琉球大学学術リポジトリ

食肉類における低温細菌の蛋白および脂肪分解能について(畜産学科)

メタデータ	言語:
	出版者: 琉球大学農学部
	公開日: 2008-02-14
	キーワード (Ja):
	キーワード (En):
	作成者: 日越, 博信, 浜田, 輔一, Higoshi, Hironobu,
	Hamada, Sukekazu
	メールアドレス:
	所属:
URL	http://hdl.handle.net/20.500.12000/4173

食肉類における低温細菌の蛋白および 脂肪分解能について

日 越 博 信*。 浜 田 輔 一**

Hironobu Higoshi and Sukekazu Hamada: Proteolytic or lipolytic activity of psychrotrophic bacteria isolated from raw meat

I 緒 賞

低温細菌は低温($5^{\circ} \sim 7^{\circ}$)においても蛋白または脂肪分解能を示し、冷蔵保存中の食品類に悪影響を及ぼすことが知られている 3,9,10 。また、低温細菌のなかには耐熱性のプロテアーゼまたはリパーゼを産生し、これらの酵素が殺菌後の乳および肉製品にも悪影響を及ぼすことが示唆されている 9,10,13 。このことは、品質の良い乳および肉製品を得るには、さかのぼって生材料の低温細菌による汚染を防止すると同時に、本細菌を増殖させないことがいかに重要であるかを示す一つの例であろう。

一方,低温細菌の蛋白または脂肪分解能について、培養温度を異にした場合の試験報告は多い^{9,10)}。 しかし、これらは選出された少数の菌株を用いて試験されたものであり、特定の試料から分離された全 菌株について、種々培養温度で行われたものは少ない。

著者らは、これまでに生乳および食肉類の低温細菌による汚染の実態を明らかにするとともに、分離された本細菌の若干の性質についても検索し、それらの成績を報告してきた $^{2\sim 5)}$ 。今回はその一環として、新鮮肉および冷凍肉から5 $\mathbb C$ または20 $\mathbb C$ 培養で分離された低温細菌1.434株について、5 $\mathbb C$ 、20 $\mathbb C$ および35 $\mathbb C$ の3種培養温度で蛋白分解能および脂肪分解能を検討したので、得られた成績を報告する。

Ⅱ 実験材料および方法

1 供試菌株

本実験で供試した菌株は、新鮮肉から 5 \mathbb{C} 10 日培養後に分離された 537 株、同 20 \mathbb{C} 4 日培養後に分離された 614 株、および冷凍肉から 5 \mathbb{C} 10 日または 20 \mathbb{C} 4 日培養後に分離された 283 株、合計 1.434 株である。 これらは前報告 4 で記述した種々培養温度での増殖試験に供されたものと同一の菌株である。

なお、新鮮肉の5℃分離537株の内訳は、Alcaligenes – Achromobacter 218株、Pseudomonas 58株、Flavobacterium および未同定グラム陽性桿菌各55株、Acinetobacter 46株、未同定グラム陰性桿菌 42株、酵母 23株、Streptococcus 22株などである。同 20℃分離614株の内訳は、未同定グラム陽性桿菌 225株、Flavobacterium 109株、Micrococcus 76株、Staphylococcus 42株、

琉球大学農学部学術報告 26:405~412 (1979)

^{*} 琉球大学農学部畜産学科

^{**} 北里大学畜産学部

Streptococcus 40 株,Alcaligenes - Achromobacter 37 株,未同定グラム陰性桿菌 28 株,酵母24 株などである。なお,成績においては5℃分離株と 20℃分離株を一括して表示した。また,冷凍肉の5℃または 20℃分離 283 株の内訳は,Pseudomonas 179 株,未同定グラム陽性桿菌 70 株,Alcaligenes - Achromobacter 20 株,Streptococcus 8 株および未同定グラム陰性桿菌 6 株である。

2 蛋白分解能および脂肪分解能の試験方法

蛋白分解能の試験には、酵母エキス寒天培地(酵母エキス0.5%、ポリペプトン1.0%、塩化ナトリウム0.5%、寒天1.2%、pH 7.2)に10%脱脂粉乳(Difco)液を10%の割に加えたもの3)を用いた。

脂肪分解能の試験には2種類の脂肪加培地を用いた。1つはトリブチリン(東京化成)を1%の割に加えた酵母エキス寒天培地 3 であり、他の1つはバター脂肪の加えられたクロスリー寒天培地 5 栄研 $^{\prime}$ である。

分解能の有無については次のようにして調べた。すなわち,上記 3 種培地の平板それぞれ 3 枚ずつにあらかじめ普通寒天培地平板に $20 \, \mathbb{C} \, 1 \sim 2$ 日培養しておいた各供試菌を白金線で穿刺接種後,それぞれ 1 枚ずつを $5 \, \mathbb{C} \, 10$ 日, $20 \, \mathbb{C} \, 4$ 日および $35 \, \mathbb{C} \, 2$ 日培養して,毎日観察した。脱脂乳加寒天培地平板およびトリブチリン加寒天培地平板では,集落周囲の透明帯の幅が $1.0 \, \mathrm{mm}$ 以上のものを蛋白または脂肪分解陽性とし,またクロスリー寒天培地平板では,集落およびその周囲が青色を呈したものを脂肪分解陽性とした。なお,前 $2 \, \mathrm{a} \, \mathrm{b} \, \mathrm{b} \, \mathrm{b}$ 大学では,培養最終日の透明帯の幅が $1.0 \, \mathrm{c} \, \mathrm{a} \, \mathrm{c} \, \mathrm{b}$ でものものを++, $3.1 \, \mathrm{c} \, \mathrm{c} \, \mathrm{c} \, \mathrm{c}$ のものを++, $5.1 \, \mathrm{c} \, \mathrm{c} \, \mathrm{c}$ のものを+++と程度を区別した。

Ⅲ 実験成績

1 蛋白分解能

まず、新鮮肉から5 $\mathbb C$ および20 $\mathbb C$ 培養で分離された菌株についての成績を表1に示した。なお、表では試験した5 $\mathbb C$ 、20 $\mathbb C$ および35 $\mathbb C$ の3種培養温度のうちいずれか1種の培養温度で、あるいは2種の培養温度(5 $^\circ$ ・20 $\mathbb C$ 、20 $^\circ$ ・35 $\mathbb C$)および3種の培養温度(5 $^\circ$ ・20 $^\circ$ ・35 $\mathbb C$)でともに、陽性であった菌株数を示した。

3 種培養温度を通して分解陽性であった菌株は 243 株で、供試した菌株数の $21.1\,\%$ であった。 これらのうち 20° • $35\,\%$ でともに陽性のものが $76\,\%$ 作で最も多く、次いで $20\,\%$ のみで陽性の $63\,\%$ 株, $5\,\%$ • $20\,\%$ でともに陽性の $62\,\%$ が多かった。なお、 $5\,\%$ でのみ陽性のものが $4\,\%$ 株あり、注目される。

Genus 別に陽性率をみると、Flavobacterium の 63.2%が最も高く、次いで Micrococcus 38.0 %、Streptococcus 37.1%、Pseudomonas 32.8%の順に高かった。 他方、供試菌株として最も多かった Alcaligenes-Achromobacter では 2.4%が蛋白分解能を示したに過ぎなかった。 これらの Genus のうち、Flavobacterium および Pseudomonas では $5^{\circ} \cdot 20$ $\mathbb C$ でともに、あるいは $20^{\circ} \mathbb C$ での み陽性の菌株が多かった。一方、Micrococcus および Streptococcus では、いずれも $20^{\circ} \cdot 35^{\circ} \mathbb C$ でともに陽性の菌株が多かった。なお、表には示さなかったが、 $5^{\circ} \mathbb C$ および $20^{\circ} \mathbb C$ 培養において陽性であった菌株の過半数は、 $++\sim+++$ 程度に分解した。このような菌株は Flavobacterium および Pseudomonas に多かった。

次に、冷凍肉から5℃または20℃培養で分離された菌株の蛋白分解能の成績は、表2に示した。

3種培養温度を通して分解陽性であった菌株は、Pseudomonas の 28 株と未同定 グラム陰性桿菌の 2 株、計 30 株であり、これは供試した菌株の 10.6 %であった。この陽性率は上記の新鮮肉から分離さ

Table	1.	Proteolytic activity at different incubation temperatures of organ	nisms
		isolated at $5^\circ\!$	

Organism	No. of strain	Incubation temperature shown proteolysis								
	examined	5°*1	20°*1	35°*1	5°•20°•35°*2	5° · 20° *3	20°•35°*3	5°.35°*3		Total
Pseudomonas	58	1	6		•	12		•	10	(32.8)*
Flavobacterium	164	2	37	3	18	37	7			
Alcaligenes Achromobacter	255		1	1	•	3	1	•		(63.2)
Acinetobacter	52	•	1		1				0	(20)
Coliform bacteria	16	1			•		-			(3.8)
Staphylococcus	45			3		·	•	•		(6.3)
Micrococcus	79		2	3	3	•	4	•		(15.6)
Streptococcus	62		4	1	•		22	•		(38.0)
Bacillus	11		,	1		•	18	•		(37.1)
Yeast	47					•	1	•	3	(27.3)
Unclassified	• • •			•	•	•	•	•	•	
Gram (-) rods	70		2		•	6	2			(
Gram (+) rods	280		9	1	3	•	_	•		(14.3)
Gram (+) cocci	12		•	•	•	4	21	•	38	(13.6)
Total	1.151	4	63	13	25	62	76		243	(21.1)

- * 2 The lytic activity is shown at all three incubation temperatures.
- * 3 The lytic activity is shown at both 5 $^\circ$ C and 20 $^\circ$ C. 20 $^\circ$ C and 35 $^\circ$ C, or 5 $^\circ$ C and 35 $^\circ$ C, respectively.
- * 4 Number in parenthesis indicates percentage.

Organism	No of Incubation temperature shown proteolysis									
O gamsm	examined	5°*	20°*	35°*	5°·20°·35°*	5°-20°*	20°·35°*	5°.35°*	Total	
Pseudomonas	179	16				12	•	•	28 (15.6)*	
Alcaligenes Achromobacter)	20					•	• ·	•	•	
Streptococcus	8		•				•		•	
Unclassified				•						
Gram (-) rods	6	1	•	•	•	1		•	2 (33.3)	
Gram (+)rods	70		•	•	٠			•	٠	
Total	283	17	•	•	•	13	•	•	30 (10.6)	

^{* :} See the footnote in Table 1.

れた菌株のそれに比べて低かった。しかし、分解能を示した30株すべてが5 $\mathbb C$ 培養で陽性であり、しかも17株は5 $\mathbb C$ でのみ陽性であった。この成績は新鮮肉からの分離株の成績と異なり、注目される。なお、分解程度++ \sim +++を示した菌株は、5 $\mathbb C$ 培養で18株、 20 $\mathbb C$ 培養で5 株であった。

2 脂肪分解能

新鮮肉から分離された菌株の脂肪分解能の試験は、トリブチリンに対しては全菌株について行いその 成績を表3に、バター脂肪に対しては一部の菌株について行いその成績を表4に、それぞれ示した。

of organisms	isol at	ed at	5 °C	or 20°C f	rom fr	esh meat	sample	:S		
No. of	Incubation temperature shown lipolysis									
strain examined	5°*	20°*	35°*	5°•20°•35°*	5°•20°*	20°•35°*	5°•35°*	Total		
58		4	•	•	4	•	•	8 (13.8)		
164	•	•	•	•	•	•	•	•		
) 255	24	3		60	126	•	•	213 (83.5)		
52	•	3	•	19	23	2	•	47 (90.4)		
ia 16	•	•	•	•	•	•	•	•		
45	•	3	•	•	•	4	•	7 (15.6)		
79	•	3	•	1	2	6	•	12 (15.2)		
62	•	•		•	•	•	•	•		
11	•	1		•	•	1	•	2 (18.2)		
47		2	•	•	1	•	•	3 (6.4)		
ls 70	1	5		7	21	1	•	35 (50.0)		
ls 280		3		2	5	1	•	11 (3.9)		
				1		•	•	1 (8.3)		
	No of strain examined 58 164) 255 52 ria 16 45 79 62 11 47	No of strain examined 5°* 58	No of strain examined 5° * 20° *	No of strain examined Incubation to strain to	No. of strain examined Incubation temperature shows that the strain temperature shows the strain strain of the strain strain of the strain of th	No of strain examined	No of strain examined	No of strain examined		

Table 3. Lipolytic activity for tributyrin at different incubation temperatures of organisms isolated at 5 ℃ or 20 ℃ from fresh meat samples

1.151

Total

25

27

まず、トリブチリン分解能の成績は表 3 に示されるように、 3 種培養温度を通して 339 株 (29.5%) が 陽性であった。 これらのうち過半数の 182 株は 5° ・20 $\mathbb C$ でともに陽性であり、 次いで 3 種培養温度で ともに陽性の 90 株が多かったが、 $5\mathbb C$ でのみ陽性のものが 25 株あった。

182

15

339 (29.5)

Genus別に陽性率をみると、Acinetobacter の 90.4 %が最も高く、次にAlcaligenes-Achromobacter の 83.5 %、未同定グラム陰性桿菌の 50.0 %が高かった。しかし、Pseudomonas では 13.8 % と低く、またFlavobacterium、大陽菌群およびStreptococcus では陽性の菌株がみられなかった。なお、分解程度 $++\sim+++$ を示した菌株は比較的少なく、5 ℃または 20 ℃培養で陽性であった菌株の約%であった。

Table	4.	Lipolytic activity for butter fat at different incubation temperatures
		of organisms isolated at $5^\circ\!\!\mathrm{C}$ or $20^\circ\!\!\mathrm{C}$ from fresh meat samples

	No. of		Incub	ation to	emperature sho	wn lipolysi	s			Total
Organism	strain examined	5°*	20°*	* 35°*	5°-20°-35°*	5°·20°*	20°·35°*	5°•35°*		
Pseudomonas	24	1	4		•	5	•	•	10	(41.7)
Flavobacterium	4	•	•	•	•	•	•	•	•	
Alcaligenes Achromobacter)	133	1	2	•	97	30	2	•		(99.2)
Acinetobacter	20	•	•	•	17	2	•	•		(95.0)
Coliform bacteria	6	•	•	1	•	•	•	•	1	(16.7)
Staphylococcus	1	•	•	•	•	•	•	•	•	
Streptococcus	13	•		•	•	1	•	•	1	(7.7)
Yeast	5	•	1	•	•	3	•	•	4	(80.0)
Unclassified										
Gram (-) rods	14	•		•	6	5	•	•	11	(78.6)
Gram (+) rods	9		1	•	•	3	•	•	4	(44.4)
Gram (+) cocci	3	•	•	•	•	•	٠	•	•	
Total	232	2	8	1	120	49	2	•	182	(78.4)

^{* :} See the footenote in Table 1

^{* :} See the footnote in Table 1.

次にバター脂肪分解能の成績については、表 4 に示したように、供試した 232 株のうち 182 株(78.4 %)が陽性であった。上記のトリブチリン分解陽性率が高かった Acine to bacter,Alcaligenes - Achromobacter,未同定グラム陰性桿菌などではバター脂肪分解陽性率も高かった。 これらの菌株では 3 種培養温度でともに陽性のものが多く、トリブチリンに対する態度とは異なっていた。

一方、冷凍肉から分離された菌株のトリブチリン分解能については表5に示した。

Table 5. Lipolytic activity for tributyrin at different incubation temperatures of organisms isolated at 5 °C or 20 °C from frozen meat samples

Organism	No. of strain	The addition rempetature shown inpolysis								
	examined	5°*	20°*	35°*	5°-20°-35°*	5°•20°*	20°·35°*	5°•35°*		Total
Pseudomonas	179	2	•	•	1	2	•	•	5	(2.8)*
Alcaligenes Achromobacter)	20	5	3	٠.	•	12				(100.0)
Streptococcus	8	•	•		•	•	•			
Unclassified										
Gram (-) rods	6			•	•	•	•			
Gram (+) rods	70			•		1			1	(1.4)
Total	283	7	3	•	1	15		•	26	(9.2)

^{* :} See the footenote in table 1.

3 種培養温度を通して分解陽性の菌株は 26 株であり、これは供試した菌株の 9.2 %であった。この陽性率は新鮮肉からの分離株における陽性率に比べて低かった。分解陽性 26 株のうち、 20 株は Alcaligenes-Achromobacter であり、本細菌の全菌株が分解能を示した。他方、最多供試菌株のPseudo-monas では 179 株のうち、5 株 (2.8 %) が分解能を示したに過ぎなかった。 分解陽性の菌株では、5 ℃でのみまたは 5 $^{\circ}$ $^{\circ}$

冷凍肉からの分離株におけるバター脂肪分解能の成績は表6に示した。

Table 6. Lipolytic activity for butter fat at different incubation temperatures of organisms isolated at 5°C or 20°C from frozen meat samples

Organism	No of Incubation temperature shown lipolysis									
Organism	examined	5°*	20°*	35°•	5°-20°-35°*	5°·20°*	20°·35°*	5°-35°*	-	Tatal
Pesudomonas	179	1	29	•	3	78	•	•	111	(62.0)
Alcaligenes Achromobacter)	20	•	•	•	13	7	•		20	(100.0
Streptococcus	8				•	3	•	•	3	(37.5)
Unclassified										, , , , ,
Gram (-) rods	6	•	•		•		•	•		
Gram (+) rods	70	14	1		1	49	•	•	65	(92.9)
Total	283	15	30	•	17	137	•	•	199	(70.3)

^{* :} See the footenote in Table 1.

表から明らかなように、供試した 283 株のうち 199 株 (70.3%) が陽性であり、トリブチリン分解陽性率に比べて著しく高率であった。陽性菌株の大多数は 5° ・20 $\mathbb C$ でともに分解能を示した。Alcaligenes-Achromobacter の 20 株すべては、トリブチリン分解能とともにバター脂肪分解能も示した。ま

た,未同定グラム陽性桿菌ではほとんどすべての菌株がバター脂肪分解陽性であり,トリブチリン分解 陽性株数に比べて著しく多かった。これと同様の傾向は Pseudomonas でもみられた。

IV 考察

低温細菌の存在は、冷蔵保存中の食品類に種々の異臭、異味などを生じ、品質の低下をきたすことで重要視されてきた。これらの品質低下の主たる原因は、低温細菌が蛋白分解能または脂肪分解能をもっていることと関係している。従って低温細菌に関する研究報告では、これらの性質に触れている場合が多い $^{8\sim10)}$ が、多くは本細菌の至適増殖温度付近(20 $^{\circ}$ $^{\circ}$ $^{\circ}$ で試験されたものである。低温細菌の特徴として重要なことは、低温で増殖できるばかりでなく、冷蔵保存中の食品類に悪影響を及ぼすことであるから、本細菌のどのような種類がどの程度低温において蛋白分解能および脂肪分解能を示すのかも検索する必要があると思われる。

今回著者らは、新鮮肉および冷凍肉から分離された低温細菌について、 $5 \, \mathbb{C}$ 、 $20 \, \mathbb{C}$ および $35 \, \mathbb{C}$ の3種培養温度で蛋白分解能および脂肪分解能を調べた。その結果、3 種培養温度を通して、蛋白分解陽性株では新鮮肉からの分離株で $21.1 \, \mathcal{S}$ 、冷凍肉からの分離株で $10.6 \, \mathcal{S}$ であり、また脂肪分解陽性株では前者分離株がトリブチリンに対して $29.5 \, \mathcal{S}$ 、バター脂肪に対して $78.4 \, \mathcal{S}$ 、後者分離株がそれぞれ $9.2 \, \mathcal{S}$ および $70.3 \, \mathcal{S}$ であった。 これらの陽性率は、蛋白分解陽性率では、小久保ら $^{8)}$ が新鮮豚肉由来株で行った成績、および砂川ら 12)が市販豚肉由来株で行った成績とはば類似していた。また、脂肪分解陽性率では、砂川ら 12)の行ったトリブチリン分解能の成績とはほば同じであったが、小久保ら $^{8)}$ の行ったバター脂肪分解能の成績よりは著者の行ったバター脂肪分解陽性率の方がはるかに高かった。なお、今回の成績は生乳由来の低温細菌の成績 3 と比べて、バター脂肪分解陽性率では高かったが、この他はそれぞれ低かった。

小久保ら 8)は Flavobacterium の蛋白分解陽性率が高かったことに注目しているが、今回の著者らの成績および 先に 報告 3)した生乳由来の菌株でも同様の成績であった。なお、生乳由来のPseudomonas および大腸菌群では比較的高い蛋白分解陽性率を示したが、冷凍肉由来のPseudomonas および新鮮肉由来の大腸菌群では陽性率が低く、同じGenus であっても由来によって異なることを示した。

 $Gilardi^{1)}$ は,Acinetobacter の特徴の一つにリパーゼ産生能をあげているが,今回の新鮮肉由来のAcinetobacter でも 90 %の菌株が脂肪分解陽性であり,それを裏付けていると思われる。また,Alca-ligenes-Achromobacter も脂肪分解陽性率が高かったが,笠井ら $^{6)}$ は牛乳由来のAlcaligenesが,小久保ら $^{8)}$ は新鮮豚肉由来のAchromobacter が,それぞれ高い脂肪分解陽性率であったことを報告している。

今回の成績から、グラム陰性桿菌は5 $\mathbb C$ および20 $\mathbb C$ 培養でともに蛋白または脂肪分解陽性の菌株が多かったが、なかには5 $\mathbb C$ でのみ陽性の菌株がみられた。これは低温細菌の至適増殖温度付近における分解能の試験成績のみでは、低温における分解能を評価できない場合もあることを示していると思われる。

なお、今回のような実験成績のみから、食肉由来の低温細菌が食肉の蛋白または脂肪を直接分解するとは言えないかもしれない。この点を明らかにするには、Kazamas⁷⁾が魚由来株の蛋白分解能の試験でfish-juice を用いたように、食肉そのものを用いて実験する必要があるかもしれない。しかし、食肉を含む食品類は、単に低温に保存するのみで品質の低下を防止するのは困難であり、低温細菌の蛋白または脂肪分解能によって悪影響を受けることは確かであろう。そして品質低下の程度は、保存期間が長いほど大きく、また存在する低温細菌の種類によって異なるものと考えられる。

Ⅴ 要 約

新鮮肉および冷凍肉から分離された低温細菌、合計1,434株について、蛋白分解能および脂肪(トリブチリン、バター脂肪)分解能を5℃、20℃、35℃の3種培養温度で検討し、次のような成績を得た。3種培養温度を通して蛋白分解能を示した菌株は、新鮮肉由来株の21.1 %、冷凍肉由来株の10.6 %であった。Genus 別の陽性率ではFlavobacterium が最も高く、次いで Micrococcus、Streptococcus、Pseudomonas または Bacillus の順であった。これらのうちグラム陰性桿菌は5℃および20℃培養で分解した菌株が多く、グラム陽性の桿菌および球菌は20℃および35℃培養で分解した菌株が多かった。トリブチリン分解陽性の菌株は、新鮮肉由来株で29.5 %、冷凍肉由来株で9.2 %であったが、バター脂肪分解陽性の菌株はそれぞれ78.4 %と70.3 %であり、いずれもバター脂肪分解陽性率が高かった。Acinetobacter および Alcaligenes - Achromobacter のほとんどすべての菌株は、由来に関係なく両脂肪を分解した。これらの多くは5 ℃・20 ℃で、または3 種培養温度でともに分解能を示した。

参考文献

- Gilardi, G. L. 1971 Characterization of nonfermentative nonfastidious gram negative bacteria encountered in medical bacteriology, J. appl. Bact., 34:623~644
- 2. 日越博信,浜田輔一 1976 搾乳直後分房乳における低温細菌群,食衛誌, 17:27~33
- 3. _____, ____1976 生乳における低温細菌群のタンパクおよび脂肪分解能,食衛誌, 17:41~47
- 4. ______, _____ 1978 食肉類の低温細菌について,琉大農学報, 25: 421 ~ 428
- 5. ______, 矢挽輝武, 浜田輔一 1973 新鮮肉および冷凍肉の低温細菌群について, 北獣会誌, 17:191~197
- 6. 笠井金盛,大淵紀己子,松井武夫,神林三男 1964 いわゆる好冷細菌に関する研究,とくに牛乳中の脂肪分解菌の性状について,食衛誌, $5:199\sim205$
- 7. Kazamas, N. 1968 Proteolytic activity of microorganisms isolated from fresh water fish, Appl. Microbiol., 16: 128-132
- 8. 小久保弥太郎,梅木富士郎,春田三佐夫 1971 豚生肉を汚染する低温細菌に関する研究,食衛誌,12:164~169
- 9. 三河勝彦 1977 牛乳低温細菌の特性,酪農科学・食品の研究,26: A-153~163
- 10. 森地敏樹, 北田徳蔵 1977 低温細菌が乳質に及ばす影響ならびにその検査法の問題点, 酪農科学・食品の研究, **26**: A-165~172
- Pinheiro, A. J. R., Liska, B. J. and Parmellee, C. E. 1965 Heat stability of lipase of selected psychrophilic bacteria in milk and purduse swiss type cheese, J. Dairy Sci., 48: 983~984
- 12. 砂川紘之,梅村康子,小笠原和夫 1971 市販豚肉の細菌そうについて,北海道衛生研究所報, 21:129~134
- 13. Thomas, S. B. and Druce, R. G. 1969 Psychrotrophic bacteria in refrigerated pasteurized milk. II, Dairy Indus., 34: 430~433

Summary

A total of 1,434 strains isolated by incubation at 5°C for 10 days or at 20°C for 4 days from fresh meat and frozen meat were proteolytic or lipolytic (tributyrin and butter fat) activity at three different incubation temperatures.

Proteolytic activity was demonstrable with 21.1% of the 1,151 strains isolated from fresh meat and with 10.6% of the 283 strains isolated from frozen meat. Among these organisms with proteolytic activity *Flavobacterium* was most frequent, followed, in order, by *Micrococcus*, *Streptococcus*, *Pseudomonas* or *Bacillus*. Most of gram-negative bacilli showed proteolytic activity at 5°C and 20°C incubation, and, most of gram-positive bacilli and cocci showed at 20°C and 35°C.

Lipolytic activity for tributyrin was shown by relatively samll fractions of the organisms, i.e. 29.5% of all strains from fresh meat and 9.2% of those from frozen meat, whereas the corresponding ratios of organisms capable of degrading butter fat were prominent, 78.4% and 70.3% respectively. The Acinetobacter and Alcaligenes-Achromobacter strains virtually all displayed lipolytic activity in both fat-containing media, mostly at both 5°C and 20°C or at all three different incubation temperatures, irrespective of sources of isolation.