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Hiroshi Maehara

Abstract

Two n-point-sets in Euclidean space are said to be inversion-
equivalent if one set can be transformed into the other set by
applying inversions of the space. All 3-point-sets are inversion-
equivalent to each other. For each four points x,y,z, w in an
n-point-set, n > 4, the ratio (xy-zw)/(xw- yz) is invariant
under inversions, which is called a Mébius invariant of the n-
point-set. We prove that for 4 < n < d + 2, the minimum num-
ber of Mobius invariants necessary to determine all Mébius in-
variants for every n-point-set in Euclidean d-space is equal to
n(n — 3) /2, and discuss the case of planar n-point-sets in some
detail. We also characterize those fractional functions that are
invariant under inversions.

1 Introduction

Let S be a sphere in the d-dimensional Euclidean space R? with cen-
ter p and radius r. The inversion of RY with respect to S is the trans-
formation of R? that sends each point x (# p) to a point x' on the ray
ﬁ such that px - px’ = r?, where px denotes the distance between
p and x. The point p and the radius r are called the center and the
radius of the inversion, respectively. Note that in an inversion, the
image of its center is not defined. One of the typical features of an
inversion is that it transforms a sphere into another sphere, with re-
garding a hyperplane as a sphere of infinite radius. For more about
inversions, see, e.g. [2,5,8].

In this paper, we consider to transform a finite point-set by in-
versions. Note that an inversion can be applied to a point-set only when
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its center does not belong to the point-set, since the image of the center
of an inversion is not defined. (Usually, to avoid such restriction, a
point at infinity is added to R? as to be the image of the center for
every inversion. Another less usual way is to define the image of the
center of an inversion to be the center itself. In [7], transformations
of a finite point-set by ‘center-fixing-inversions” with centers in the
point-set are investigated.)

A pair of n-point-sets are called inversion-equivalent if one set can
be transformed into the other set by applying a series of inversions.
This relation is clearly an equivalence relation. An ordered n-point-
set is an n-point-set whose points are ordered, which is denoted by
the juxtaposition of the n points in order like a;4343 . . . a, (the same
notation as used for a polygon or a polygonal curve). Two ordered n-
point-sets are called inversion-equivalent if they are inversion-equivalent
with keeping the order. It turns out that all ordered triples are mu-
tually inversion-equivalent.

For a quadruplet (that is, an ordered 4-point-set) abcd, let us de-
fine [abcd] by

[abcd] = (ab - cd)/(ad - bc),

which is called a Mobius invariant of the quadruplet. This is indeed
invariant under any inversion (Corollary 2.1, see also [5, p.92], [3,
p-310]). Hence, for example, a quadruplet abed with [abcd] # 1 is
never inversion-equivalent to the vertex set of a regular tetrahedron.

For a quadruplet a;4;a; 4, taken from an ordered n-point-set a =
aray . ..ay, n > 4, the Mobius invariant [a;4;a;4] is simply denoted
by [ijkl], and its ‘value’ at « is denoted by [ijkl],. Let us call

[ijkl) (i,j,k,1 are all different, 1 < i,j,k,1 < n)
the Mobius invariants for an ordered n-point-set. We show the fol-
lowing:
e For n > 4, two ordered n-point-sets o, 8 are inversion-equivalent if
and only if [ijkl], = [ijkl]g holds for every [ijkl].
Applying this result, it is proved that every quadruplet is inversion
equivalent to the vertex set of a (possibly degenerate) parallelogram.

Notice that [ijkl] = [klij] = [jilk] = [lkji]. Hence there are
at most 6(}j) distinct Mgbius invariants for an ordered n-point-set.



They are not independent as ‘variables’. Rather a few of them de-
termine all others. Let R(d,n) denote the minimum cardinality of
a set of Mobius invariants whose values determine the values of all
Mébius invariants for every ordered n-point-set in R?. We prove the
following.

eR(d,n)=n(n-3)/2fora <n<d+2.

If d « n then R(d,n) would be much smaller than n(n — 3)/2 by
the dimensional restriction. However, it is not easy to determine the
value of R(d, n) even in the planar case d = 2, where the bound I
could prove is R(2,n) < 3n — 10. In Section 5, we will discuss the
planar case in some detail.

Besides Mobius invariants, there are many fractional functions,
such as (ab - ac-de)/(ad - ae-bc) and (ab-cd - ef)/(bc- de - fa)
that are invariant under inversions. They are characterized in the
following way:

e A fractional function is invariant under inversions if and only if, for
each point-symbol, the number of times it appears in the numerator
is equal to the number of times it appears in the denominator.

2 A few basic facts on inversions

Lemma 2.1. Let a’, b’ denote the images of a, b under the inversion with
center p and radius r. Then a'b' = (r? . ab)/(pa - pb).

Proof. Since pa' - pa = r?> = pb’ - pb and Zapb = Za'pl', the two
(possibly degenerate) triangles pa’b’ and pba are similar. Hence
a'b' /ba = pa' /pb = r*/(pa - pb), and the lemma follows. O

The following corollaries follow from this by simple calculations.

Corollary 2.1. Suppose an inversion sends a,b,c,d to a',b',c,d', re-
spectively. Then [a'b'c'd']| = [abcd). O

Corollary 2.2. Let f, f, be the inversigns with the same center p and
radii ry, ro, respectively. Then the composition f; o f; is a homothety with
center p and similitude ratio (rp/r1)?. O



Lemma 2.2. Let H be a hyperplanc in R, p € R*\ H, and q € RY be
the point that is symmetric to p with respect to H. Let g1 be the inversion
of R? with respect to the sphere with center p and radius pq, and let ¢,
be the inversion of R with center q and radius pq. Then the composition
f 1= g1 0 g2 0 1 is the reflection of RY with respect to the hyperplane H.

Proof. Tt will be enough to consider the plane case d = 2. We may
suppose that p = (—1,0),4 = (1,0) and H is the y-axis. Note that
81(q9) = 9, £2(p) = p. Let C, be the circle with center g and radius
pg. For a point u on the y-axis, let v be the intersection of the ray pi
and C, other than p. Then, since g1 sends the y-axis to C,4, we have
g1(u) = v. Since g2(v) = v, we have f(u) = u. Thus, f fixes all
points on the y-axis. It is also clear that f sends the x-axis to itself.

For any line ¢, g,(¢) is either a line passing through p or a circle
passing through p, and hence, g2(g1(¢)) is either a circle passing
through p or a line passing through p. Therefore, g1(g2(81(¢))) is
always a line. Thus, f sends every line to a line, and sends every
pair of parallel lines to a pair of parallel lines.

Now, since g(x,0) = (iﬁ,O), 22(x,0) = (££3,0) as easily veri-
fied, f(x,0) = (—x,0) follows by a simple calculation. Then, for a
given point (xo, yo), the line “x = x¢” (which is parallel to the y-axis)
is sent to the line passing through (—xp, 0) and paralle] to the y-axis,
that is, the line “x = —x,”. Similarly, the line “y = y,” is sent to
itself by f. Therefore the intersection (xp, yg) of the two lines x = x
and y = yo is sent to (—Xo, Yo), that is, f(xo,y0) = (—x0,y0). This
proves the lemma. O

Note that in Corollary 2.2, the center of a homothety can be cho-
sen independently from the similitude ratio, and in Lemma 2.2, the
point p € R?\ H can be chosen arbitrarily. Since all reflections of R¥
generate all isometries of RY, we have the following corollary from
Corollary 2.2 and Lemma 2.2.

Corollary 2.3. If two n-point-sets are similar, then they are inversion-
equivalent. O

Lemma 2.3. Let o be a finite point-set containing three points a, b, c.
Then, for every A > Ag (where Ay is a constant depending on ), there
exists an inversion with center p ¢ o that transforms a, b,c into a’,b’,c’
such that a'b’ = A, b'c’ =1,a'c =1+ A.



Proof. Let I' be the circle (or line) passing through a,b,c. Let p be

a point on I'\(the arc abc). Let f be an inversion with center p and
some radius 7, and let @’ = f(a), b’ = f(b),c’ = f(c). Then, a',b', ¢
are collinear in this order, and by Lemma 2.1, we have

ab’ _ (r’ ab pb-pc\ _ abpc
b'c’ ~ \pa-pb r2.bc /]~ bc-pa’
Let ¢ be the distance from a to the nearest point in ¢ — {a}. Then,

e > 0.Let Ag = (ab/bc) (ac/e+1).If pa = ¢, we have

ab-pc _ab(pa+ac) ab sac
< = —— = Agp.
bc-pa — bc-pa bc(s +1> Ao

Since pc/ pa continuously tends to infinity as pa continuously tends
to 0, (ab - pc)/(bc - pa) can take every value A > Ag. Thus, for ev-
ery A > Ag, we can choose p on I so that pa < ¢, a'b//b'c =
(ab/bc)(pc/pa) = A, and we canchoose r > 0sothatb'c’ =1. O

An ordered triple abc is called a linear triple if a, b, c are collinear
in this order.

Corollary 2.4. Every pair of ordered triples are inversion-equivalent. [

3 Mobius invariants

For three points a, b, p € R (d > 2), the locus of the points x satisfy-
ing ax/bx = ap/bp is called the Apollonian sphere (Apollonian circle
if d = 2) determined by ab and p, which is denoted by A(ab, p). If
ap # bp, then A(ab, p) is indeed a sphere with center at the exten-
sion of the line segment ab (beyond a or b), but if ap = bp, then
A(ab, p) is a hyperplane that bisects the line segment ab perpendic-
ularly. Since
ap _aq _pa pb
w—a"@“‘ﬁ‘—q—bﬁA(pq,a)ab
holds, g € A(ab, p) N A(ac, p) implies that {a,b,c} C A(pq,a).
Therefore, if abc is a linear triple, then A(ab, p) and A(ac, p) are differ-
ent spheres. For more about Apollonian circles, see Coxeter [5].

For an ordered n-point-set a, we denote the distance between the
i-th point and the j-th point by d;; or d;;(«).

A(ab,p)>q9 &



Lemma 3.1. Let n > 4 and « = aya; ... a, be an ordered n-point-set in
which ayazas is a linear triple. Then the two distances dy,, do3 and the
values of the Mobius invariants

[j123],[j213], j = 4,5,...,n, and [jK12], 4 < j< k<n, (1)
determine all the distances d;; in a.

Proof. Suppose that three points ay, a3, a3 are fixed so that dy; =
s,dy3 = t,di3 = s+ t. Since [4213], = (aqa; - (s +t))/(aqas - s), we
have aya,/asas = [4213], - s/ (s + t). Hence the value of [4213] de-
termines the Apollonian sphere A(azas3, a4). Similarly, the value of
[4123] determines the Apollonian sphere A(aya3, a4). Since ajaza;
is a linear triple, these two Apollonian spheres are different with
centers on the line aya;. Hence, all intersection points of the two
Apollonian spheres are at the same distance from the line a,4;, and
hence each of the distances dy,ds), dy3 are uniquely determined.
Similarly, for each 4 < j < n, the values of [j213] and [j123] de-
termine the distances d;1,d, dj3 uniquely. Then, the values of [jk12]
determine the distances d for4 < j < k < n. O

Leta = a; ... a, be an ordered n-point-set in the plane R?, n > 4.
Suppose a1 = (—s,0),a2 = (0,0),a3 = (£,0) and a3 = (u,v), uv #
0. Let f be the inversion with center (0, w), radius r, and let g be the
inversion with the center (0, —w) and radius r, where w # 0. Then
the triples f(ajaza3), g(a1a2a3) are congruent, and every Mobius
invariant takes the same value at f(a) and at g(«). But f(a) and
g(a) are not congruent. Let us state this fact as a remark.

Remark 3.1. If the first three points of an ordered n-point-set (n >
4) in R? are not collinear, then the three distances dys, d23, d3; and
the values of all M6bius invariants are not enough to determine all
distances among the n points.

Theorem 3.1. For every n > 4, a pair of ordered n-point-sets « and B in
IR? are inversion-equivalent if and only if [ijkl], = [i Jkl)g holds for every
[ijkl).

Proof. The if part is obvious since Mobius invariants are invariant
under inversions.



Leta = ay...ay, = by...b,. By Lemma 2.3, we can apply
inversions to «# and B independently, so that aja;a3 and bbb be-
come congruent linear triples. Hence, we may assume from the
first that a1aa3 and b1bybs are congruent linear triples, di2(a) =
di2(B) = s, das(a) = dya(B) = ¢t Since [ijkl]a = [Ijkl]ﬁ for ev-
ery [ijkl], it follows that d;j(«) = d;;(B) holds for all i,j by Lemma
3.1. Hence the two ordered n-point-sets are congruent to each other.
Therefore, they are inversion-equivalent by Corollary 2.3. O

Theorem 3.2. Every quadruplet in R? is inversion-equivalent to the ver-
tex set of a (possibly degenerate) parallelogram.

Proof. Let abcd be a quadruplet, and put a = [abed],b = [acbd)].
(Then, [abdc] = a/b, [acdb] = b/a, [adbc] = 1/b, [adcb] = 1/a as
easily verified.) By generalized Ptolemy’s inequality (see, e.g. [1])
we have

ab-cd < ac-bd+bc- ad,

ac-bd < ab-cd+ ad-bc,

ad-bc < ab-cd+ ac- bd.
Since [abed] = (ab - cd)/(bc - ad) and [acbd] = (ad - bd)/(ad - bc),
it follows thata < b+1,b <a+1and1 < a+ b. Therefore |a — 1| <
b<a+1. Let

p::l:% (a+1)2—b2,q:% b? — (a—1)2

(we may choose either sign + for p) and put
a' =(0,0), b =(pq),c =(p+19q), d=(1,0) e R
Then a'b'c’d’ is a parallelogram, and
[a'b'c'd| =a, [a'db/d] =b.
Hence abcd and a’b'c’d’ are inversion-equivalent. O

Corollary 3.1. The vertex-sets of two parallelograms are not inversion-
equivalent unless the two parallelograms are similar to each other. O

Since a parallelogram abcd is a rhombus if and only if [abed] =
1, we have the following.

Corollary 3.2. A quadruplet abced is inversion-equivalent to the vertex
set of a rhombus if and only if [abcd] = 1. O



4 Number of necessary invariants

For a quadruplet aya2a3a4 in R4 (d>0),letx =dp,y=dp, z=
dsy, w = dyy. Then [1234] = xz/(yw), which is the ratio of the two
products of opposite edges in the (possibly self-intersecting) quadri-
lateral. By changing the order of the vertices cyclically, we get two
distinct Mobius invariants, namely, [1234] = [3412] = xz/(yw) and
[2341] = [4123] = yw/(xz) = [1234]!. Since four points produce
three distinct quadrilaterals, it follows that there are 6 x () distinct
Mébius invariants for # points. Since [2341] = [1234]~!, half of the
6(};) Mobius invariants are reciprocals of the other half. So, 6(})
Mobius invariants are determined by 3(};) members, probably much
fewer members. Recall that R(d, n) denotes the minimum cardinal-
ity of a set of Mobius invariants whose values determine the values
of all Mébius invariants for every ordered n-point-set in R?.

Lemma4.1. Ford >n—22>2,R(d,n) = R(n—2,n).

Proof. Since every n points in RY lie on an (n — 1)-dimensional flat,
R(d,n) = R(n—1,n) holds. Every n points in R"~! lie on a sphere or
on a hyperplane in R"~!, and every sphere can be transformed into
a hyperplane (that is, an (n — 2)-dimensional flat) by an inversion of
R*-!. Hence R(n — 1,n) = R(n — 2,n). O

Theorem 4.1. For4 <n <d+2, R(d,n) =n(n-23)/2.

Proof. Every ordered n-point-set is inversion-equivalent to an or-
dered n-point-set in which the first three points are collinear with
fixed distances di = A,dy3 = 1,d13 = A + 1. Then, as in Lemma 3.1,
the Mobius invariants in (1) determine all the distances between the
n points, and hence determine all Mobius invariants. The number of
Mibius invariants in (1) is equal to 2(n — 3) + ("3°) = n(n - 3)/2.
Hence, R(d,n) < n(n —3)/2.

Next, we show that R(d,n) > n(n —3)/2. By Lemma 4.1, itis
enough to show R(n —1,n) > n(n —3)/2. Leta = a1a,...a, bean
ordered n-point-set in R"~! that span an (n — 1)-dimensional sim-
plex. Then, every small perturbations of the distances d;; in « also
determine a simplex in R"~!. Hence there is a neighborhood U of
the point (..., d;;(a),...) in R such that every (.. ..y e U



can be attained by an ordered n-point-set in R"~!. Let x;; = logd;,
and a;j;(a) = log [ijkl]x. Then

. d;idy,
loglijkl] = log (ﬁ) = Xij + X — Xip — Xjk.
adix

Since the value of each d;; can be changed by moving &; continuously
with keeping the values of other distances fixed, the (3) variables d;;
are independent in the sense that the value of each d;; is not deter-
mined by the values of all other variables. Hence the (3) variables
x;j = logd;; are also independent. Since 4;;;(«) = log[ijkl]a, if we
regard x;;s as unknowns, the simultaneous linear equations

Xij + Xy = Xy — X = Ay (a), 1 < 4,7,k 1< n )

(1,7, k, 1 are all different) has a solution. Therefore the coefficient ma-
trix and the ‘enlarged” coefficient matrix of (2) have the same rank,
say, r. Let us show that R(n — 1,n) > r.

To see this, suppose that R(n — 1,n) = m < r. We may sup-
pose that the first m equations in the linear system (2) correspond
to the m Mobius invariants. Then the coefficient matrix of the first
m equations of (2) must have full rank m (for otherwise, in the first
m equations of (2), some equations are obtained from others, which
implies that a smaller number of Mébius invariants determine all
other Mébius invariants, contradicting R(n — 1,n) = m). Hence, by
adding to these m equations r — m other equations chosen from the
remaining equations in (2), we can make a new system of r linear
equations that has rank r. Then the new system of r linear equa-
tions determine an onto linear map f : R2 — R"by (..., x;,...) =
(---,8ijk1, - - . ). Since every onto linear map is an open map, f sends
every neighborhood of (...,x;(«),...) € R, to a neighborhood
of (..., a;u(x),...) € R". Hence, there is a neighborhood V of
(--- @i (a),...) € R such that every (...,aj,...) in V can be
attained by an n-point-set in R”~!. Thus, there is an ¢ > 0 such
that, in the system of r linear equations, if we replace the constant
ajj (@) of the last equation (that is, the lastly added equation) with
;i1 (2) + ¢, then the system of the r linear equations still have a so-
lution that can be attained by an ordered n-point-set in R"~!. This



implies that the m Mobius invariants cannot determine the Mobius
invariant corresponding to the last equation, a contradiction. Hence,
wehaveR(n—1,n) > r.

Now, the coefficient vectors of the n(n — 3) /2 equations

Xjg+X3—X3—X12 = @&jz3, j=4,5...,n
Xp+X13—X3—X12 = @3, ] =45,...,n
Xip+X2—Xp— X = &2, <j<k<n

are linearly independent. This is shown in the following way:
Let 7(j123), 7(j213), ¥(jk12) be the corresponding coefficient vec-
tors, and suppose that

] n

Y osB(j123) + Y 49(213) + Y wp@(jk12) = 0.
j=4 j=4 4<j<k<n

Since each variable xj (4 < j < k < n) appears in just one of the
last ( "53) equations, we must have uj = 0. Then, since xj; and xj;
are independent variables, we have similarly s; = ¢ = 0. Therefore
the rank of the coefficient vectors of (2) is at least n(n — 3) /2. Thus
R(n—-1,n) > n(n—3)/2. O

5 Planar case

Lemma 5.1. A quadruplet ayajazas lie on a circle (or a line) if and only
if it satisfies [4123] — [4213] = £1.

Proof. By Ptolemy’s theorem, aiaa3a3 lie on a circle (or a line) if
and only if dy1dys = dizdgn + dyzdiz or dypdiz = daadiz + dndaa.
These equalities are equivalent to [4123] = [4213] + 1 or [4213] =
1 + [4123], and hence, equivalent to [4123] — [4213] = 1. |

Theorem 5.1. For n > 4, R(2,n) < 3n—10.

Proof. Letwa, = aya; ... a, denote an ordered n-point-set in the plane.
Applying inversions, we may suppose that a;a;a3 is a linear triple
withdy; = A,dy3 = 1forafixed A. If n = 4, then F, = {[4123], [4213]}
determines a4 up to congruence, and the theorem holds. If n = 5,



then F5s = {[4123], [4213], [5123],[5213], [5412]} determines as up to
congruence, and hence determines all Mobius invariants. Since 5 =
3.5 — 10, the theorem holds. -

Suppose that there is a set F;;_1 consisting of at most 3(n — 1) — 10
Mobius invariants such that (i) F,_1 determines «,,_; up to congru-
ence, and (ii) F,_; contains [j123],[j213],4 < j < n—1. Then for
each4 < j < n -1, we can check, by (ii) and Lemma 5.1, whether
a; lies on the line a4, or not. If there is an a; (j < n — 1) that does
not lie on the line a4, then put F, = F,_q U {[n123],[n213],[nj12]},

otherwise, put F, = F,_q U {[n123],[n213]}. Then, F, determines &,
up to congruence, and F, contains [j123],[j213],4 < j < n. Since F,
contains at most 3n — 10 members, the proof is done. O

If the first three points in an ordered n-point-set &, (n > 4) in R?
are not collinear, then the three distances d1;, d>3, d3; and the values
of all Mobius invariants are not enough to determine all distances in
&y as pointed out in Remark 3.1.

Lemma 5.2. If [4123] — [4213] # =1 holds in an ordered n-point-set
(n > 4) in R?, then the four distances dy3,dy3,day, d14 and the values
of all Mobius invariants determine all the distances d;; in the n-point-set
uniquely.

Proof. The four distances dy3, d23, d31, d14 and [4123],[4213] determine
all distances among the first four points. Hence the lemma is true for
n =.4. To show the lemma for n > 4, let , B be two n-point-sets in
R? that have the same first four points ajazazas. Then it will be
enough to show that if [4123] — [4213] # %1 holds in a,a24344 and
[ijkl]« = [ijkl]p for every [ijkl], then « = B. Let I be a circle passing
through a4, a3, a3. Let f be an inversion with center p € I' \ (a U )
and some radius r. Then, since the first three points in f(«) N f(B)
are collinear, d;;(f(a)) = dij(f(B)) for all ij by Lemma 3.1. Hence
f(a) and f(B) are congruent, and since they have the same first four
points that are not collinear, f(a) and f(p) coincide with each other.
This implies « = f. O

Lemma 5.3. Let n > 5, and let M be a set of Mobius invariants that
determine the values of all Mobius invariants for every ordered n-point-set
in R%. Then, eachi (1 < i < n) appears in at least three members of M.



Proof. Suppose that n appears in at most two members of M, say,
in only [nabc], [nijk] € M. Leta = a1a;...4,_1 be a fixed (n —1)-
point-set in R? such that ajay4; is a linear triple and the first four
points are not collinear. Let us extend « to an ordered n-point-set
in R? by adding a point so that [nabc] = s and [nijk] = ¢, for some
s,t > 0. Then, we may choose any point x as the nth point as far as

x satisfies that
AgX _ sauab a;x _ taiaj

acx apa;.’  aix a;ay

These two equations determine two Apollonian circles, and we may
assume that s and f are chosen so that these two Apollonian circles
intersect in two points. Then, we can get two ordered n-point-sets
and -y as extensions of a. Note that each member of M has the same
value at 8 and at . But § and 7y are not congruent since the n.— 1
points in a are not collinear. Therefore, the values of some Mobius
invariant (¢ M) takes different values at p and at oy by Lemma 5.2.
This is a contradiction. a

Corollary 5.1. R(2,5) > 4.

Proof. For any three Mobius invariants, one of 1,2,3,4,5 cannot ap-
pear in all of the three. O

We have R(2,4) = 2 by Theorem 4.1, and R(2,5) = 4 or 5 by
Corollary 5.1 and Theorem 5.1. It seems that the set of four Mobius
invariants [4123], [5431], [5142], [5213] determine all values of Mobius
invariants for any ordered 5-poin-set in IR?, but I could not prove it.

Problem. Determine R(2,5).

A set of n points in R? are called generic if the dn coordinates of
the n points are algebraically independent over the rationals. Among
the (5) distances between generic n points in RY, how many dis-
tances are necessary to determine all distances? If n < d + 2, then
all (3) distances are necessary. If # >> d, then the necessary number
would be very small compared with (5) by the dimensional restric-
tion. However, to find the exact minimum necessary number is a
difficult problem, see Connelly [4], or Jackson-Jordan-Szabadka [6].
Let us state the problem more precisely.



Letn > 4and G = (V, E) denote a graph with vertex set V =
{1,2,3,...,n}. Then the problem is to characterize the graph G that
satisfies the following condition:

(o) For any two ordered sets «, § of generic n points in
RY, dij(«) = d;;j(B) (ij € E) implies that « and B are
congruent in order-preserving fashion.
Recently it was proved (Connelly [4], Jackson et al [6]) that in the
planar case d = 2, every graph G = (V, E) satisfying the condition
(o) is obtained from the complete graph K by a sequence of Hen-
neberg 1-extension operations and edge additions. The Henneberg
1-extension operation on a graph is the following: Remove an edge xy
from the graph and add a new vertex z and new edges zx, zy, zw, for
some vertex w of the graph other than x, y. Thus, in the planar case
d = 2, the minimum cardinality of E is 2n — 2.

Theorem 5.2 (Connelly [4] and Jackson et al [6]). For n > 4, the
minimum number of distances necessary to determine all other distances
among generic n points in the plane is 2n — 2. O

Put Fy = {[4123],[4213]}, and for each n > 5, define F, induc-
tively in the following way:

Fs = (Fy \ {[4213]}) U {[5431], [5142], [5213]},
Fs = (Fs\ {[5213]}) U {[6531],[6152], [6213]},
F = (F \ {[6213]}) U {[7631],[7162], [7213]},

Fy = (Fooy \ {[(n — 1)213]}) U {[n(n — 1)31], [n1(n — 1)2], [n213]}.

Then it seems that F,, determines the values of all Mébius invariants
for every generic ordered n-point-set in R?, though I could not prove
it. Note that |F,| =2(n —4)+3 =2n—6.

Suppose that M is a minimal set of Mébius invariants that de-
termine the values of all Mobius invariants for every generic ordered
n-point-set a, in R?. Since [4123] — [4213] # %1 always holds for
a generic ordered n-point-set, the distances dj,, d33,d31,dy4 and M
determine all distances in a, in R? by Lemma 5.2. From the values
of the four distances and the values of the members of M, we obtain
4 4 | M| equations for unknowns d;;. Since the minimum number of



distances in &, that determine all distances in «, is 2n — 2 by Theo-
rem 5.2, it would be natural to expect that the number of equations
4 4 | M| is at least 2n — 2. This suggests that |[M| > 2n — 6.

Conjecture. For a generic ordered n-point-set (n > 4) in R?, the
minimum number of Mobius invariants necessary to determine the
values of all Mébius invariants is equal to 2n — 6.

6 Invariant fractions

Mobius invariant is generalized as follows. By a segment, we mean a
distance represented by a pair of points. A segment-product is a prod-
uct of a number of segments. For example, ab - cd - ae is a segment-
product.

Theorem 6.1. A fraction of segment-products is invariant under inver-
sions if and only if the following condition holds:
() For each point-symbol, the number of times it appears in the numer-
ator is equal to the number of times it appears in the denominator.

For example, the fraction (ab - ac - de)/(ad - ae - bc) is invariant
under inversions, but the fraction (ab - c¢d) / (bc - de) is not.

Proof. Let us show that () implies that the fraction is invariant un-
der inversions. Instead the general case, we consider, for example,
the fraction (ab - ac- de)/(ad - ae- bc). Let 4/, ..., € be the images
of a,...,eby an inversion with center p and radius r. We show that

ab-ac-de a'bt'-a'c-dé
ad-ae-bc a'd -ae -bc’

3)

By Lemma 2.1, we have

Y — r’ab Ve = rlac o — r’de
pa-pb’ pa- pc’ pd - pe

g = r’ad de = r’ae bl — r’bc
pa-pd’ pa-pe pb - pc’

If these are substituted in the right hand side fraction of (3), then
1/ pa will appear in the numerator the same number of times as 4’



appears in the numerator, and also, 1/ pa will appear in the denom-
inator the same number of times as a’ appears in the denominator.
Similar things will happen for 1/pb, 1/ pc, 1/ pd, 1/ pe and r?. Since
(*) holds for this fraction, all 1/pa, ..., 1/ pe and r? will be cancelled
out, and we get the equality (3).

To see the only if part, suppose that for some point-symbol, say,
x, the number of times it appears in the numerator is not equal to
the number of times it appears in the denominator. Then we can-
not cancel out 1/ px, and the fraction would not be invariant under
inversions. a
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