琉球大学学術リポジトリ

沖縄における確率降雨強度式型(農業工学科)

メタデータ	言語:
	出版者: 琉球大学農学部
	公開日: 2008-02-14
	キーワード (Ja):
	キーワード (En):
	作成者: 吉永, 安俊, Yoshinaga, Anshun
	メールアドレス:
	所属:
URL	http://hdl.handle.net/20.500.12000/4335

沖縄における確率降雨強度式型

吉 永 安 俊*

Anshun Yoshinaga: Probable rainfall - intensity

formulas in Okinawa

I 緒 曹

小河川における雨水流出量や小区域排水計画にあたっては、その地方の短時間強雨特性を明確に知らなければならない。特に沖縄地方の河川は、流路延長及び流域面積がきわめて小さく、洪水到達時間がほとんど2時間以内(10,12)の小河川であり、それらの河川洪水量の推定にあたっては、本土の河川で用いられている日雨量を単位とした降雨強度式は適当でなく、2時間以内の短時間降雨強度式が必要である。現在沖縄地方で河川洪水推定量に用いられている降雨強度式は Talbot 式型である、この式は Sherman 式型、久野式型と共に、わが国では都市下水道、小区域排水設計計画における降雨強度式 として最もよく知られている式である。これら 3式型は降雨の地域特性により適合状態が異なり、地域により最適式型がきまってくる、今回は沖縄地方における河川流出に関する研究の一環として、沖縄地方7地点の降雨特性を沖縄気象台の資料に基づき、上記 3 式型をあてはめ、Talbot 式型が沖縄各地で最適式であるかどうかを検討し、あわせて 3 式型の各地での適合状態を明らかにする。

Ⅱ 降雨資料

降雨資料は沖縄気象台発行の「沖縄各地の雨資料(降雨強度)」より採った。この報告書には5,10,20,30,40,60,90,120分の各継続時間の毎年最大値が集録されており、雨資料の収集には非常に都合が良かった。各地の資料の統計年数は、那覇20年間(1953~1972),久米島14年間(1959~1972),宮古島25年間(1947~1972,但し、1958年は5分間雨量不明のため除去),石垣島25年間(1948~1972)与那国島16年間(1957~1972),南大東島25年間(1947~1972,但し、1954年は120分雨量不明のため除去),名護6年間(1967~1972)。

Ⅲ 確率降雨強度式の算定法

1 降雨量順位の作成及び降雨強度への換算

5, 10, 20, 30, 40, 60, 90, 120 分各継続時間降雨量を年代順に関係なく大きいものより順に列記しそれらの降雨量R を降雨強度 I に次式により換算する(2, 3)

* 琉球大学農学部農業工学科 琉球大学農学部学術報告 **22**: 239~253 (1975)

$$I = R \times \frac{60}{f} \qquad \dots (1)$$

ここに I は降雨強度 (㎜/hṛ) , R は降雨量 (㎜) , t は継続時間 (min)

2 各継続時間ごとの降雨形態の分布検定

降雨分布は一般に対数正規分布を示すといわれるが(4,13),正規分布の方が適当な場合もある。 従って,これらの降雨資料が対数正規分布を示すか,あるいは,正規分布を示すかを検定する。まず全 資料を(2)式のHazen plot で対数正規確率紙と正規確率紙にプロットし,いずれの確率紙でより直線性 があるか判定を試みた。

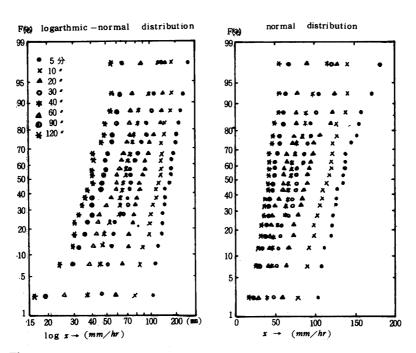


Fig 1. Graphs comparing the logarithmic-normal distribution and the mormal distribution (Naha) 図 1. 降雨分布の検定(那覇)

$$Wi = (2r - 1) / 2n$$
(2)
 $T = \frac{1}{Wi}$ (3)

ここでWi は超過確率, r は資料を大きい方から数えた順位,n は資料総数,T は確率年(リターンピリオド)

ところが図1が示すように,各継続期間を考えると,いずれの確率紙でより直線状態を示すか目測での判定は困難である。したがって(2),(3)式で資料個々に対する確率年を計算し,それぞれの確率年に対する正規変量(y)を求めて,次式(4),(5)にそれらの yを代入して理論値 F_i (確率雨量)を求め,(6)式によりそれらと資料値との X_0^2 分布検定で適合度を判定した。(たとえば n=20,r=1 のとき,すなわち資料総数20の 1 位の値の確率年 Tは(2),(3)式より $W_i=(2\times 1-1)$ / $(2\times 20)=0.025$, $T=\frac{1}{0.025}=40$,確率40年に対する正規変量 (確率N年に対する正規変量表(1)より) y=1.386)

$$F(x) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{y} e^{-y^{2}} dy$$

$$y = a \log_{10} \frac{X + b}{X_{0} + b} (-b < X < \infty)$$

$$\log_{10} (X + b) = \log_{10} (X_{0} + b) + \frac{1}{a} y$$

$$F(x) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{y} e^{-y^{2}} dy$$

$$y = a (X - X_{0})$$

$$X = X_{0} + \frac{1}{a}$$

$$X_{0}^{2} = \sum_{i=1}^{n} \frac{(X - F_{i})^{2}}{F_{i}}$$
(6)

(4), (5)式でXは確率雨量, X。は資料平均値, b は岩井法における下限値, y は確率年に対する正規変量, a は定数, (6)式でX は資料値, Fi は理論値(確率雨量), n は資料総数。

Table 1. Value of
$$X_0^2 = \sum_{i=1}^n \frac{(X_i - F_i)^2}{F_i}$$
 表 1. X_0^2 の 値

t	Naha		Kumezima		Miyako		Ishi	Ishigaki		Yonaguni		ni : D	N	ago
<u> </u>	N	L	N	L	N	L	N	L	N	L	N	L	N	L
5	1.7	0.8	12.5	3.8	57.9	10.3	21.4	12.2	11.5	8.1	24.7	5.1	1.4	1.1
10	1.4	14.4	6.4	3.1	24.7	5.2	4.0	1.8	3.6	7.6	4.4	3.8	0.5	0.7
20	4.7	2.6	1.8	1.7	5.7	3.5	2.0	2.0	3.6	7.0	15.5	6.9	2.2	3.7
30	3.9	1.4	10.9	9.5	34.0	19.8	4.4	2.5	2.6	5.0	10.4	4.1	3.0	5.5
40	4.7	2.6	11.9	5.7	22.5	8.5	9.9	4.2	1.5	1.8	10.5	2.9	5.8	10.6
60	2.2	6.5	2.2	1.3	23.5	3.8	8.6	3.6	2.1	1.9	20.3	2.7	0.8	0.5
90	1.6	6.1	2.3	2.1	27.1	1.7	7.4	2.8	10.9	6.8	23.9	10.6	1.5	2.7
120	1.4	4.7	1.7	1.3	15.5	3.4	5.6	2.1	14.6	4.0	22.1	4.9	2.4	1.8

* N: normal distribution

L: logarithmic normal distribution

表 1 は (6)式で求めた X_0^2 の値である。表 1 の X_0^2 の値の小さい程理論値と合致し,その確率紙上でより直線状態を示すことになる。すなわち適合度が良いことになる。久米島,石垣島,宮古島,南大東島の 4 地点では各継続時間とも対数正規分布を示す。また,他の 3 地点,那覇,与那国島,名護では継続時間によって分布状態が異なり,4:4,4:4,3:5 とそれぞれ対数正規分布,正規分布となっている。 1 地点で継続時間ごとに分布型が異なると,後の棄却及び降雨強度式の算定がわずらわしくなるので, ここでは 1 地点 1 つの分布型にまとめて計算をすすめる。那覇は対数正規分布と正規分布の割合が4:4 でどちらの分布にもとれるが,しかし表 1 の X_0^2 の値を比較すると 10 分継続時間の対数正規分布への適合

度が各継続時間に比較してきわめて悪く (X_0^2) 分布表で有意水準を5%にして適合範囲内にはある),各継続時間全体を考えた場合,那覇は正規分布と見なした方が妥当と思える。同様な考えに基づいて,与那国島は対数正規分布,名護は正規分布とする。

3 資料の棄却検定

降雨資料の中に特に大きい値(あるいは小さな値)が含まれている場合が多く、その値を確率計算に入れるかどうかでその結果がかなり異なり問題になる場合がある、それゆえ計算にかけはなれて大きな値(あるいは小さな値)に対して棄却検定を行う必要がある。資料の最大値分布の場合は小さな値の棄却は結果にあまり大きな影響はあたえない(6)ので棄却検定を除外するのが普通である。従ってことでも除外する。

対数正規分布の棄却検定には角屋氏の2項分布的な考えに基づく棄却限定法(5,6)を採用し、正規分布の場合はSmirnovの棄却検定法(II)を用いた。その結果表2~8までのアンダーラインを引いた降雨データが棄却の対象となった、なお表2~8は(1)式で求めた各地の降雨強度(㎜/hr)である。

Table 2. Intensity of rainfall in Naha (mm/hr) 表 2. 降雨強度 (那覇)

T	5 MI N	10 MI N	20MIN	30MIN	40MIN	60 MIN	90MIN	120MIN
1	181	140	127	120	117	86	65	55
2	168	140	122	104	98	75	63	5 5
3	161	138	120	102	84	74	60	54
4	157	126	117	94	84	73	60	49
5	154	126	1 0 5	93	78	72	5 6	48
6	151	120	97	87	75	70	55	46
7	144	120	96	81	7 2	66	51	41
8	139	119	91	79	70	64	49	41
9	138	119	89	73	69	62	49	40
10	137	117	86	73	69	60	48	40
11	134	113	86	73	66	60	47	40
12	126	109	80	72	65	59	46	37
13	126	107	78	70	65	5 5	40	36
14	124	104	77	70	62	50	40	34
15	120	101	76	65	62	45	40	32
16	120	98	7 1	5 7	5 2	4 4	37	30
17	118	98	71	5 6	48	4 3	35	30
18	110	88	65	5 4	47	41	32	28
19	106	84	62	5 1	46	39	29	24
20	103	78	5 8	4 7	37	26	19	16

Table 3. Intensity of rainfall in Kumesima (mm/hr)表 3. 降雨強度 (久米島)

T	5 MIN	10MIN	20MIN	30MIN	40MIN	60MIN	90MIN	120MIN
1	228	162	131	136	123	88	6'2	5 6
2	204	158	108	92	84	68	62	5 0
3	187	123	98	84	71	67	48	39
4	174	121	98	77	70	63	48	39
5	150	120	96	75	68	5 7	45	39
6	144	117	95	74	66	56	44	38
7	132	111	87	74	65	53	44	36
8	126	108	84	72	65	53	36	33
9	121	97	81	69	59	5 2	36	31
10	120	96	78	68	56	44	36	29
11	120	92	78	63	5 2	43	33	29
12	114	86	66	58	49	40	33	28
13	97	84	62	5 1	46	33	25	22
1 4	90	78	52	40	38	31	22	19

Table 4. Intensity of rainfall in Miyako (mm/hr)表 4. 降雨強度 (宮古)

T	5 MIN	10MIN	00 MIN	001/111	103 (73)	1		
-			20 MIN	30MIN	40MIN	60 MIN	90MIN	120MIN
1	264	198	1 5 2	<u>160</u>	<u>152</u>	<u>138</u>	112	90
2	228	187	1 4 4	107	105	100	90	79
3	204	180	1 2 0	104	105	91	79	64
4	204	156	1 2 0	104	103	84	72	58
5	194	1 3 9	1 19	102	92	78	64	56
6	168	1 3 1	1 17	97	90	77	64	49
7	155	1 3 1	110	94	85	75	58	48
8	1 4 5	1 3 1	110	86	80	71	57	48
9	144	1 3 0	102	86	80	69	55	46
10	1 4 0	126	101	86	78	68	5 1	45
11	1 3 8	1 2 6	99	84	77	68	51	45
1 2	1 3 2	120	9 7	8 3	77	66	49	42
1 3	1 3 2	1 1 9	96	83	76	64	48	42
14	1 3 2	1 1 8	96	83	75	62	48	41
1 5	1 3 2	114	9 5	80	75	59	47	40
1 6	1 2 6	113	9 3	80	73	5 7	47	39
1 7	1 2 6	1 1 0	9 2	75	73	56	44	38
18	1 2 0	108	9 2	75	71	56	43	37
19	120	108	9 1	75	65	5 1	40	37
2 0	1 2 0	102	8 9	74	62	51	40	36
2 1	1 2 0	102	8 8	70	60	48	39	35
2 2	120	9 7	8 3	69	58	47	38	32
2 3	114	96	8 0	67	5 6	46	36	29
2 4	102	9 6	7 2	67	5.5	43	33	26
2 5	102	9 4	6 7	66	5 4	38	28	22

Table 5. Intensity of rainfall in Ishigaki (mm/hr)

-	-	降雨強度	(工福)
夷	5.	陸爾領度	(石理)

T	5 MIN	10MIN	20MIN	30MIN	40MIN	60MIN	90MIN	120 MIN
1	240	186	135	119	117	98	85	70
2	222	174	126	116	104	95	72	63
3	221	171	117	110	104	88	71	58
4	216	160	111	100	102	79	64	55
5	216	150	111	94	98	78	59	53
6	204	144	110	93	89	75	56	49
7	192	139	101	91	83	71	55	49
8	180	137	99	83	7.8	68	55	48
9	174	135	99	78	7 2	68	55	47
10	158	124	95	76	69	61	53	43
11	148	119	93	76	68	59	4 9	42
12	144	117	90	74	66	5 6	46	40
13	144	116	89	71	65	5 2	41	36
14	144	114	84	70	62	5 1	41	34
15	144	114	84	69	61	49	38	33
16	138	112	81	66	61	49	37	3 1
17	138	106	80	64	5 9	48	36	31
18	132	105	78	63	55	47	35	30
19	132	102	77	62	5.5	46	35	28
20	120	95	74	61	5 4	45	3 4	28
21	114	93	73	5 6	5 3	44	33	26
22	114	90	71	5 6	46	36	31	26
23	108	83	69	5 3	42	35	24	22
24	102	78	5 4	44	40	29	23	19
25	96	66	45	36	34	28	19	16

Table 6. Intensity of rainfall in Yonaguni (mm/hr)

表 6. 降雨強度(与那国)

T	5 MIN	10MIN	20MIN	30 MIN	40 MIN	60MIN	90MIN	120 MIN
1	192	160	128	113	108	99	95	90
2	180	144	120	106	98	93	80	68
3	180	140	115	101	85	75	5 4	5 1
4	180	139	113	99	85	72	5 4	47
5	174	138	109	91	80	71	53	46
6	144	135	107	91	80	71	53	44
7	144	127	104	86	75	65	53	42
8	132	126	99	81	75	64	51	41
9	132	123	99	78	67	5 9	49	41
10	128	120	96	78	65	5 7	47	39
11	126	120	96	75	65	5 1	46	37
12	126	108	93	7 2	65	48	38	34
13	120	106	84	66	59	47	38	33
14	114	89	71	52	49	46	37	31
15	114	84	62	49	49	37	35	30
16	112	72	60	46	38	29	23	20

Table 7. Intensity of rainfall in Minamidaito (ma/hr) 表 7. 降雨強度 (南大東島)

Т	5 MIN	10MIN	20MIN	30 MIN	40MIN	60MIN	90MIN	120MIN
1	240	147	144	120	107	109	90	75
2	186	140	132	114	101	82	5 9	48
3	168	132	120	108	93	74	5 2	47
4	168	126	119	94	8 7	71	50	45
5	151	126	115	89	77	66	5 0	41
6	150	120	111	88	74	63	49	40
7	144	120	109	88	71	61	45	38
8	144	120	1 0 5	86	7 1	54	43	36
9	144	119	100	86	71	53	43	35
10	138	111	80	70	69	5 2	42	35
11	138	109	80	69	64	5 1	38	34
12	128	103	79	68	57	51	38	30
13	122	99	78	67	5 6	50	37	29
14	120	99	78	66	5 6	48	36	28
15	119	96	77	66	5 6	45	35	27
16	115	93	75	63	5 5	45	34	27
17	110	86	72	62	5 4	42	34	26
18	108	85	70	60	53	41	32	26
19	108	84	69	5 9	5 3	41	30	26
20	102	82	67	5 9	5 1	39	30	26
21	102	77	65	58	45	37	28	23
22	100	72	65	49	45	34	25	21
23	98	72	5 7	48	40	31	24	19
24	96	68	5 7	44	38	30	23	19
25	82	63	47	41	36	29	22	1 7

Table 8. Intensity of rainfall in Nago (mm/hr) 表 8. 降雨強度 (名護)

T	5 MIN	10MIN	20MIN	30MIN	40MIN	60MIN	90MIN	120MIN
1	204	164	1 35	122	102	109	76	79
2	, 168	153	129	111	99	97	74	69
3	168	138	120	106	96	79	57	45
4	162	126	111	102	92	70	55	44
5	156	117	102	80	74	5 7	48	39
6	138	96	72	56	45	43	31	26

4 確率降雨強度の算定

2の分布検定のときは(4), (5)式により全資料を用いて確率計算をして理論値 (確率雨量)Fi を算出したが、 こんどはデータの棄却検定により、棄却の対象が出てきたのでそのデータを棄却して確率計算を行なう。表 9 が那覇と石垣島の各継続時間の確率雨量である。

これらの確率雨量がそれぞれの降雨強度曲線を決定するための2次データとなる。例えば那覇と石垣島島の2次データを継続時間に対してプロットしたのが図2, 3の同一確率値配列図である。図2, 3のプロットに最小二乗法の曲線をあてはめれば降雨強度曲線ができる。

Table	9.	Probable	rainfall
表	9.	確率雨量	

	T tmie	5	10	20	30	40	60	90	120
	2	136	112	89	76	66	58	46	39
	3	145	120	97	84	72	65	51	43
	5	153	127	106	92	78	7 1	56	47
ha	10	162	135	115	100	85	77	61	5 2
Naha	20	170	141	122	107	90	82	66	5 6
	30	174	144	126	111	93	85	68	58
	50	178	148	130	115	96	89	70	60
	100	184	153	136	120	100	93	74	63
	2	152	118	89	73	67	5 6	44	3 7
	3	171	132	98	83	76	64	51	44
· 1	5	191	146	108	92	87	74	5 9	50
gak	10	214	163	118	104	99	85	68	58
Ishigaki	20	236	178	127	113	111	95	77	66
ŭ	30	248	186	132	120	117	101	82	70
	50	263	196	138	127	1 25	108	87	75
	100	283	209	145	137	135	118	95	82

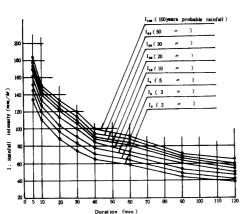


Fig 2. Graph of arrangiment of the same probable rainfall

図 2. 同一確率値配列図 (那覇)

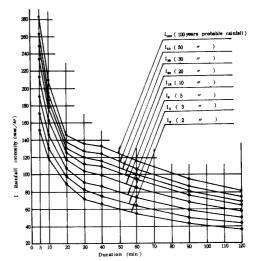


Fig 3. Graph of arrangiment of the same probable rainfall 図 3. 同一確率値配列図(石垣島)

5 比較に用いた式型と適合度検定

まず最小二乗法の計算をするまえに、式型を決定しなければならないが、降雨強度式型としては次の 3式型について比較検定すれば実用上は十分であるといわれている(5)ので次の3式型について検討する。

$$I = \frac{a}{t+b} \quad \text{(Talbot 型)} \qquad \dots (7)$$

$$I = \frac{a}{t^n} \quad \text{(Sherman 型)} \qquad \dots (8)$$

$$I = \frac{a}{\sqrt{t+b}} \quad \text{(久野型)} \qquad \dots (9)$$

ここでⅠは降雨強**度(㎜/hr),**t は降雨継続時間(min),a , b ,n はいずれも地方定数である。 これら(7), (8), (9)式の各係数 a, b, n を最小二乗法で求め、それらの値を用いて算定式より各継 続時間の式値を逆算して資料値との偏差を求める,偏差の資料値に対する百分率%(偏差百分率)を算 出する。この偏差百分率の平均を平均偏差百分率と呼び各式型の適合度の比較の基準とした。これらの 算出過程を那覇(10年確率強度),石垣島(10年確率強度)について表10,11に示す。

Table 10. Example of calculation of curve fitting for Naha 表 10. 適合度の検定例 (那覇)

t	Iκ	$I_1 = \frac{8341}{t + 50}$ (Tal bot)			$I_2 = -\frac{3}{2}$	08 0.36 (Ser	man)	I ₃ = 7	$I_3 = \frac{715}{\sqrt{\tau} + 2.02}$ (Hisano)			
		I	α_1	%	I 2	a_2	%	I a	α_3	96		
5	162	151	11	6.72	175	-13	-8.02	168	-6	-3.70		
10	1 35	139	- 4	-2.96	137	-2	-1.48	138	-3	-2.22		
20	115	119	- 4	-3.48	107	8	6.96	110	5	4.35		
30	100	104	- 4	-4.00	93	7	7.00	95	5	5.00		
40	85	92	- 7	-8.24	84	1	1.18	86	-1	-1.18		
60	77	76	1	1.30	73	4	5.19	73	4	5.19		
90	61	59	2	3.28	63	-2	-3.28	62	-1	-1.64		
120	52	49	3	5.77	- 1		1	1	•	-5.77		
120	52	49		5.77 = 4.48	57	-5 M	-9.62 = 5.34	55	-3 M ₃	_		

Table 11. Example of calculation of curve fitting for Ishigaki 表 11. 適合度の検定例 (石垣)

t	I d	$I_1 = \frac{8026}{t + 37} (\text{Talbot})$			$I_2 = -4$	04 t 0.40 (Se	rman)	$I_3 = \frac{718}{\sqrt{t} + 1.19}$ (Hisano)			
		I ₁	$\alpha_{_{1}}$	96	I	α_2	96	Ia	α_3	96	
5	214	190	24	11.21	214	0	0.00	209	5	2.34	
10	163	170	-7	-4.29	163	0	0.00	165	-2	-1.23	
20	118	140	-22	-18.64	124	-6	-5.08	127	-9	-7.63	
30	104	119	-15	-14.42	105	-1	-0.96	108	-4	-3.85	
40	99	104	-5	-5.05	94	5	5.05	95	4	4.04	
60	85	83	2	2.35	80	5	5.88	80	5	5.88	
90	68	63	5	7.35	68	0	0.00	67	1	1.47	
120	58	51	7	12.07	61	-3	-5.17	59	-1	-1.72	

 $M_1 = 9.43$

 $M_2 = 2.77$

 $M_3 = 3.52$

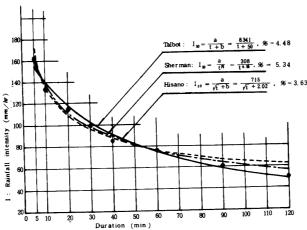


Fig 4. Comparison of goodnees of fit for Talbot's, Shreman's and Hisano's Formura (Naha.)
図 4. Talbot 式, Shreman 式, 久野式による適合度の検定(那覇)

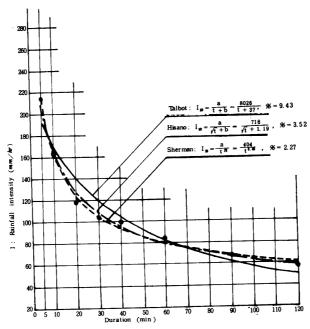


Fig 5. Comparison of goodnees of fit for Talbot's, Shreman's and Hisano's Forman (Ishigaki) 図 5. Talbot 式, Sherman 式, 久野式による適合度の検定(石垣島)

表10、 $110\,\mathrm{M_1}$, $\mathrm{M_2}$, $\mathrm{M_3}$ は平均偏差百分率でこの値が小さければ小さい程,適合度は良くなる。表10、110各式型の適合状態を図にしたのが図 4、5である,図で実線はTalbot 型で点線はSherman 型,一点鎖線は久野型を示す。資料プロットは(5)、(6)式で求めた確率雨量である。図からわかるように,那覇においては一点鎖線の久野型が一ばんよく適合し,石垣島では点線のSherman 型が最もよく適合している。図 4、5の適合度の検定結果は 2地点とも10年確率雨量の場合のみで,その地点すべての確率年の最適式とはかぎらない,従来 1 地点 1 つの確率年だけで最適式型を決定して来たが,1 つの確率年だけでは不十分のように思われる。今回 7 地点の 2、3、5 、10、20、30 、50 、100 年確率すべての適合式型を検討してみたが,宮古島のように三式型にまたがる地点もあり,各確率年によって式型が異な

る場合が多い。すべての確率年が一つの式型にまとまったのは、名護、南大東島の2地点だけである。 表12は各地の各確率年における三式型の適合状態である。rank 欄の数字は適合順位を示す。名護と南 大東島以外は適合順位1位の多い式型をその地点の最適式型とした。

なお、これら各地点の最適式を用いて確率降雨量を求めグラフにしたのが図 6~12の確率年別降雨強 度曲線である。

Table 12. Comparison of goodness of fit of rainfall intensity formulas 表 12. 適合度の比較

		7											
Loca	t			<u>a</u> + b		I = -	a t*			I =	$\frac{a}{t+b}$		
tion	ļ	а	b	96	rank	а	n	96	rank	а	b	%	rank
	2	5803	41	5.5 3	3	273	0.39	4.32	2	507	1.37	2.41	1
	3	6600	44	5.46	3	285	0.38	4.69	2	573	1.59	3.13	1
	5	7424	47	5.05	2	296	0.36	5.14	3	640	1.80	3.59	1
星	10	8341	50	4.48	2	308	0.35	5.34	3	715	2.02	3.63	1
Naha	20	9128	53	4.40	2	317	0.34	5.25	3	780	2.20	3.50	1
	30	9530	54	4.30	2	322	0.34	5.57	3	812	2.28	3.69	1
	50	995 7	55	4.11	1	329	0.33	6.00	3	846	2.34	4.49	2
	100	10588	56	4.15	1	336	0.33	5.95	3	898	2.47	4.30	2
	2	4702	33	6.53	3	293	0.44	4.00	2	418	0.72	3.37	1
	3	5203	32	7.55	3	323	0.43	3.29	2	464	0.72	3.02	1
E	5	5804	32	9.25	3	356	0.43	3.24	2	520	0.75	3.00	1
ezir	10	6405	32	10.03	3	398	0.43	2.86	1	5 7 7	0.72	2.87	2
Kumezima	20	6957	31	11.46	3	438	0.43	2.87	1	630	0.68	3.43	2
×	30	7234	30	12.17	3	462	0.43	3.04	1	65 1	0.64	3.72	2
	50	7629	30	12.94	3	488	0.43	3.65	1	693	0.62	4.19	2
	100	8032	29	13.72	3	530	0.44	4.21	1	733	0.55	4.88	2
	2	6513	45	2.89	1	282	0.38	5.98	3	559	1.53	4.49	2
	3	7374	46	4.63	3	300	0.37	4.54	2	636	1.74	2.88	1
_	5	8210	47	6.72	3	324	0.36	4.02	2	714	1.85	3.06	1
ako	10	8976	45	8.72	3	360	0.36	4.43	2	789	1.79	3.20	1
Miyako	20	9641	43	11.05	3	396	0.36	4.49	1	855	1.67	4.91	2
	30	9996	42	12.31	3	415	0.36	5.30	1	891	1.61	5.80	2
	50	10328	40	13.64	3	444	0.36	6.67	1	925	1.46	6.76	2
	100	10663	36	16.32	3	486	0.37	8.48	2	963	1.21	8.37	1
	2	5072	32	7.16	3	322	0.44	3.27	2	45 4	0.69	2.34	1
	3	5965	34	7.84	3	347	0.42	2.16	2	5 3 3	0.88	1.41	1
E	5	6905	36	8.77	3	374	0.41	2.56	1	618	1.03	2.69	2
gak	10	8026	37	9.43	3	404	0.40	2.77	1	718	1.19	3.52	2
Ishigak	20	9079	39	10.50	3	429	0.38	3.44	1	813	1.33	4.12	2
-	30	9680	39	1 0.91	3	444	0.38	3.84	1	867	1.40	4.44	2
	50	10324	40	11.16	3	464	0.37	4.22	1	925	1.43	4.95	2
	100	11261	40	12.13	3	486	0.36	4.79	1	1010	1.51	5.85	2

												1		
Loca	t	I	$=\frac{1}{t}$	<u>a</u> + b		I	$=\frac{a}{t^n}$,	$1 = \sqrt{t + b}$				
tion	ا ا	а	b	%	rank	а	n	%	rank	a	b		rank	
Yonaguni	2	5839	39	4.04	1	294	0.40	5.74	3	508	1.17	4.38	2	
	3	6764	42	3.96	1	312	0.39	6.04	3	5 85	1.38	4.28	2	
	5	7737	45	3.71	1	334	0.38	6.80	3	666	1.55	4.37	2	
	10	8849	47	3.89	1	361	0.37	6.44	3	760	1.71	4.33	2	
nag	20	9925	49	4.09	2	383	0.36	6.29	3	851	1.87	4.02	1	
χοχ	30	10528	50	4.32	2	396	0.36	6.24	3	901	1.94	4.17	1	
	50	11263	50	4.29	2	413	0.35	6.24	3	963	2.02	4.17	1	
	100	12122	51	4.37	1	436	0.35	5.84	3	1036	2.07	4.38	2	
	2	4487	33	2.40	1	280	0.44	8.13	3	329	0.66	7.26	2	
	3	5125	34	1.55	1	308	0.43	9.08	3	445	0.71	7.81	2	
Daito	5	5829	36	1.5 9	1	333	0.42	9.36	3	503	0.78	8.51	2	
Ä	10	6640	36	2.55	1	368	0.42	10.81	3	568	0.79	9.47	2	
Œ.	20	7365	37	3.22	1	398	0.41	11.59	3	626	0.79	10.71	2	
Minami	30	7756	37	3.64	1	415	0.41	12.14	3	657	0.78	11.51	2	
2	50	8145	37	4.63	1	439	0.41	12.90	3	688	0.72	12.28	2	
	100	8770	36	5.26	1	468	0.41	13.83	3	737	0.68	13.45	2	
	2	7701	46	5.15	2	319	0.37	5.65	3	668	1.69	4.14	1	
	3	9109	52	5.63	3	322	0.34	5.57	2	783	2.16	3.59	1	
	5	10687	58	5.84	3	323	0.32	5.13	3 2	912	2.68	3.12	1	
0	10	12416	65	5.95	3	326	0.30	5.26	2	1051	3.19	2.95	1	
Nago	20	13673	69	6.10	3	335	0.29	5.5 2	2	1152	3.46	3.21	1	
	30	14540	72	5.93	3	336	0.28	5.33	2	1220	3.69	3.39	1	
	50	15272	74	5.80	3	342	0.28	5.50	2	1279	3.81	3.05	1	
	100	16537	78	5.58	3	345	0.27	5.33	3 2	1379	4.13	3.30	1	

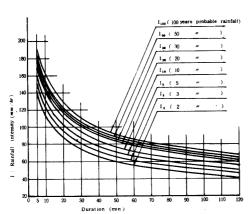
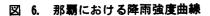



Fig 6. Intensity-duration-frequency curve in Naha

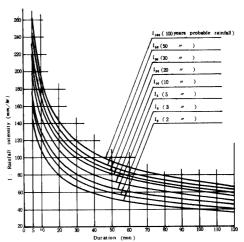
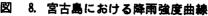



Fig 7. Intensity-duration-frequency curve in Kumezima

図 7. 久米島における降雨強度曲線

Fig 8. Intensity - duration - frequency curve in Miyako

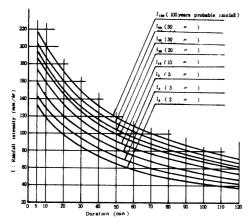


Fig 10. Intensity-duration-frequency curve in Yonaguni 図10. 与那国島における降雨強度曲線

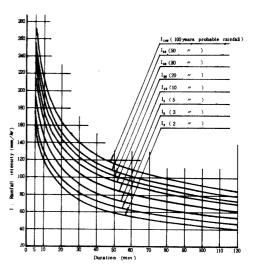


Fig 9. Intensity-duration-frequency curve in Ishigaki

図 9. 石垣島における降雨強度曲線

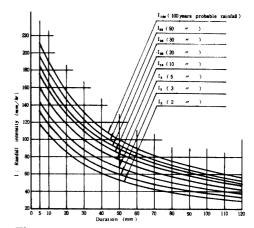


Fig 11. Intensity-duration-frequency curve in Minamidaito 図 11. 南大東島における降雨強度曲線

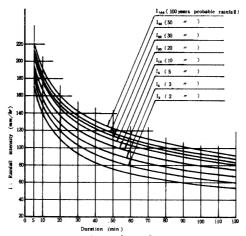


Fig 12. Intensity-duration-frequency curve in Nago 図 12. 名護における降雨強度曲線

IV 考察

一地点の降雨資料の分布型は厳密にいって各継続時間ごとに異なるのが多い,従来一地点一つの継続時間で代表して表わしてきたが,一つの継続時間だけでは不十分に思える,例えば表1で那覇の20分継続時間雨量は対数正規分布を示すが,60分継続時間雨量は正規分布を示す,したがって一地点の資料の分布型を決定する際は何組かの継続時間雨量の分布状態をも検討する必要がある。

短時間降雨強度式型はTalbot型, Sherman型, 久野型の3式について検討した,式型の適合検定は一地点2,3,5,10,20,30,50,100年の8組の確率年について行なった,その結果が表12である,同地点のすべての確率年が一つの式型に適合するのは少なく,各確率年によって異なる場合が多い。従来一つの確率年で代表し,適合式型を決めて来たが,これも分布型のそれと同様に一つの確率年では不十分であり,何組かの確率年の適合状態を検討する必要がある。

V 摘 要

本文では沖縄地方7地点の短時間降雨強度式型について検討したが、これらの結果を示せば次のようである。

 那 覇 : 久野型
 久 米 島 : Sher man 型

 宮 古 島 : 久野型
 石 垣 島 : Sher man 型

 与那国島 : Talbot 型
 南大東島 : Talbot 型

名 護: 久野型

これらの結果からすると沖縄地方7地点に関してTalbat 型が適用できる地点は与那国島と南大東島の2地点であり、各地で現在用いられているTalbot 型 only は問題がある。全く不規則に降る雨を厳密な意味で一つの式型で表わすことのできないのは当然であるから、設計計画に用いる雨資料はそれぞれの地点の最適式型で算出するのが望ましい。

那覇における最適式型は喜納氏(8,9)の結果と異なるが、それは資料の統計期間の相違が原因と 考える。水文諸量の時系列変化は短時間的性格の水文諸量には少ない(7)にしてもやはり新しく長期間の 資料が望ましい。

Summary

The purpose of this study is to test the usefulness of three popular rainfall intensity formulas when applied in Okinawa Islands.

Those three formulas are Talbot's, Sherman's and Hisano's.

From the discussion presented in this papar it was found that Talbot's formula, expressed as I=a/(t+b), is more suitable for Yonagunizima and Minamidaitozima. Sherman's formula, $I=a/t^n$, was suitable for Kumezima and Ishigakizima. Hisano's formula, $I=a/(\sqrt{t}+b)$, was suitable for Naha, Miyakozima and Nago.

参考文献

- 1. 土木学会 1971 水理学公式集, P 146, 東京, 技報堂
- 2. 石黒政儀 1959 日本主要都市の確率降雨強度式について、土木学会論文集、64: 21~27
- 3. 石黒政儀 1960 本邦における降雨強度式型の地域的特性について,水道協会雑誌,313: $64\sim75$
- 4. 石原藤次郎 高瀬信忠 1957 対数正規分布とその積率による解法,土木学会論文集,47: 18~23
- 5. 岩井重久 石黒政儀 1970 応用水文統計学, P102~162, 東京, 森北出版
- 6. 角屋睦 1962 異状(確率)水文量とデータの棄却検定,農業土木研究別冊, 3: 23~27
- 7. 角屋睦 小池達男 1965 降水量にみられる長期的変動について, 京大防災研年報, 8: 307 ~ 315
- 8. 喜納政修 1968 沖縄諸島における降雨強度式型について,琉大理工学部紀要工学偏, $1:61\sim69$
- 9. 喜納政修 1969 沖縄地方における確率降雨強度,下水道協会誌,6(66): 13~ 20
- 10. 木村・諸橋・田中 1960 沖縄における治山治水対策調査報告書, Р 9
- 11. 岸根卓郎 1972 理論·応用統計学, P 401~402, 東京, 養賢堂
- 12. 琉球政府 1971 沖縄本島北部河川水利現況調査 (西系列10河川) 報告書, P48~50
- 13. 高瀬信忠 1957 対数正規分布に関する順序統計学的考察,土木学会論文集, 47: 24~29