A REMARK ON THE VARIETIES OF SUBSPACES STABLE UNDER A NILPOTENT TRANSFORMATION

メタデータ	言語：
	出版者：Department of Mathematical Sciences，Faculty
of Science，University of the Ryukyus	
	公開日：2008－03－10
キーワード（Ja）：	
	キーワード（En）： 作成者：Maeda，Takashi，前田，高士，前田，高士 メールアドレス： URL属： http：／／hdl．handle．net／20．500．12000／5027

A REMARK ON THE VARIETIES OF SUBSPACES STABLE UNDER A NILPOTENT TRANSFORMATION

Takashi Maeda

Abstract

For a nilpotent linear transformation $f: V \rightarrow V$ of type λ let $S(V, T)$ be the set of f-stable subspaces W associated to an LR (Littlewood-Richardson)-tableau T, i.e. W^{\prime} s such that $\operatorname{dim} f^{r-1} V \cap$ $f^{t-1} W /\left\langle f^{r} V \cap f^{t-1} W, f^{r-1} \cap f^{t} W\right\rangle$ is equal to the number of cells (squares) of T filled with the letter t in the r th row for all t and r. Let $G(\lambda)$ be the subgroup of $\mathrm{GL}(V)$ consisting of elements commuting with f. It is given an example of $S(V, T)$ that does not have a dense $G(\lambda)$-orbit.

1. Introduction. Let $f: V \rightarrow V$ be a nilpotent linear transformation of a vector space V over \mathbb{C}. The purpose of this note is to give an example of the variety of subspaces stable under f associated to an LR(=Littlewood-Richardson) tableau that does not contain a dense orbit under the action of the subgroup of GL (V) commuting with f. The type of f is denoted by $\lambda=\left(\lambda_{1}, \cdots, \lambda_{l}\right)$, i.e. $\lambda_{j}=$ $\operatorname{dim} \operatorname{Ker} f^{j} / \operatorname{Ker} f^{j-1}=\operatorname{dim} f^{j-1} V / f^{j} V$ where λ is a partition of the integer $\operatorname{dim} V$ because the induced maps $f: f^{j-1} V / f^{j} V \rightarrow f^{j} V / f^{j+1} V$ (and $f: \operatorname{Ker} f^{j} / \operatorname{Ker} f^{j-1} \rightarrow \operatorname{Ker} f^{j+1} / \operatorname{Ker} f^{j}$) are surjective. This means that the sizes of the Jordan blocks are the conjugate λ^{\prime} of $\lambda ; \lambda_{j}^{\prime}$ is the number of i such that $\lambda_{i} \geq j$. A partition $\lambda=\left(\lambda_{1}, \cdots, \lambda_{l}\right)$ is identified with the diagram of row length $\lambda_{1}, \cdots, \lambda_{l}$ arranged like matrix entries, i.e. the cell (i, j) with the row index i increasing downwards and the column index j increasing to the right. For an f-stable subspace W of V, i.e. $f W \subset W$, the types of W and of V / W are those of the maps $\left.f\right|_{W}: W \rightarrow W$ and of $f_{V / W}: V / W \rightarrow V / W$ induced by f, respectively.
[^0]For an integer $0<d<n=\operatorname{dim} V$ let $X(\lambda, d)$ be the set of f-stable subspaces of V of dimension d;

$$
X(\lambda, d)=\{W \subset V ; \operatorname{dim} W=d, f W \subset W\}
$$

which is a closed set in the Grassmaniann $G(V, d)$ of d-dimensional subspaces of V. For an element $W \in X(\lambda, d)$ let $\mu^{(t)}=$ type $V / f^{t} W$, i.e. the r th row length of the diagram $\mu^{(t)}$ is equal to

$$
\mu_{r}^{(t)}=\operatorname{dim} \frac{f^{r-1}\left(V / f^{t} W\right)}{f^{r}\left(V / f^{t} W\right)}=\operatorname{dim} \frac{\left\langle f^{r-1} V, f^{t} W\right\rangle}{\left\langle f^{r} V, f^{t} W\right\rangle} .
$$

The canonical maps

$$
\frac{\left\langle f^{r-1} V, f^{t+1} W\right\rangle}{\left\langle f^{r} V, f^{t+1} W\right\rangle} \rightarrow \frac{\left\langle f^{r-1} V, f^{t} W\right\rangle}{\left\langle f^{r} V, f^{t} W\right\rangle}, \quad f: \frac{f^{t-1} W}{f^{t} W} \rightarrow \frac{f^{t} W}{f^{t+1} W}
$$

are surjective imply that $\mu \subset \mu^{(1)} \subset \cdots \subset \mu^{(l)}=\lambda$ where $f^{l-1} W \neq 0$ and $f^{l} W=0$, and $\left(\left|\mu^{(1)} / \mu\right|,\left|\mu^{(2)} / \mu^{(1)}\right|, \cdots,\left|\lambda / \mu^{(l-1)}\right|\right)$ is a partition so we can define a skew tableau T of shape λ / μ and content ν by filling the letter t in the horizontal strip $\mu^{(t)} / \mu^{(t-1)}$, and $\nu_{t}=\left|\mu^{(t)} / \mu^{(t-1)}\right|$ for $1 \leq t \leq l$. Then type $W=\nu$ and T is an LR (Littlewood-Richardson)-tableau ([1],Lemma 1.1), which we call the LR-tableau associated to W. Thus $X(\lambda, d)$ is partitioned as $X(\lambda, d)=\cup_{\mu, \nu} S(\lambda / \mu, \nu)=$ $\bigcup_{\mathbf{R}(\lambda, d)} S(V, T)$, where

$$
\begin{aligned}
S(\lambda / \mu, \nu) & =\{W \in X(\lambda, d) ; \text { type } V / W=\mu, \text { type } W=\nu\}, \\
\operatorname{LR}(\lambda, d) & =\{\text { LR-tableaux of shapes } \lambda / \mu \text { 's such that }|\lambda / \mu|=d\}, \\
S(V, T) & =\left\{W \in X(\lambda, d) ; \text { type } V / f^{t} W=\text { shape }\left(\mu \cup T^{\operatorname{let} t \leq t}\right)\right. \\
& \text { for all } t \geq 0\} \text { if shape } T=\lambda / \mu .
\end{aligned}
$$

Here $T^{\text {let } \leq t}$ is the subtableau of T consisting of cells (squares) filled with the letters less than or equal to t. The set $S(V, T)$ is a locally closed set in the Grassmaniann $G(V, d)$ and denote the closure of $S(V, T)$ by $X(V, T)$. The irreducible components of $S(\lambda / \mu, \nu)$ consist of $S(V, T)$ for the LR-tableaux $T \in \operatorname{LR}(\lambda, d)$ of shape λ / μ and content ν, and the dimension of $S(V, T)$ is equal to $n(\lambda)-n(\mu)-n(\nu)$ where $n(\lambda)=$
$\sum_{j}(j-1) \lambda_{j}^{\prime}[1$, Theorem $\mathrm{A}(1)]$. For instance, if $\nu=\left(\nu_{1}\right)$, i.e. $f W=0$ then $S(\lambda / \mu, \nu)$ is irreducible and a union of Schubert cells.

Let $G(\lambda)=\{\sigma \in \mathrm{GL}(V) ; \sigma f=f \sigma\}$ be the subgroup of $\mathrm{GL}(V)$ consisting of elements commuting with f. We consider two questions ;
(i) $S(V, T)$ is $G(\lambda)$-homogeneous ?
(ii) $S(V, T)$ has a dense $G(\lambda)$-orbit ?

We see easily that (i), hence (ii), is affirmative in the case $\nu=\left(\nu_{1}\right)$ above. Contrary to this case we remark in this short note that (i) (resp. (ii)) does not hold in general if $\nu_{1}^{\prime} \geq 2$ (resp. $\nu_{1}^{\prime} \geq 3$). Theoretical results like a condition that $S(V, T)$ has a dense $G(\lambda)$-orbit, are not contained in this note.
2. Notations and known results. Let $\left\{x_{i j} ;(i, j) \in \lambda\right\}$ be the Jordan basis of $f: V \rightarrow V$, i.e. $f\left(x_{i j}\right)=x_{i+1, j}$ with $x_{\lambda_{j}^{\prime}+1, j}=0$ where λ_{j}^{\prime} is the number of i such that $\lambda_{i} \geq j$, and let $g: V \rightarrow V$ be the adjoint of f, i.e. $g\left(x_{i j}\right)=x_{i-1, j}$ with $x_{0, j}=0$. We note two facts ; (i) an element $\sigma \in G(\lambda)$ is determined by the λ_{1} vectors $\sigma x_{1 j}$ for $1 \leq j \leq \lambda_{1}$ because $\sigma x_{i j}=\sigma f^{i-1} x_{1 j}=f^{i-1}\left(\sigma x_{1 j}\right)$, (ii) $\sigma x_{1 j} \in \operatorname{Ker} f^{\lambda_{j}^{\prime}}$ because $f^{\lambda_{j}^{\prime}} \sigma x_{1 j}=\sigma\left(f^{\lambda_{j}^{\prime}} x_{1 j}\right)=0$. Thus $G(\lambda)$ is an openset of $\prod_{1 \leq j \leq \lambda_{1}} \operatorname{Ker} f^{\lambda_{j}^{\prime}}$.

Definition(in [1]). For a tableau T,
(1) The generic vector v_{a} of $a \in T$ is defined by descending induction on letters to be $v_{a}=g v_{a \downarrow}+\sum_{b \in P(a)} \alpha_{b a} g v_{b}$, where $g v_{b}=x_{b \uparrow}$ if $b \in T^{\infty}$, and the coefficients $\alpha_{b a}$ are algebraically independent over \mathbb{C}. Here $P(a)$ is the set of cells $b \in T^{\infty}$ such that column $b<$ column a and letter $(b \uparrow)<$ letter $a<$ letter b, where $b \uparrow$ is the cell directly above b and T^{∞} is the tableau added to $T \lambda_{1}$ cells filled with the letter ∞ in the positions $\left(\lambda_{j}^{\prime}+1, j\right)$ for $1 \leq j \leq \lambda_{1}$.
(2) The rational function field F_{T} is the purely transcendental extension field over \mathbb{C} with the transcendental basis consisting of the parameters $\alpha_{b a}$ in the generic vectors $v_{a} ; F_{T}=\mathbb{C}\left(\alpha_{b a} ; b \in P(a), a \in T\right)$.
(3) The generic subspace W_{T} is the $f \otimes F_{T}$-stable subspace of $V \otimes F_{T}$ spanned by the generic vectors $; W_{T}=\left\langle v_{a} ; a \in T\right\rangle \subset V \otimes F_{T}$.

Example. The generic vectors of the LR-tableau $T=2^{2}$ are

$$
\begin{aligned}
& v_{41}=x_{41} \\
& v_{32}=x_{32}+\alpha_{41,32} x_{31} \\
& v_{23}=x_{23}+\alpha_{41,23} x_{31}+\alpha_{42,23} x_{32} \\
& v_{14}=x_{14}+\alpha_{41,14} x_{31}+\alpha_{41,23} \alpha_{23,14} x_{21}+\alpha_{23,14} x_{13}+\alpha_{42,23} \alpha_{23,14} x_{22}
\end{aligned}
$$

In order to write the generic vectors more concisely we make use the diagram filled with the coefficients of the cell vectors in the corresponding entries, e.g.

where $\alpha=\alpha_{41,32}, \beta=\alpha_{41,23}$ and $\gamma=\alpha_{42,23}$ for the above example. What we use in Section 3 and 4 is the following fact, the proof of which is contained in [1,Section 2].

Fact. For an LR-tableau T the generic subspace W_{T} is a generic point of $S(V, T)$, i.e. the field generated by the ratios of the Plücker coordinates of W_{T}, is isomorphic to the function field of the variety $X(V, T)$, the closure of $S(V, T)$ in $G(V, d)$.

In general, for a tableau T (not necessary LR-tabelau) the generic subspace W_{T} is a generic point of $S(V, \hat{T})$ where \hat{T} is the LR-tableau obtained by applying the successions of shifts (coplactic operations) starting with T (Theorem B in [1]).
3. An example that $S(V, T)$ is not $G(\lambda)$-homogeneous (Example after Lemma 2.5 in [1]). For the LR-tableau $T=$ let $W_{p, q}=\left\langle x_{31}, p x_{21}+x_{22}, q x_{21}+x_{13}\right\rangle$, which is an element of $S(V, T)$ for all $(p, q) \neq(0,0)$. Consider the $G(\lambda)$-orbit of $W_{1,0}$. For any $\sigma \in G(\lambda)$ we see

$$
\begin{aligned}
\sigma x_{31} & =\alpha x_{31} \\
\sigma\left(x_{21}+x_{22}\right) & =\left(\alpha x_{21}+* x_{31}+* x_{22}\right)+\left(\beta x_{22}+* x_{31}\right) \\
\sigma x_{13} & =\gamma x_{13}+* x_{22}+* x_{31}
\end{aligned}
$$

i.e.

$$
\left(\begin{array}{c}
\sigma x_{31} \\
\sigma\left(x_{21}+x_{13}\right) \\
\sigma x_{13}
\end{array}\right)=\left(\begin{array}{cccc}
\alpha & 0 & 0 & 0 \\
* & \alpha & *+\beta & 0 \\
* & 0 & * & \gamma
\end{array}\right) \cdot{ }^{t}\left(x_{31}, x_{21}, x_{22}, x_{13}\right)
$$

where $\alpha \beta \gamma \neq 0$ and ${ }^{*}$ stands for some elements of \mathbb{C}. From this we see that the Plücker coordinates $p\left(\sigma W_{1,0},\left(x_{31}, x_{21}, x_{13}\right)\right)$ is non zero. On the other hand, σW_{01} is given by

$$
\left(\begin{array}{c}
\sigma x_{31} \\
\sigma x_{22} \\
\sigma\left(x_{21}+x_{13}\right)
\end{array}\right)=\left(\begin{array}{cccc}
\alpha & 0 & 0 & 0 \\
* & 0 & \beta & 0 \\
* & \alpha & * & \gamma
\end{array}\right) \cdot{ }^{t}\left(x_{31}, x_{21}, x_{22}, x_{13}\right)
$$

so the Plücker coodinats $p\left(W_{0,1},\left(x_{31}, x_{21}, x_{13}\right)\right)=0$. The $G(\lambda)$-orbit decomposition is given by $S(V, T)=\mathcal{O}\left(W_{1,0}\right) \cup \mathcal{O}\left(W_{0,1}\right)$ where $\mathcal{O}\left(W_{1,0}\right)$ $\cong \mathbb{A}^{2}, \mathcal{O}\left(W_{0,1}\right)=S(V, T) \cap X\left(V, T^{\prime}\right) \cong \mathbb{P}^{1}-\{2$ points $\}$ with the LRtableau $\left.T^{\prime}=\right]^{2}$. On the other hand, we see $S\left(V, T^{\prime}\right)=\mathcal{O}\left(W^{\prime}\right) \cong \mathbb{A}^{2}$ is $G(\lambda)$-homogeneous.
4. An example of $S(V, T)$ that does not have a dense $G(\lambda)$ orbit. Consider two LR-tableaux

of shapes $\lambda / \mu=\left(3^{2} .2 .1^{2}\right) /\left(2.1^{2}\right)$ and $\left(3^{2} .2^{2} .1^{2}\right) /\left(2^{2} .1^{2}\right)$, respectively, with $n\left(T_{1}\right)=n\left(T_{2}\right)=1+3=4$. The generic vectors of $T_{1}^{\text {let } 1}$ (resp. $T_{2}^{\text {let } 1)}$ are

We see easily that any element of $S\left(V, T_{1}\right)$ (resp. $S\left(V, T_{2}\right)$) contains the 3-dimen- sional subspace $\left\langle x_{41}, x_{51}, x_{32}\right\rangle=\not\left(\right.$ resp. $\left\langle x_{51}, x_{61}, x_{42}\right\rangle=$ \#

Theorem. $S\left(V, T_{1}\right)$ has a dense $G(\lambda)$-orbit while $S\left(V, T_{2}\right)$ does not.
The same proof below shows that $S\left(V, T_{3}\right)$ has a dense $G(\lambda)$-orbit for
 that T_{2} is, in a sense, one of the simplest example of an LR-tableau for which $S(V, T)$ does not have a dense $G(\lambda)$-orbit.

Proof. Case T_{1}. By the remark before Theorem we consider $\sigma \in$ $G(\lambda)$ such that

Then

where $\epsilon=\gamma+\delta$ and $\eta=2 a$. Hence ($\sigma v_{1}, f \sigma v_{1}, \sigma v_{2}$) is equal to

$$
\left(\begin{array}{cccccc}
\alpha & \beta & \gamma+\delta & * & * & * \\
0 & 0 & 0 & \alpha & \beta & \gamma+\delta \\
0 & 0 & 0 & 2 \alpha & \beta & \gamma
\end{array}\right) \cdot{ }^{t}\left(x_{21}, x_{12}, x_{13}, x_{31}, x_{22}, x_{23}\right) .
$$

The Plücker coordinates of σW where $W=\left\langle v_{1}, f v_{1}, v_{2}, x_{41}, x_{51}, x_{32}\right\rangle$ are reduced to the 3 -minors of the above 3×6 matrix. If the columns
are numbered as $1, \cdots, 6$ from left to right then the 3 -minors $i j k$ are given by

$$
\begin{align*}
& (145: 156: 245: 246: 456) \\
= & \left(-\alpha^{2} \beta:-\alpha \beta \delta:-\alpha \beta^{2}: \alpha \beta(-\gamma-2 \delta): 456\right) \\
= & \left(1: \frac{\delta}{\alpha}: \frac{\beta}{\alpha}: \frac{\gamma+2 \delta}{\alpha}: \frac{456}{\alpha^{2} \beta}\right) . \tag{1}
\end{align*}
$$

The field generated by the four elements (1) over \mathbb{C} is of 4 -dimensional provided that the entries $*$'s are algebraically independent over $\mathbb{C}(\alpha, \beta$, $\gamma, \delta)$. This means that the $G(\lambda)$-orbit of the W is dense in $S\left(V, T_{1}\right)$.

Case T_{2}. By the remark before Theorem we consider $\sigma \in G(\lambda)$ such that

Then

Hence

$$
\left(\begin{array}{c}
\sigma v_{1} \\
f \sigma v_{1} \\
\sigma v_{2}
\end{array}\right)=\left(\begin{array}{cccccc}
\alpha & \beta & \gamma & * & * & 0 \\
0 & 0 & 0 & \alpha & \beta & \gamma \\
0 & 0 & 0 & x \alpha & y \beta & 0
\end{array}\right) \cdot{ }^{t}\left(x_{31}, x_{22}, x_{13}, x_{41}, x_{32}, x_{22}\right) .
$$

As in the case in T_{1} the Plücker coordinates of σW with $W=\left\langle v_{1}, f v_{1}\right.$, $\left.v_{2}, x_{41}, x_{51}, x_{32}\right\rangle$, are reduced to the 3 -minors of the above 3×6 matrix, which are homogeneous of degree 3 with respect to α, β, γ together with

$$
456=\left|\begin{array}{ccc}
* & * & 0 \\
\alpha & \beta & \gamma \\
x \alpha & y \beta & 0
\end{array}\right| .
$$

The field generated by their ratios over \mathbb{C} are of 3-dimesnional even if α, β, γ and the two $*^{\prime}$ s are algebraically independent over \mathbb{C}. Similarly, we get a 3 -dimensional $G(\lambda)$-orbit if we start with any specializations of the generic vectors of $T_{2}^{\text {let1 }}$, i.e.

for any constants $x, y, z, u \in \mathbb{C}$. This implies that $S\left(V, T_{2}\right)$ does not have a dense $G(\lambda)$-orbit.

References

1. T. Maeda, A partial order on Littlewood-Richardson tableaux, J. Alg., submitted.

Depatement of Mathematics Sciences
Faculty of Science
University of the Ryukyus Nishihara-cho, Okinawa 903-0213
JAPAN

[^0]: Received November 30, 2007.

