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Introduction

The numerical treatment of the geological

process has recently been advanced in the modern

structural geology as well as in the rock mechanics.

Since the geological processes, however, are con

spicuously slow phenomena and are also involved

in complex geological histories, it is required in

the numerical analysis carefully to take account

of the phenomena and history of the geological

structure. If the accurate and substantial under

standing of the geological process was lacking,

even the most elaborate computations would

result in vain. Nevertheless every attempt to

clarify a geological process through mathematical

means should be tested.

From this point of view, an attempt was made

in this paper to analyse the stress distributions

within and around a migmatite dome by means

of finite element method (F. E. M.). The mig

matite dome called the Oshirabetsu dome locates

in the southern most part of the Hidaka metamor-

phic belt, Hokkaido, and its structural analysis

has been carried out and the kinematic picture

was shown by Kizaki (Kizaki, 1956, 1972).

In performing the F. E. M. analysis, it is assumed

that the geological materials involving in the

analysis are homogeneous and perfectly elastic,

although it is certain that the geological rock

body must be regarded as visco-elastic body as

already mentioned by Uemura, T. (1971), Ito,

H. (1972) and others. This simplification
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Fig. 1. Tectonic map of the Oshirabetsu dome.
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Mt.OSHIRABETSU

Fig. 2. Cross section of the Oshirabetsu dome.

may make the results differ from the truth on

certain points but it would be considered to be

an approach to the better understanding of the

nature.

Geological Setting of the Oshirabetsu

Dome (Fig. 1,2J

The Oshirabetsu dome locates in the eastern

part of the southern extreme region of the Hi

daka metamorphic belt and shows a characteristic

shape like "Falling star" the main portion of which

is regarded as a dome. The core portion of the

dome is composed mainly of cordierite migmatite

and surrounded by banded biotite gneiss. The

dome 3 km wide at the main portion, extends

to north-west forming the trail of the "Falling

star" which reduces the width out within 10 km

with monoclinic inclination to east.

A gabbro body on the north-eastern side of the

dome, separates the biotite hornfels zone distribut

ed outside. The linear arrangement of small

granitic migmatite sheets occurs along the sheared

zone in the hornfels aureole. On the eastern

side of the dome, the gabbro and granite bodies

are separated by schistose biotite hornfels accom

panied with sheared zone and thrust fault. To

the south-west, the schistose biotite hornfels, ban

ded biotite gneiss and cordierite migmatite which

are separated by sheared zone from the "Falling

star" are among the other tectonic units of the

core of the Hidaka metamorphic belt on the south

western side.

The structural study of the Oshirabetsu dome

with special reference to petrofabric analysis has

been carried out and the three dimensional com

parative structural study has been published

(Kizaki, 1956, 1972). According to the com

parative study of the Oshirabetsu dome and Pi-

pairo complex (op. cit.), three dimensional form

of the "Falling star" is clearly shown (Kizaki,

1972). However, in the present study, the two

dimensional vertical section of the main portion

of the "Falling star" is treated for the analysis

of stress distribution because of the simplification

of the computation for the first step.

Brief Note on the Finite Element method

The finite element method, based on the prin

ciple of virtual work, shall be briefly described.

A vertical plane which is cut through the Oshi

rabetsu dome along A-B line was chosen as shown

in Figure 2, and the plane is divided into 668

finite-elements of triangle (Fig. 5). For a typical

element (Fig. 3), assuming homogeneous stress

within the element, the vector of nodal displace

ments ue and the vector of nodal forces Fe can be

expressed in matrix form as;

Fixl

•(1)

By continuity of displacement within the element

and with adjacent element, a displacement function

of two linear polynomials can be chosen for the

case of two dimensions. So it can be represented

as follows;

a0

b0

-

al a2

bi b2_

. -

'I >

X

•y

•(2)

u: inner displacement vector

Eq. (2) may be written in the form as;

1 x y 0 0 0

0 0 0 1 x y
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Fig. 3. A triangle finite-element which is optio

nally selected among the divided finite-

elements (See text).

Therefore the vector of nodal displacement is

listed as a product of matrix and vector.

.(4)

[R]: shape function matrix; a: generalized dis

placement vector

Using Xi and yi for the x- and y-coordinate at

a nodal point i, the shape function matrix [RJ

at the point is represented by;

ri xiyi ooo]

From Eq. (4) the generalized displacement

vector a are given by;

.(6)

Using A for det 1 x2 y2

Ll x3 y3J

[R]"1 will be expressed;

, the inverse matrix

[R] -i=- •(7)

(An 0 Aix 0 Azi 0

Jl2 0 i22 0 AS2 0

An 0 J23 0 Azz 0

0 An 0 A21 0 J3i

0 A12 0 J22 0 J32

0 J13 0 j23 0 J33J

Where J equals to two times area of the triangle

element, and A^ is the cofactor of i, j-components

n x-i

of A, for example, zJ23=—det * Consequently,

from Eq. (3) and Eq. (6) the inner displacement

of the triangle is equated as follows;

u=[R']-a

Now strain vector e is represented;

e =

dux

. dy dx

0 10 0 0 0

0 0 0 0 0 1

0 0 10 10.

a=[B].a

(9)

Where the matrix [B] is called the strain-ge

neralized displacement matrix and its components

are not functions of variables x and y, so that one

can see that the strain is constant in each element.

The relation of stress vector p and strain vector

e is;

l-i;

l-v

0 0

= [K]-e -" - (10)

Where v is the Poisson's ratio, E the Young's

modulus and [K] is the stress-strain matrix. Eq.

(10) is valid for the case of plane strain.

Let the virtual displacement be u*e when the

element is deformed, the strain energy U of this

element is given by;

U= f (e*)*.pdV

=/y(e*)T-[K]-edV

■/,= / (u*8)T- [B*]T- [K] • [E*] .u8dV
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Where [B*] is equal to [BHR]"1 and e* is the

vector of virtual strain.

As the nodal forces are already defined by Eq.

(1), the external work W is:

W=(u*e)T.Fe

And the strain energy is equal to the external

work, so that the following equation holds.

(U*e)T.Fe= f (I!**)*. [B*]*. [K] . [B*] -U* dV

= (u*°)T- {/y[B*]T- [K] • [B*] d

While the vector of nodal force is represented by;

Fe= j^ [B*] t. [K], [B*] dv|.u°

Now, the stiffness equation is obtained.

Where [A] is called the stiffness matrix and can

be written in the form;

STAGE I STAGE 2 STAGE 3 STAGE 4 STAGE 5

= f[B*]T.[K] [B*]dV

In this case, each matrix is constant in the ele

ment, then the product of matrices i. e. [B*]T •

[K]-[B*], is constant. Consequently, it is pos

sible to take off the integral mark,

Where V is the volume of the element.

By solving the above stiffness matrix, one can

get undecided nodal forces and nodal displacements

for every element. Furthermore, using these

nodal displacements, the values of stress and strain

could be obtained.

Further and detailed discussions on the F. E. M.

are referred to such publications as Zienkiewicz

et al. (1967) and Fujn (1970) and so forth.

Modelling and Conditions for Analysis

In order to determine the stress field during the

upward motion of the migmatite dome, it is as

sumed that the Oshirabetsu dome has been de

veloped by the difference of the density between

the migmatite and the country rocks during the

later stage of the Hidaka orogeny. It could be

considered that the upward motion of the granitic

rocks within the gravity field would possibly bring

about the mountain building.

The plane on the A-B section (Fig. 2) was

selected for the analysis and the following con

ditions were assumed.

(1) State is "Plane Strain" on the A-B section

and the composed rocks are perfectly

elastic and isotropic in all directions.

Fig. 4. Models to be divided into the five assu

med stages in order to analyse. The

dome is composed of cordierite migmatite

and its neighbouring portion is compo

sed of massive hornfels. At the Stages 1

and 2, the surface is assumed to be flat,

at the Stages 3, 4 and 5 the surface to be

convex.

(2) There are two rock species i.e. cordierite

migmatite and massive hornfels.

(3) Gravity is only considered as the external

force.

This means that there had been no tectonic forces

in this area through all the stages.

The models for numerical analysis are divided

into five stages as follows; (Fig. 4)

Stage 1: The Oshirabetsu dome had been

situated at the depth of 10.5 to 14.5

km below the surface,

Stage 2: The dome had been situated at the

depth of 5.5 to 9.5 km below the

surface.

Stage 3: The dome had been lifted almost

to the surface and the hornfels co

vering had been eroded away, then

the surface over the upper part of

the dome had been formed into the

mountain ridge.

Stage 4: The upper part of the dome had

been exposed.

Stage 5: Present stage.

For the purpose of the F.E.M. analysis, the

section of the Oshirabetsu dome and its neigh

bouring portion are divided into 668 elements

on the A—B section. Figure 5 indicates the parti

tion, external force boundary condition and dis

placement boundary condition. Table 1 indicates

the physical constants used for the calculation.
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Fig. 5. Partition on the A-B section, which indi

cates the 668 divided finite-elements of

triangle. Using next symbols, the external

force boundary condition and displace

ment boundary condition are indicated.

/S.' Symbol at which point it is forbidden

to move to all directions.

A: Symbol at which point displacements

along horizontal line are only permitted,

10, <||: Symbol at which point displace

ments along vertical line are only per

mitted.

I : Symbol which indicates the direction

of load caused the weight of the upper

part.

Results of Analysis

Under these conditions as described above,

the data were analysed with the computer of

Hokkaido University Computing Centre (FACOM

230—60), and then the next five results are ob

tained.

(1) Principal stresses are all compressive in

the whole area through all the stages.

(2) Absolute values of principal stresses are

about two times greater in the portion

of massive hornfels than in that of cor-

dierite migmatite.

(3) Absolute value of every principal stress is

revealed to be within the elastic region

decided by thermal-triaxial compressive

experiment.

(4) Directions of the principal stresses are

generally constant during all stages only

Table 1*. Physical constants used for the calcula

tion and failure strengths of the rocks,

which were given by the uniaxial com

pressive test at normal temperature

(20—30°C) and normal pressure (1

atm).

m. Hf.

c. M.

(g/cm*)

3.04

0.10

2.76

0.02

E

(kb)

304

58

176

62

V

0.40

0.01

0.36

0.02

Sc

(kb)

1.81

0.49

0.95

0.36

Ss

(kb)

0.21

0.12

p: density, E: Young's modulus, v: Poisson's ratio

(dynamic), Sc: compressive strength, Ss: shearing

strength, m. Hf.: massive hornfels and c.M.: cor-

dierite migmatite. The average values of each

item are indicated at the upper line and their stan

dard deviations except for the item of Ss are shown

at the lower line. (Hayashi, 1971)

* The data of thermal-triaxial compressive constants

for the rocks around Oshirabetsu are not obtained

yet.

And in the present paper, according to elasticity,

E and v are used to be constant.

under the gravity field condition.

(5) Foliations are situated to be normal to the

resultant stresses (compressive) acting

on the foliations.

Discussions

The stress distribution at every stage, which

are represented by the principal stresses (al9 a2)

in the triangle domain, along the boundary between

cordierite migmatite and massive hornfels, are

shown in Figures 6—10.

The values of the principal stresses are negative

on all stages, that is, the principal stresses are

compressive.

For the sense of absolute value, the greater one

was named the maximum principal stress (cTj),

and the other the minimum principal stress (<r2).

In every figure (Figs. 6—10), each pair of lines,

which are perpendicular each other and whose

lengths indicate the absolute values, represents

the maximum principal stress (0t) and the mi

nimum principal stress (a2) of the respective

triangle. The intersections of ax and a2 selected

conventionally to be the centres of the gravity of

the triangle elements. The directions of prin

cipal stresses in the Stage 1 and 2 are exactly

identical, and also those in the Stage 3, 4 and 5

are roughly identical to these figures, though

these are obvious from the boundary conditions.
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STAGE I STAGE 4

STAGE 2

Figs. 6—10. Stress distribution around the boun

dary of the dome at every stage.

The stress distributions at the core

portion and also the external area of

the dome are eliminated in the figures

because the directions of stress vectors

are constant through the stages. They

are shown on the part around the

boundary. Every pair of perpendi

cular lines represents ax (long line)

and a2 (short line) at each interse

ction. The length of every line indi

cates the absolute value (all compres-

sive).
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Fig. 11. Stress-strain curve of the thermal-triaxial

compressive experiment using migmatite

by Borg I. and Handin J. (1966).

Confining pressure: 5 kb, Temperature:

500°C.

Migmatite(T): Migmatite which is loaded

normal to foliation.

Migmatite(l): Migmatite which is loaded

parallel to foliation.

Migmatite(T') and (1') were given at 1 kb

and 150°C.

From the figure, the stress-strain curves

from the state at 150°C-l kb to 500°C-5

kb would be considered to lie in the

middle region between them.

Therefore, if these boundary conditions had not

changed greater, it should be safe to conclude

that the stress field around the Oshirabetsu dome

would have been generally constant through all

the stages.

The figures clearly show that the absolute values

of principal stresses (av a2) are about two times

greater in the part of massive hornfels than in that

of cordierite migmatite. It is caused by the dif

ference of their Young's modulus.

As the result of the calculations and comparative

study to the thermal-triaxial compressive experi

ments using migmatite by Borg and Handin

(1966) (Fig. 11), the values of principal stresses

of the rocks are revealed to be within the elastic

region (maximum value of all principal stresses

Fig. 12. Shearing stress distribution on the region

(334 points) at the Stage 1. Every cros

sed line represents conjugated shearing

stress at each intersection. The figure

indicates the outline of the dome and

the present eroded shape.

through all stages is 5.15 Kb which is the value

of at at Stage 1) so that the failure should not

take place so far as the present scale of the triangle

is concerned. As a matter of course, it does not

mean that in this area the failures had not brought

about, because the gravity had only been assumed

for the force in the calculation.

The failures should take place at first along the

boundary of the two rock species by the stress

concentration. It may be represented by the

foliation of the gneiss which surrounds the dome

as a narrow belt. Another possibility of the

failure could be the sheared zones which occur

outside of the dome.

However, it is hardly considered that the failures

had formed the present sheared zones by the stress

concentration of the scale mentioned above. Con

sequently, it should be considered that the other

forces besides gravity e.g. forces caused by the

tangential stress, have been acting in this area.

Now, from the next simple equation the values

of maximum shearing stresses (rma3C) are calculated

in each domain, and the directions of rmax have

forty five degrees from each principal axis.

On the 12, each crossed line indicates

the value and direction of Tmax at the Stage 1.

This figure shows that the directions of rmax are

parallel to some parts of the curved outline of
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the dome and that the directions of 0X and 02

are parallel to the boundaries of the other parts

of the dome (Figs. 6, 7, 8, 9, 10 and 12).

Now, though the analysis is carried out for the

two dimensional situation, it is able to obtain the

values of the third principal stresses a*, which are

perpendicular to the A-B section, using the next

equations.

In this taac, tuc » li esses (7* are identified with

a3, because that the absolute values of a* are less

than those of ax and a2 (ref. Table 2). Using

this equation, the values of az are calculated on

the domains, on which the values of o 0 and r0

are calculated, and indicated on the Table 2.

On the Formation of Foliation

From the values and directions of principal

stresses, the normal stresses {a0) and shearing

stresses (rd) on the fifteen boundaries, which are

placed between cordierite migmatite and massive

hornfels, can be calculated by the next relations,

sin 20

where d is the angle between the horizontal line

Fig. 13. Stress ellipse shows the relation between

the resultant and principal stresses. The

resultant stress acts on a spontaneous

plane, and is composed of normal stress

and shearing stress. The vector n is the

normal vector of the spontaneous plane

and the vector t is the unit vector to be

perpendicular to n.

Fig. 14. The normal stresses and shearing stresses

on the fifteen boundaries of the dome

which in fact are deformed but for the

simplification are regarded as pre-defor-

ming one. The inner circle indicates

the value of 1 kb and the outer that of

1.5 kb.

and each boundary. On the Figure 13, n is the

unit vector which is normal to the boundary and

t is the unit vector perpendicular to n. The

relations between their components and 0 are

decided as follows.

t =| 1|, |ni 2 C0S.
U2) (n2= — tx= sin#

The fifteen boundaries in question are parallel

to the trace of foliations on the A-B section. Cal

culated values of 0e and re on the Stage 1 are

shown in Table 2 and they are illustrated in Figure

14, in this case each pair of resultant stresses on a

certain boundary is different in the absolute value

as well as in the direction respectively, because

in the analysis using the F.E.M. the constitutive

equation does not hold and also the boundaries

for which the pre-deformed boundaries are used,

are deformed in fact.

From the Figure 14, it is clear that the foliation

tends to be perpendicular to the resultant stress.
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有限要素法によるミグマタイトドームの数値解析

林 大五郎 ･木崎 甲子郎

(質

現在の地質学によると,花尚岩質岩体の上昇運動は周

囲岩体との密度の差による事がひとつの原因である,と

考えられている.この小論は,密度の差による花開岩貿

岩体の浮上中の応力場の変遷を論じたものである.この

目的のため,すでに木崎 (1956,1972)によって詳細な

構造解析の行なわれている,日高変成帯最南端部 ｢音調

津 ミグマタイ トドーム｣をフィール ドとして選んだ.木

崎によって得られた構造解析データをすべて考慮するこ

とは,現在では不可能であるため,つぎの単純化を行な

った･ 1)岩石種は二種 (董青石 ミグマタイ ト,塊状ホ

ルンフェルス)とする.2)それらは完全弾性体である.

3)重力のみを仮定した平面歪状態 (音調津山地山頂を

含む NE-SW 方向の垂直断面内において)と考える.

本解析は次の五つの場合を仮定し,それぞれについて行

なわれた･ ドームが,地表下 10.5-14.5km (この場合

地表は平坦であるとする),5･5-9.5km (同様),2.5-

冒)

6.5km (地表は山型に盛 り上がっているとする)等の深

さにある場合,更に ドームが地表へ露出した場合,そし

て削刺された場合 (現在)の以上五段階である.このよ

うな仮定のもとに解析した結果, つぎの結論を得た.

1)主応力性全段階を通じ,かつ解析領域全般にわたっ

てすべて圧縮性である.2) ドーム内部の主応力値は ド

ーム外部のそれの約半分である.3)すべての主応力の

絶対値は加熱一三軸圧縮実験によって決定された弾性領

域の範囲内にある.4)主応力の方向は全段階を通じて

ほぼ一定している･5)フォリエーショ ン面に働く合応

力の方向はほとんどその面に垂直である,すなわち合応

力はほとんどフォリエーシ ョ ンに対して垂直応力成分か

らなっている.

地 名

Osbirabetsu 音調津, Pipairo ピパイロ
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