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Introduction

The numerical treatment of the geological
process has recently been advanced in the modern
structural geology as well as in the rock mechanics.
Since the geological processes, however, are con-
spicuously slow phenomena and are also involved
in complex geological histories, it is required in
the numerical analysis carefully to take account
of the phenomena and history of the geological
structure. If the accurate and substantial under-
standing of the geological process was lacking,
even the most elaborate computations would
result in vain. Nevertheless every attempt to
clarify a geological process through mathematical
means should be tested.

From this point of view, an attempt was made
in this paper to analyse the stress distributions
within and around a migmatite dome by means
of finite element method (F. E. M.). The mig-
matite dome called the Oshirabetsu dome locates
in the southern most part of the Hidaka metamor-
phic belt, Hokkaido, and its structural analysis
has been carried out and the kinematic picture
was shown by Krzaxr (Kizaki, 1956, 1972).

In performing the F. E. M. analysis, it is assumed
that the geological materials involving in the
analysis are homogeneous and perfectly elastic,
although it is certain that the geological rock
body must be regarded as visco-elastic body as
already mentioned by Uemura, T. (1971), Ivo,
H. (1972) and others. This  simplification
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Fig. 1. Tectonic map of the Oshirabetsu dome.
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Fig. 2. Cross section of the Oshirabetsu dome.

may make the results differ from the truth on
certain points but it would be considered to be

an approach to the better understanding of the
nature,

Geological Setting of the Oshirabetsu
Dome (Fig. 1,2)

The Oshirabetsu dome locates in the eastern
part of the southern extreme region of the Hi-
daka metamorphic belt and shows a characteristic
shape like “Falling star” the main portion of which
is regarded as a dome. The core portion of the
dome is composed mainly of cordierite migmatite
and surrounded by banded biotite gneiss. The
dome 3km wide at the main portion, extends
to north-west forming the trail of the “Falling
star” which reduces the width out within 10 km
with monoclinic inclination to east.

A gabbro body on the north-eastern side of the
dome, separates the biotite hornfels zone distribut-
ed outside. The linear arrangement of small
granitic migmatite sheets occurs along the sheared
zone in the hornfels aureole. On the eastern
side of the dome, the gabbro and granite bodies
are separated by schistose biotite hornfels accom-
panied with sheared zone and thrust fault. To
the south-west, the schistose biotite hornfels, ban
ded biotite gneiss and cordierite migmatite which
are separated by sheared zone from the ‘“Falling
star” are among the other tectonic units of the
core of the Hidaka metamorphic belt on the south-
western side.

The structural study of the Oshirabetsu dome
with special reference to petrofabric analysis has
been carried out and the three dimensional com-
parative structural study has been published
(Kizaki, 1956, 1972).  According to the com-
parative study of the Oshirabetsu dome and Pi-
pairo complex (op. cit.), three dimensional form
of the “Falling star” is clearly shown (Kizaxi,
1972). However, in the present study, the two
dimensional vertical section of the main portion
of the “Falling star” is treated for the analysis

of stress distribution because of the simplification
of the computation for the first step.

Brief Note on the Finite Element method

The finite element method, based on the prin-
ciple of virtual work, shall be briefly described.
A vertical plane which is cut through the Oshi-
rabetsu dome along A-B line was chosen as shown
in Figure 2, and the plane is divided into 668
finite-elements of triangle (Fig. 5). For a typical
element (Fig. 3), assuming homogeneous stress
within the element, the vector of nodal displace-
ments u® and the vector of nodal forces F° can be
expressed in matrix form as;
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By continuity of displacement within the element
and with adjacent element, a displacement function
of two linear polynomials can be chosen for the
case of two dimensions. So it can be represented
as follows;

1
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u= = .
u by b; b,
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u: inner displacement vector
Eq. (2) may be written in the form as;
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Fig. 3. A triangle finite-element which is optio-
nally selected among the divided finite-
elements (See text).

Therefore the vector of nodal displacement is
listed as a product of matrix and vector.

Ry
u°=iR2}-a=[R].a ceerretiestieiionnnee (4)
Ry

[R]: shape function matrix; «: generalized dis-
placement vector
Using x; and y; for the x- and y-coordinate at
a nodal point i, the shape function matrix [R;]
at the point is represented by;
1 X; Vi 000 .
Ri=[ 757 ] G=12 95

From Eq. (4) the generalized displacement
vector o are given by;

= [R] ~14U° +eeerrererriuennsunens R (6)
1%y )

Using 4 for det|1 x, y,|, the inverse matrix
1 x5 s

[R]7* will be expressed;

4110 421 0 4 O
4120 o5 0 4, O
413 0 423 O 433 O
0 4120 4n 0 4a
0 4120 As2 0 g5
0 4150 45 0 4ss

Where 4 equals to two times area of the triangle
element, and 4y is the cofactor of i, j-components

—

[R] 2=

......(7)

[N
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of A4, for example, 4,,=—det i :I:I Consequently,

3.
from Eq. (3) and Eq. (6) the inner displacement
of the triangle is equated as follows;
u=[R'] .« :
=[R']- [R] =1e1® +erereeernreesrrnenne - (8)
Now strain vector e is represented;
duy

0x

Ex ouy
e = ey = ay

Txy dug N duy

dy o0x
010000

[O 0000 l]-a: [B] ca
001010

= [B] - [R] ~1.ue

Where the matrix [B] is called the strain-ge-

neralized displacement matrix and its components

are not functions of variables x and y, so that one

can see that the strain is constant in each element.

The relation of stress vector p and strain vector
e is;

Ox
Txy

E(l—v) v

T nd-m) |1 10 e
1—2y
0 2(—v)

=[K]+@ coererererrrmnrnivienniiins veeeenn (10)

Where » is the PoissoN’s ratio, E the Younc’s
modulus and [K] is the stress-strain matrix. Egq.
(10) is valid for the case of plane strain.

Let the virtual displacement be u*¢ when the
element is deformed, the strain energy U of this
element is given by;

U= (¢97-paV
=fv(e*)1'- K] -edV

= [, )T ([R] =" [B]- [K] - [B]
. [R]~*uedV
= [ (@*)T- [B¥ ™ [K] - [E¥] -we dV
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Where [B*] is equal to [B]'[R]-* and e* is the
vector of virtual strain.

As the nodal forces are already defined by Eq.
(1), the external work W is:

W= (u*e)T.Fe

And the strain energy is equal to the external
work, so that the following equation holds.

(u¥e)T.Fo—= f i (u*e)T. [B¥]T. [K] . [B¥] -u° dV

=@t { [ [B¥7- K] - [B¥] dV}-we

While the vector of nodal force is represented by;

Fe={fv [B*]T. [K] - [B¥] dv}.ue
Now, the stiffness equation is obtained.
Fo=[A] -ue®

Where [A4] is called the stiffness matrix and can
be written in the form;

(41 = [ (B¥" [K] - [B¥] aV

In this case, each matrix is constant in the ele-
ment, then the product of matrices i.e. [B¥]T.
[K]-[B*], is constant. Consequently, it is pos-
sible to take off the integral mark,

[4] = [B¥]T- [K] - [B¥] -V

Where V is the volume of the element.

By solving the above stiffness matrix, one can
get undecided nodal forces and nodal displacements
for every element. Furthermore, using these
nodal displacements, the values of stress and strain
could be obtained.

Further and detailed discussions on the F. E. M.
are referred to such publications as ZIENKIEWICZ
et al. (1967) and Fujm (1970) and so forth.

Modelling and Conditions for Analysis

In order to determine the stress field during the
upward motion of the migmatite dome, it is as-
sumed that the Oshirabetsu dome has been de-
veloped by the difference of the density between
the migmatite and the country rocks during the
later stage of the Hidaka orogeny. It could be
considered that the upward motion of the granitic
rocks within the gravity field would possibly bring
about the mountain building.

The plane on the A-B section (Fig. 2) was
selected for the analysis and the following con-
ditions were assumed.

(I) State is “Plane Strain” on the A-B section

and the composed rocks are perfectly
elastic and isotropic in all directions.

1972—12
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Fig. 4. Models to be divided into the five assu-
med stages in order to analyse. The
dome is composed of cordierite migmatite
and its neighbouring portion is compo-
sed of massive hornfels. At the Stages 1
and 2, the surface is assumed to be flat,
at the Stages 3, 4 and 5 the surface to be
convex.

(2) There are two rock species i.e. cordierite

migmatite and massive hornfels.

(3) Gravity is only considered as the external

force.
This means that there had been no tectonic forces
in this area through all the stages.

The models for numerical analysis are divided
into five stages as follows; (Fig. 4)

Stage 1: The Oshirabetsu dome had been
situated at the depth of 10.5 to 14.5
km below the surface,

The dome had been situated at the
depth of 5.5 to 9.5km below the
surface.

The dome had been lifted almost
to the surface and the hornfels co-
vering had been eroded away, then
the surface over the upper part of
the dome had been formed into the
mountain ridge.

The upper part of the dome had
been exposed.

Stage 5: Present stage.

For the purpose of the F.E.M. analysis, the
section of the Oshirabetsu dome and its neigh-
bouring portion are divided into 668 elements
on the A-B section. Figure 5 indicates the parti-
tion, external force boundary condition and dis-
placement boundary condition. Table 1 indicates
the physical constants used for the calculation.

Stage 2:

Stage 3:

Stage 4:
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Fig. 5. Partition on the A-B section, which indi-
cates the 668 divided finite-elements of
triangle. Using next symbols, the external
force boundary condition and displace-
ment boundary condition are indicated.

/\: Symbol at which point it is forbidden
to move to all directions.

/A\: Symbol at which point displacements
Eong horizontal line are only permitted,
I>>, <|: Symbol at which point displace-
ments along vertical line are only per-
mitted.

| : Symbol which indicates the direction
of load caused the weight of the upper
part.

Results of Analysis

Under these conditions as described above,
the data were analysed with the computer of
Hokkaido University Computing Centre (FACOM
230—60), and then the next five results are ob-
tained.

(1) Principal stresses are all compressive in

the whole area through all the stages.

(2) Absolute values of principal stresses are
about two times greater in the portion
of massive hornfels than in that of cor-
dierite migmatite.

(3) Absolute value of every principal stress is
revealed to be within the elastic region
decided by thermal-triaxial compressive
experiment.

(4) Directions of the principal stresses are
generally constant during all stages only
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Table 1*. Physical constants used for the calcula-
tion and failure strengths of the rocks,
which were given by the uniaxial com-
pressive ‘test at normal temperature
(20—30°C) and normal pressure (1

atm).
) E Sc Ss
(g/cm?®) | (kb) v (kb) (kb
3.04 | 304 | 0.40 | 1.81 | 0.21
m. Hf. | 579 58 | 0.01 | 0.49
e | 276 | 176 | 0.36 | 0.95 | 0.12
- M. | 9l02 62 | 0.02 | 0.36

p: density, E: Young's modulus, »: Poisson’s ratio

(dynamic), Sc: compressive strength, Ss: shearing

strength. m. Hf.: massive hornfels and c.M.: cor-

dierite migmatite. The average values of each
item are indicated at the upper line and their stan-
dard deviations except for the item of Ss are shown

at the lower line. (Havasur, 1971)

* The data of thermal-triaxial compressive constants
for the rocks around Oshirabetsu are not obtained
yet.

And in the present paper, according to elasticity,
E and » are used to be constant.

under the gravity field condition.
(5) Foliations are situated to be normal to the

resultant stresses (compressive) acting
on the foliations.
Discussions

The stress distribution at every stage, which
are represented by the principal stresses (¢,, ,)
in the triangle domain, along the boundary between
cordierite migmatite and massive hornfels, are
shown in Figures 6—10.

The values of the principal stresses are negative
on all stages, that is, the principal stresses are
compressive.

For the sense of absolute value, the greater one
was named the maximum principal stress (o,),
and the other the minimum principal stress (g,).

In every figure (Figs. 6—10), each pair of lines,
which are perpendicular each other and whose
lengths indicate the absolute values, represents
the maximum principal stress (¢,) and the mi-
nimum principal stress (¢,) of the respective
triangle. The intersections of ¢, and ¢, selected
conventionally to be the centres of the gravity of
the triangle elements. The directions of prin-
cipal stresses in the Stage 1 and 2 are exactly
identical, and also those in the Stage 3, 4 and 5
are roughly identical to these figures, though
these are obvious from the boundary conditions.
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Stress distribution around the boun-
dary of the dome at every stage.
The stress distributions at the core
portion and also the external area of
the dome are eliminated in the figures
because the directions of stress vectors
are constant through the stages. They
are shown on the part around the
boundary. Every pair of perpendi-
cular lines represents g, (long line)
and ¢, (short line) at each interse-
ction. The length of every line indi-
cates the absolute value (all compres-
sive).
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Fig. 11. Stress-strain curve of the thermal-triaxial

compressive experiment using migmatite
by Borg I. and Hanbin J. (1966).

Confining pressure: 5 kb, Temperature:
500°C.

Migmatite(T): Migmatite which is loaded
normal to foliation.

Migmatite(l): Migmatite which is loaded
parallel to foliation.

Migmatite(T’) and (') were given at 1 kb
and 150°C.

From the figure, the stress-strain curves
from the state at 150°C-1kb to 500°C-5
kb would be considered to lie in the
middle region between them.

Therefore, if these boundary conditions had not
changed greater, it should be safe to conclude
that the stress field around the Oshirabetsu dome
would have been generally constant through all
the stages.

The figures clearly show that the absolute values
of principal stresses (g4, 0;) are about two times
greater in the part of massive hornfels than in that
of cordierite migmatite. It is caused by the dif-
ference of their Youne’s modulus.

As the result of the calculations and comparative
study to the thermal-triaxial compressive experi-
ments using migmatite by Borc and HaNDIN
(1966) (Fig. 11), the values of principal stresses
of the rocks are revealed to be within the elastic
region (maximum value of all principal stresses
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Fig. 12. Shearing stress distribution on the region
(334 points) at the Stage 1. Every cros-
sed line represents conjugated shearing
stress at each intersection. The figure
indicates the outline of the dome and
the present eroded shape.

through all stages is 5.15 Kb which is the value
of ¢, at Stage 1) so that the failure should not
take place so far as the present scale of the triangle
is concerned. As a matter of course, it does not
mean that in this area the failures had not brought
about, because the gravity had only been assumed
for the force in the calculation.

The failures should take place at first along the
boundary of the two rock species by the stress
concentration. It may be represented by the
foliation of the gneiss which surrounds the dome
as a narrow belt. Another possibility of the
failure could be the sheared zones which occur
outside of the dome.

However, it is hardly considered that the failures
had formed the present sheared zones by the stress
concentration of the scale mentioned above. Con-
sequently, it should be considered that the other
forces besides gravity e.g. forces caused by the
tangential stress, have been acting in this area.

Now, from the next simple equation the values
of maximum shearing stresses (Tmax) are calculated
in each domain, and the directions of 7pn.x have
forty five degrees from each principal axis.

01— 0y
Tmax =

On the 12, each crossed line indicates
the value and direction of 7n,y at the Stage 1.

This figure shows that the directions of 7w,y are
parallel to some parts of the curved outline of
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the dome and that the directions of ¢, and o,
are parallel to the boundaries of the other parts
of the dome (Figs. 6, 7, 8, 9, 10 and 12).

Now, though the analysis is carried out for the
two dimensional situation, it is able to obtain the
values of the third principal stresses ¢*, which are
perpendicular to the A-B section, using the next
equations.

%_ v(1—v)
=Ty =gy (1t

In this case, wc sucsses ¢* are identified with
g3, because that the absolute values of ¢* are less
than those of ¢; and ¢, (ref. Table 2). Using
this equation, the values of ¢; are calculated on
the domains, on which the values of ¢, and 7,
are calculated, and indicated on the Table 2.

On the Formation of Foliation

From the values and directions of principal
stresses, the normal stresses (¢,) and shearing
stresses (7,) on the fifteen boundaries, which are
placed between cordierite migmatite and massive
hornfels, can be calculated by the next relations,

g1+ 0y, 03—
2 42 2 92 cos 20

—.a .
L %4in20

Cy=

Typ=—
where @ is the angle between the horizontal line

Y

Fig. 13. Stress ellipse shows the relation between
the resultant and principal stresses. The
resultant stress acts on a spontaneous
plane, and is composed of normal stress
and shearing stress. The vector n is the
normal vector of the spontaneous plane
and the vector t is the unit vector to be
perpendicular to n.
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Fig. 14. The normal stresses and shearing stresses
on the fifteen boundaries of the dome
which in fact are deformed but for the
simplification are regarded as pre-defor-
ming one. The inner circle indicates
the value of 1kb and the outer that of
1.5 kb.

and each boundary. On the Figure 13, n is the
unit vector which is normal to the boundary and
t is the unit vector perpendicular to m. The
relations between their components and 6 are
decided as follows.

n— {nl}’ — {tl} {n1=t2=cosﬁ
Ny

ty)’ (ny= —t,=sind

The fifteen boundaries in question are parallel
to the trace of foliations on the A-B section. Cal-
culated values of ¢, and 7, on the Stage 1 are
shown in Table 2 and they are illustrated in Figure
14, in this case each pair of resultant stresses on a
certain boundary is different in the absolute value
as well as in the direction respectively, because
in the analysis using the F.E.M. the constitutive
equation does not hold and also the boundaries
for which the pre-deformed boundaries are used,
are deformed in fact.

From the Figure 14, it is clear that the foliation
tends to be perpendicular to the resultant stress.
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Table 2. Calculated values of ¢, g5, g3, 0p and 74, where ¢, is the maximum principal
stress, g,, the minimum principal stress, ¢, the principal stress to be normal to the
A-B plane, g4 and 74 are the normal stress and shearing stress on each boundary
respectively. Nb is the boundary number, Ne, the number of element and @ is the
angle between the horizontal line and each boundary. (See text. & Fig. 14)
N N 2] 23 a3 ] (1) To
b ¢ (kb) (kb) (kb) (deg) (kb) (kb)
1 577 —2.82946 —1.81332 —0.39327 0.0 —1.922 —0.035
615 —2.94871 —2.36217 —0.45522 ’ —1.765 —0.053
2 573 —2.90379 —1.79869 —0.39832 2.5 —1.786 0.437
571 —3.16793 —2.21976 —0.46180 : —1.583 0.474
3 492 —2.76574 —1.86550 —0.39229 63.5 —1.045 0.297
491 —4.29252 —2.27218 —0.56269 : —1.155 0.184
4 343 —2.97331 —2.01608 —0.42263 90.0 —1.023 —0.115
342 —4.61914 —2.06138 —0.57261 : —1.032 —0.052
5 269 —3.19105 —2.02845 —0.44212 —63.5 —1.364 —0.532
268 —4.60907 —2.27877 —0.59038 : —1.383 —0.711
6 195 —2.91311 —2.14880 —0.42877 90.0 —1.087 —0.094
194 —4.69676 —2.49768 —0.61666 : —1.264 0.173
7 123 —3.19273 —2.24895 —0.46094 —63.5 —1.455 —0.450
122 —4.53189 —2.71795 —0.62141 ' —1.480 —0.453
8 54 —3.16719 —2.36605 —0.46869 _45.0 —-1.919 —0.216
53 —4.07748 —3.18156 —0.62220 : —1.827 —0.394
9 22 —3.15436 —2.52811 —0.48133 —%.5 —1.889 —0.005
21 —3.62619 —3.41329 —0.60338 : —1.711 —0.026
10 25 —3.21192 —2.27510 —0.46478 —45.0 —1.776 —0.435
26 —4.85300 —2.88932 —0.66363 : —2.203 —0.955
11 133 —2.81669 —2.44252 —0.44548 90.0 —1.225 0.034
134 —4.23633 —2.50482 —0.57781 : —1.253 —0.022
12 323 —3.11029 —1.96491 —0.42990 63.5 —1.439 0.560
324 —4.15950 —2.25051 —0.54943 ' —1.337 0.598
13 473 —2.84548 —1.84827 —0.39758 90.0 —0.963 0.191
474 —4.46609 —1.96722 —0.55142 : —1.008 0.239
14 547 —2.84442 —1.67766 —0.38304 —45.0 —1.218 —0.545
548 —4.17937 —2.06818 —0.53550 : —1.313 —0.713
15 581 —2.80477 —1.75119 —0.38591 —9%.5 —1.625 —0.475
582 —3.37669 —2.27554 —0.48448 : —1.561 —0.534

It seems, therefore, to be reasonable that the
foliation, especially in the gneiss and migmatite
and other extremely deformed rocks, may be
resulted from as to be normal to the compressive
force during the upward movement of the dome.

Though the shape of the dome could have been
deformed through the upward movement so that
the stress conditions are changeable, the shearing
stresses works strongly on the more curved bounderi-
es (2, 5, 7, 10, 12, 14, 15 in the Fig. 14). It is
reasonable from the observations in the field that
the intense foliations are developed on the parts.

The values of the shearing stresses are shown
in Table 2 and Figure 14, and there are some
portions without or with very weak shearing stress.
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This analysis is calculated under the perfect
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Incorrect Correct
p. 683 Tmax = 71 TEEX=%
On the 12, On the Figure 12,
po68d o= YU oy PSS ¢ i ) B S

(1+v) (1-2v)

In this o* are In this case, the stresses ¢* are





