jisonla, ) (9.2)

Furthermore, if the tensors G ., and [, of the fourth order are isotropic, they are
described by the functions G(t), G.(¢), Ji(¢) and J.(¢), which depend only on time
as follows.
Bk 8ji + 8it O
2
Sin 85t + 8 Osa
2
Therefore, the constitutive equation of linear viscoelasticity is represented by substi-

G”k‘(t): Gz(t); Gl(t)

8is O + Gi{2) (10.1)

J:’jkl(t)r‘Maij Ore +J1(8) (10.2)

tuting eq.10 into eq.8 as follows, where o:;(xs¢t) and e:(xsf) are the symmetric
tensors, and Gy and J;j. are the isotropic tensors.

0ii(xn,t)=Gi(t)+dei; (x0.t) (i+7) (11.1)
O:i{xn t)= Gz(t)“dé‘fi(.l‘k.t] (11.2)

&ii(xe, y=Ji(t)*doli{xn.t) (i+7) (11.3)
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€ii(xe )= Jo(t)*d 0 (x2.1) (11.4)

Laplace Transform of the Fundamental Equations of the Linear Viscoelasticity

Some equations of linear viscoelasticity are solved analytically by the corres-
spondance principle. The method based on the principle is that if the fundamental
equations of linear viscoelasticity are transformed from the time field into the other
field (s-field) by the Laplace transform, the resultant equations in the s-field are iden-
tical to the fundamental equations of linear elasticity. Consequently, if the solution
of linear elasticity can be transformed into the original time field, the transformed
solution is the solution of the original linear viscoelastic equations. For convenience
sake, the variables x, and ¢ are omitted below.

The fundamental equations egs.1, 2 and 3, are transformed into the s-field by the
Laplace transform as follows.

%+E=O (12)

G =5G & (13.1)*
G =G, & (13.2)*
& =5h 04 (13.3)*
T =5/ Ou (13.4)*
Gy m =P, on S (14.1)
%=8 on S, (14.2)

where the Laplace transform is represented by a bar above the function concerned.
In the case, the next relations hold between r and G, and between x and G..

R

_sG,
=3 (15.1)
Saz

x=22 (15.2)

The following equations are derived from substituting eq.15 into the constitutive
equations 13.

Gis = 2 HEi; (16.1)

0 =3 % Eu (16.2)

+Composite product has a remarkable property for the Laplace transform.
o(ti+dplhl=spl(s) ¢(s) (18)

where @(¢) and ¢(t) are certain functions.
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Obviously, the coefficients z and ¥ have the similar relation of the elastic coefficients
¢ and x Furthermore, the other coefficients E, 7 and A correspond to the Young’s

modulus, Poisson's ratio and Lame’s constant, respectively and are represented by G,
and G,.

~
-

E=33& & (17.1)
2G,+ G,

7=?C’_;_—+Gé— (17.2)
2 1

I:ﬁgc_l’ (17.3)

Consequently, the transformed fundamental equations of linear viscoelasticity egs. 12,
13 and 14, are identical to those of linear elasticity in the s-field.

Finite Element Formulation of Linear Viscoelasticity

Mathematically, the method based on the correspondence principle is simple but
practically the final numerical Laplace transform to the original time field is consider-
ably difficult. From this reason the other method is adopted here.

This method is known as the expanded finite element technique of elasticity.
In the method the constitutive equation is not represented by the form of the com-
posite product but of the original differential equation where the viscous term regards
as the initial strain. Plane problems on the two elements Maxwell and the gene-
ralized Maxwell model are described here. Stress and strain tensors o (xs ) and
€:;(xs. ), are written by the vector form o(t)="(on(f), 022(¢), 012(#)) and e(B)="(e(2),
€22(8), 2 €12(8)) , respectively.

Two Elements Maxwell Model
The constitutive equation represented by the vector form is,

e(H)=D'a(t)+ C ' alt) (19)

where the dots above e(f) and o(f) mean the time differential, and D~' and C-!' are
the inverse matrices of D and C, respectively. D is called the stress-strain matrix
which describes the relation between stress and strain, and also C called the stress-
strain rate matrix indicating the relation between stress and strain rate. The forms
of these matrices on the plane strain state are represented in detail as follows.

(4 2 [ )

x+3u X 3/1 01 1—v v 0
|, 2 4 L_14+vi _
D=|x TH x+3,u 0 D= 5 v 1—v 0

L 0 0 p LO 0 2




Bull. College of Science., Univ. of the Ryukyus, No.29, 1980. 69

- N - N

l'_l

1
= - = 0
37 3 0 7 27
_|_2 4 a1 0
C= 3 37 0 C 27 7
1
0 0 0 0 —
S 7 J L 7 )
The other form of eq.19 is
G{t)=De(t)—DC ' a(t) (19)
where the matrix DC™' being the product of D and C~' is indicated as
(3x+2u4  3x 01
2y 2y
-1 3x 3x+2p
DC o 27 0
0 0 £
L 7
The stiffness equation derived from the principle of virtual work is written as
follows.
f(t)= [ *B6(t) dv (20)
v

where B is defined as e(¢)=Bu(f) and is called the strain-nodal point displacement
matrix. Substitute eq. 19" into eq. 20,

fiey+ [ *BDC o () dv={ f ‘BDde}zi(t)=Kd(t) (21)

is given, where K is called the stiffness matrix. Therefore, the numerical treatment
based on eq.21 is stated as follows.

(1) Obtain the initial elastic stress o¢(0) from the stiffness equation f(0)=Ku(0).

(2) Obtain the value u(t) from eq.-17 using the value &(¢) and the displacement bound-
ary condition.

(3) Substitute the equation & (¢)=Bu(f) into the equation 19’ and obtain the following
equation.

6(t)=DBu(t)— DC* & (t) (22)

The explicit representation of this equation is described in detail as follows.

. + ,
611(‘)-_—01—37‘202#0'11“)_ g;dzz(t) (22.1)
. + ’
0'22(1)=02’_ :3_,’:] onft)— 3 XZ 7’2 pO’zzU) (22.2")

O:|z(l)=as—%0'lz(f) (22.3")
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where the vector a is defined as a=%(a,.a,.a;)=DBu. Obtain the value &(t) by solving
the equation 22 in a suitable time interval.
(4) Repeat the operation from (2) hereafter.

Generalized Maxwell Model
The constitutive equations are

&()=Di" Gi(t)+ Ci* alt) (k=1, 2, ++-, n) (23)

where the subscript 2 means the element number of model. Changing the terms &{¢)
and &(f) mutually and multiplying D: to them,

Gi(t)=D, £(t)— Di Ci* 6i(t) (k=1, 2,°++, n) (24)

is obtained. Since in the Maxwell type the total stress o(#) is the sum of all the
element stresses & (f), ¢(¢) is

a(=2 a0 (25)
Differentiating eq. 25 with ¢, eq.25 becomes to

G(t)=33 6 (1 (26)
Substituting eq. 24 into eq. 26,

s=3{p.éw}-3{p crrain} (27)
The stiffness equation of the model is identical to that of the two elements Maxwell

model, i.e., eq.20, so the extended stiffness equation is derived from rearranging eq.20
using eq. 27 as follows.

':“)‘*j;‘B{,Z::, D, Cr‘a(t)}dv= ‘BiZ,

=Ku(t) (28)

The numerical procedure based on eq.28 is explained as follows.
(1) Obtain the value o(0) calculating

ro={ [ B(3, D) Bdv}utn
(2) Obtain the value (0} using

=Dk6(0)
D,
i=1

.(0)
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(3) Obtain the value u(f) calculating eq. 28, substituting the values @(f) and using the
displacement boundary condition. ‘

(4) Solve the equation 24 for all the elements of the model and obtain the value ai(?).
(5) Obtain the value ¢(¢) from eq.25, adding all the element stresses.

(6) Repeat from (3) hereafter.

Program Flow Chart

The technique of the linear viscoelastic stress calculation described above, is con-
cluded as a flow chart. The flow charts of the two elements Maxwell and generalized
Maxwell model are presented, but the programs themselves do not indicated here.
Because the computer program of the numerical calculation can be constructed easily,
referring the flow charts. The variables and symbols are referred to Table 1.

ENTRY Flow chart of two elements Maxwell model
{ K= [ ‘BDBdv
f(0)=Ku(0)
Y >
6(0)=DBu (0) u(0) I
\ 4 >
f()+ [ BDC o(t)dv=Kii (1) \LO)\

6(8)=DBu(t)—DC ' a(#) ult

!

y

no

STOP ? )

s

yes

STOP
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Flow chart of generalized Maxwell model

ENTRY

K= [‘B(=D;) Bdv

Yy

4

o.(0 )=(Ds/ZD:) 6(0)

!

fi)+ f ‘B(RD; Ci* 6,(t)) dv=Kull)

[F7-

4

3 Ou(t)=Ds Bu(t)— D Ci* (1)

Y

o'(t)=§ o: ()

u (f)

no

STOP ?

STOP

’ o) I
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Test of Finite Element Computer Program

Test of the program is performed on the plane strain state, using the model A
and B explained after. This is the stress response test against input of strain of periodic
form. Sinusoidal function is taken to be the form of strain, because of its simplicity in
analysis. The test is carried out under one and two dimensions where graviti’ is not
considered in order to compare with the analytical solution.

Analytical Solution of the Two Elements Maxwell Mode!

The constitutive equation of the two elements Maxwell model have been already
written as eq.19. The other form of eq.19 is

o(t)+DC* o(t)=DE(?) (29)

This equation is expanded to the component type,

éll(‘)"‘dodu(t)"‘bnGzz(f)=do€-n(t)+eoézz(t] (29.17)
O:zz(t)"'boo‘n(f)+000'22(1)=eoéxl(ﬂ+doézz(l) (29.2")
d.lz(t)“"(-'odlz(t): leé:lz(t)=ll712(t] (29-3')
+
where ao=u , bo=%';—, co-—-%. do=x+%ﬂ, €o=‘\'—%# and 712(8)= 2 &12(4).

If the strain &y,(¢), €22(¢) and 7,.(¢) are given in a simple form, eq.29 is solved analy-
tically by the Laplace transform. Considering them, the sinusoidal function is taken
to be the strain function here.

en(t)=e sinwt (80.1)
€2:(t)=e:sinwt (30.2)
712(8)= y12 Sin wt (30.3)

In this condition, the solutions of eq.29 are given as follows.
- ¢
o'..(t)={ 01:(0)+ g22(0) —Ao}exp(— 3x+#t>+{ 011(0)— 522(0) _Bo}exp(_?t)

2 3 2
+\/,(Ao+Bo)2+(Co+Do)2 sin{wt+811) (31.1)

1] — 022 t
o_zz(t)z{o'n((])'*'zo'zz(()) _Ao}exp(_Sx;-pt)_{a (0) 26 (0) —Bo}exp(—z)
+(Ao— Bo)? +(Co— Do)* sin(wi + 822) (31.2)

£ )+ Fusin(t +8.0) (31.3)

Te

o12{t)={012(0)— E, ) exp(
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where
=l A= el Bt e,

- Aot By - Ao= B -
Sn=arctan =5~ 8z =arctan —="—pH" . 812 =arctan —

Test on One Dimensional State
Consider the model A which is a square with 10 m length, 10 m width and a

unit thickness as shown in Fig.1. Material constants of the model are: E=176kb,
y=0.36, 7=10% poises, r =4,897 years. These constants except for viscosity are taken

from the measurement of the cordierite migmatite of which the Oshirabetsu dome is
composed, that is, the constants belong to the real geologic rock bock (Hayashi and

Kizaki, 1972).

w 0l

! \
I’ 2 I
N —_
/ N / — ; free along ab, periodic
/ \ I a777777777 °
! N ! displacement is given.
/ /
/
/

- The initial values of stresses ¢.1(0), 02:(0) and ,.(0) are 0 bars. The displacement
u(f) is given at the nodal points 3 and 4 as wu,sinws where w=0.018 deg/year and
#,=0.154545m which occurs 1 kb shearing stress within the model. In order to use

the finite element method, the model is divided into two elements of triangle and has
four nodal points. The calculation is performed 200 times where the time interval is
100 years. The calculated solutions are shown in Table 3 and Fig. 2.

On the other hand, analytical solution of the same model is given by eq.31.3
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Table 2 Material constants (£, v, »,7.), boundary condi-

tion (#,, 70, w), initial condition (g,,(0), ¢22(0),

012(0)) and coefficients of eq.31.3 (Eo, Fo, 812)
on the model A.

75

176 kb
v 0.36
10*? poises
Te 4897 years
o 0.154545 m
7o 1.54545X 1072
7 0.018 deg/year
01:(0) 0 bars
022(0) 0 bars
012(0) 0 bars
E, 457 bars
Fy 838 bars
S12 0.576 rad =33.0 deg
OpAt) — Ojp(t) T,
kbar x10
- Fiz(l) 12.0
1.0..
Pl 11.5
/7 \\\(/
051 / 10
/ os
2 4 6 / time
0-0 ) ’ o 00  x10%year
-05
-0.51 [ 1.0
e
—104 7.8 10 20

Fig.2 Input strain curve 7.(f) and the stress response curve o(f)
on the model A. Stress and strain have an opposite sign in

shaded area each other.
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Table 3 Input values of shearing strain y,,{f) and
the analytical and numerical solutions of
shearing stress on the model A.

time 7 (f) An:;;(tizzal Nuflb;:';cal
(x10® year) (x107%) .
solution solution
0 0.000 0 0
1 0.478 279 279
2 0.908 479 476
3 1.250 590 584
4 1.470 608 600
5 1.545 538 527
6 1.470 393 380
7 1.250 191 176
8 0.908 — 46 — 61
9 0.478 —290 —304
10 0.000 —516 —529
11 —0.478 —700 —1710
12 —0.908 —822 —828
13 —1.250 —869 —871-
14 —1.470 — 836 —833
15 —1.545 — 724 —718
16 —1.470 —545 —535
17 —1.250 —314 — 302
18 —0.908 — b5 — 42
19 —0.478 208 220
20 0.000 449 460

where  7,=1.54545X10"%, E,=457bars, F,=838bars and §&.:=0.576rad =33.0deg.
Material constants, initial condition, boundary condition and the coefficients of eq. 31.3
are summerized in Table 2. The solution is also indicated in Table 3 and Fig. 2.

It is clear from Table 3 and Fig.2 that the numerical solution well fits to that
of the analytical. Theoretically, the shearing stress o..(¢) has a faster phase in a sta-
tional state about 1,800 years than the shearing strain y..(f) according to §.,=33deg.
In fact, about 1,800 years difference of the phase between stress and strain is read
from Fig.2, though the state is not stationary but transient. Two interesting cases
are recognised, one is the case where y,.(!) has positive values (anticlockwise) but
g(f) negative (clockwise) during 7,800 to 10,000 years. The other similar case occurs
during 18,200 to 20,000 years where y..(f) is negative but o.(¢) positive.
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Test on Two Dimensional State

The model B shown in Fig.3 has the same material properties and initial values
of stress as well as the model A. The displacement u(f) is given at the nodal points
2 and 4 as uosinwf where w=0.018deg/year and u,=(0.2m, —0.1m) which produces
4,252bars along x, axis and —370bars along x: axis within the model. In this con-
dition, the numerical solutions are illustrated in Figs.4, 5 and Table 5.

The analytical solutions of the model B is given by egs. 31.1 and 31.2 where
£:=0.02, e2=—0.01, A,=325bars, B,=887bars, Co=47bars, D.,=1.365bars,6..=0.710rad
=40.7deg and 822=—2.739rad = —156.9deg. The material constants, initial condition,
boundary condition and the coefficients of egs. 31.1 and 31.2 are summerized in Table 4.
Results are also indicated in Table 5 and Figs.4 and 5.

Showing these table and figures, the stress on(t) has the faster phase than the
strain e, (f) as well as one dimensional state. Although the difference of the
phase is 2,300 years theoretically in a stationary state, that is 2,200 years
numerically from Fig.4, because the present state is not stationary but transient. It is
impossible that the stress and strain are parallel each other and have the
opposite sign within elastic material. This occurs only within viscoelastic
material because of the difference of phase between stress and strain. The tensile
stress are presented in the contractive strain field during 17,800 to 20,000 years. There-
fore, it is concluded from the model A and B that the tensional strain does not al-
ways mean the tensile stress and contrarily the contractive strain does not always
signify the compressive stress.

2
3 4"_.
- ——— T 7 -
\\\ ||
N
o A |
3 1
N |
1 e |
\\ |
>~
[~ —_
(2).——'-’
L 10m

Fig.3 Model B and boundary condition.
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Table 4 Material constants (E, v, 5, r.), boundary condi-
tion (u, €, €2, @), initial condition (¢,,{0), ¢22(0),
012(0)) and coefficients of egs.31.1 and 31.2 (A,,
By, Co, D5, 84, 822) on the model B.

E 176 kb
v 0.36
10%? poises
Te 4897 years
i, 0.2 m (x, component)
—0.1 m {x; component)
& 0.02
&2 —0.01
W 0.018 deg/year
a1 (0) 0 bars
0'22(0) 0 bars
012(0) 0 bars
A, 325 bars
B 887 bars
Co 47 bars
D, 1365 bars
on 0.710 rad =40.7 deg
O22 —2.739 rad=—156.9 deg
E.,(t)
0yq(t) 1 )
"kbar x10 2
204 o IR
TN ——— Eyy(1)
/
1.01 //
/
/

00

-2.04

1-25

Fig.4 Input strain curve &,(f) and the stress response curve g.(¢)
on the model B.

time
x10° year
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Table 5 Input values of normal strains ,(f), €2(f), and the analytical and numerical
solutions of normal stresses ou (), gz2(¢f) on the model B.

time enll) o1 .(t.) (bar? time exalf) O’zz(t‘) (bar?
(x10° year)| (x10-?) Analytl.cal Numef'lcal (x10° year)| (x10-2) Analyl.:lca] Numetl'lcal
solution | solution solution solution
0 0.000 0 0 0 0.000 0 0
1 0.618 829 827 1 —0.309 — 255 — 254
2 1.176 1217 1209 2 —0.588 — 644 — 641
3 1.618 1373 1359 3 —0.809 — 916 — 910
4 1.902 1325 1304 4 —0.951 —1035 —1024
5 2.000 1092 1065 5 —1.000 — 998 — 982
6 1.902 707 676 6 —0.951 — 819 — 798
7 1.618 217 - 184 7 —0.809 — 524 — 499
8 1.176 — 324 - 357 8 —0.588 — 147 - 121
9 0.618 — 858 — 888 9 —0.309 268 294
10 0.000 —1327 —1352 10 0.000 677 700
11 —0.618 —1683 - 1700 11 0.309 1035 1055
12 —1.176 — 1887 —1895 12 0.588 1306 1319
13 —1.618 —1917 —1916 13 0.809 1459 1465
14 -1.902 — 1768 —1758 14 0.951 1478 1477
15 —2.000 — 1453 —1435 15 1.000 1359 1351
16 —1.902 — 1002 — 978 16 0.951 1114 1099
17 —1.618 — 457 — 429 17 0.809 764 745
18 —1.176 129 157 18 0.588 343 321
19 —0.618 698 725 19 0.309 — 109 - 131
20 0.000 1197 1219 20 0.000 — 547 — 567
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Fig.5 Input strain curve e,(¢f) and the stress response curve ga(¢)
on the model B. Stress and strain have an opposite sign in
shaded area each other.
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