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APPROXIMATION PROCESSES OF FRACTIONAL
INTERPOLATION TYPE OPERATORS

TOSHIHIKO NISHISHIRAHO

ABSTRACT. We consider approximation processes of fractional in-
terpolation type operators on spaces of functions taking values in
normed linear spaces. Consequently, we obtain a far-reaching
generalization of the Bernstein type rational functions on [0, 00)
to the multidimensional case for vector-valued functions, and ap-
proximation theorems by them with the rate of convergence in
terms of the modulus of continuity of functions to be approxi-
mated.

1. Introduction

Let N denote the set of all natural numbers. Let g be a real-valued
continuous function on the closed unit interval I = [0,1] of the real
line R and let n € N. Then nth Bernstein polynomial of g is defined
by

0 meo=2(})r0-o*(E)  wen

k=0

It is well known that the sequence {B,(g) }nen converges uniformly to
g on I, and the Bernstein polynomials and their generalizations play
an important role in approximation theory (see, e,g., [1], (2], [8], [13]).

In view of these concernments, Baldzs (3] introduced and studied
several approximation properties of the Bernstein type rational func-
tions defined as follows:
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Let f be a real-valued function on [0,oc) and let n € N, and define

(@) Rafi2) —l—ij(:)(ana:)kf(b—";-) (x € [0,00))

(At
where a = {a, }nen and b = {b, },en are suitably chosen sequences of
positive real numbers. To compare (1) and (2), setting

n

Gn k(1) = (k)tk(l —™*  (tel, k=0,1,...,n)

and
R AL (anl')k _
Tak(2) = (k) 0+ a.z) (z € [0,00), k=0,1,...,n),
we have
AnT
() = gk (5 = =) @elo,x), k=0,1,...,m),
and so

Ralf;2) = Ba(F0) (1505 )

where f|; denotes the restriction of f to I.

In [4], the estimate of the rate of convergence of R,(f;z) to f(z)
given in (3] is improved by an appropriate choice of a and b when f
satisfies some more restrictive conditions. Furthermore, in [20] the
saturation problem is discussed for {R,}.en and the uniform approx-

imation problem is considered for R,-like rational functions defined
by

n

1 n
@ RlBafin) = e 3 ()

= rax(@)flbag)  (z €[0,00)),
k=0

where B = (bn)o<k<n (n=12,.) is @ matrix whose entries satisfy
0 < bno<bpi <bpa<- <bpp,
and f is a real-valued continuous function on [0, co) for which Ill)r{.lo f(z)
exists. Note that if
a, =1 (n € N),

and if
k

=m (OS’CSH,HEN),

bn,lc



then (3) reduces to

1 =\ (n k
4 L =— k (_ ,
) (@) (1+x)nkz=;(k)xf =)
which was introduced by Bleimann, Butzer and Hahn [5]. In [21], the
satutration properties of the sequence {L,},en is established and it
is showed that these operators satisfy an asymptotic relation of the
Voronovskaja type, i.e.,

lim n(Ln(zo) — f(z0)) = f"(z0)o(1 + 20)?

if f is a real-valued continuous function on [0, co) for which lim f(z)

exists and the second derivative f”(zo) exists at a point z.
Let 1 < p < oo be fixed and let R" denote the metric linear space
of all r-tuples of real numbers, equipped with the usual metric

Oiet | — wil?)MP (1<p<o0)
max{|z; —y|: 1 <i<r} (p = 00),

dp($7 y) = {

(= (z1,22,...,2), ¥y = (y1,¥2,.-. ,¥r) ER").

The purpose of this paper is to generalize (2) for vector-valued
functions on the r-dimensional first hyperquadrant

[0,00)" :={z = (z|,22,... ,%,) ER" :2; > 0,1=1,2,... ,7}

and to consider their uniform convergence with rates in terms of the
modulus of continuity of functions to be approximated.

2. Convergence theorems

Let (X, d) be a locally compact metric space and let (E, || -||) be a
normed linear space. Let B(X, F) denote the normed linear space of
all E-valued bounded functions on X with the supremum norm || - || x.
Also, we denote by C(X, E) the linear space consisting of all E-valued
continuous functions on X and set BC(X,E) = B(X,E)NC(X, E).
Let {Y, : @ € D} be a family of finite sets, where D is a directed set
and let {wq}aen be a net of strictly positive real-valued functions on
X. For each a € D, let &, be a mapping of Y, into X and let x, be a
real-valued function on X x Y,. Then we define an interpolation type



operator with the weight function w, by the form
Ua(f)(z) = Ua(E; f;2) = wa(2) Y Xal, k) f(€alk))
kEYa
(ee D, feC(X,E), z€ X)
(cf. [14] - [19]), and set
Wa(9)(z) = Ua(R; g 2) = wa(z) Y Xa(2, k)g(Ea(k))
kEYa
(e€e D, ge C(X,R), z € X).
For each z € X and ¢ > 0, we define
1a(: @) = wa(T) D |Xalz, k)|d(z,Ea(k))  (a € D),
k€Ya

which is called the gth absolute moment of x, at = with respect to
the weight function w,. Also, 1y stands for the unit function defined
by 1x(z)=1forallz € X.

Let X, be a compact subset of X and suppose that

Xo(z,k) 20  (a € D)
for all (z,k) € X¢ X Y,.
Theorem 1. If

(5) lim [[We(1x) ~ 1x[|lx, = 0
and if

(6) lim [|a(+; @)llx, = 0
for some ¢ > 0, then

(7) lim |Ua(f) = fllx, = 0

for all f € BC(X,E).

Proof. This follows from [15, Corollary 3] (cf. [14, Theorem 2 (b)],
[15, Theorem 8], [16, Theorem 1]), which remains true without the
completeness of E for interpolation type operators (cf. [17]).

In the rest of this section, let 1 < p < oo be fixed and let

(X, d) = ([0,00)7,dp).
For:=1,2,...,r, p; denotes the ith coordma.te function on R” defined
by
pl(x) =T ($ = ($1)$2="' ;mr) € Rr)



Tnen we have
ta(T) := fta(7;2) = oz ZZ IXa (@, B)|(pi(z) — pi(€a(K)))?
i=1 k€Y,
(€D, zeX).
Note that

Zw ((pi(2)1x —p)?)(z) (e €D, z € Xo),

and so we obtam the following Korovkin type result, which can be
more convenient for applications to the concrete weighted interpola-
tion type operators (cf. [14, Theorem 4], {15, Theorems 5 and 6]). For
the background of Korovkin-type approximation theory, we refer to
the book of Altomare and Campiti [1], in which-an excellent source
and vast literatures of this theory can be found (cf. [9], [10], [12]).

Corollary 1. If (5) holds and if
lim po(z) =0  uniformly in z € X,
«@

then (7) holds for all f € BC(X, E). In particular, if (5) holds and if

(8) lim [|Wa(p:) = pillxe =0 (i=1,2,---,7)
and
(9) lign ”Wa(pz?) _pz?“)fo =0 (i=12,...,1),

then (7) holds for every f € BC(X, E).
Remark 1. Conditions (5), (8) and (9) imply that
lim [[Wa(g) = gllx, = 0

for all g € BC(X,R) (cf. [15, Theorem 6], [14, Theorem 4 (b)]).
Let n € N and define

Pni(s,t) = (:) skgnk (s,t€R, k=0,1,...,n).

Lemma 1. Let s,t,u € R. Then the following equalities hold :

(10) Xn: kpn (s,t) = ns(s + )"}
k=1



(11) ; k(k — 1)pni(s,t) = n(n — 1)s%(s + )" 2.
k=2

n
(12) k*pai(s,t) = ns(ns + t)(s + )" "2
k=1

n

(13) > (= k)*pui(s,t)
k=0
= (s + )" 7*(s*u® + nst + 2su(tu — ns) + (tu — ns)?).
In particular, if tu = ns, then (13) reduces to

n

Z(U - k)2pn,k(3y t) = U(S + t)"_2(32u + t2).
k=0

Proof. (10) and (11) immediately follow from the binomial theorem.
(12) follows from (10) and (11). Also, (13) follows from (10) and (12).

Lemma 2. Let {ma}qcp be a net of positive integers and let {Ba}aep
be a net of positive real numbers. Let {uq}tacp and {vq}tacp be nets
of real-valued functions on [0, 00) such that us(t) + vo(t) # 0 for all
a €D and allt € [0,00). We define

Do k(t) = (TTC“)Uﬁ(t)vZ“‘"“(t) (t€[0,00), k=0,1,... ,ma).

Then the following equalities hold for all @ € D and all t € [0,00):
1

(14 (Ua(t) + va(t))me g%’k(t) =1
1 s i _ MalUa(t)
1) T o 2 5 = B £ va@)
1 </ k2
1o w0 @ 2 () Fes)

k=1 o

_ Moo (t) (Maualt) + va(t))
BE(ua(t) + va(t))?




Proof. (14) immediately follows from the binomial theorem. For
(15) and (16), we take n = mg, s = uy(t) and v,(t) instead of ¢ in
Lemma 1 (10) and (12), respectively.

Lemma 3. Let {mqa}qecp be a net of positive integers and let {Ba}acp
be a net of positive real numbers with lim B, = +00. Let {ug}acp and
{va}aep be nets of nonnegative functioans in C[0,00) := C([0,0),R)
such that

inf{uq(t) + valt) : t € [0,00)} > 0
for each o € D. We define
_ MaUq(t)
B ﬂa(ua(t) + vq(t))
(¢ € D, te€|0,00))

Ibz(t) = Ia(ma; ,Ba; Ug; Va3 t)

and

Ja(t) = Ja(Ma; Bo; Ui Vaj ) = mauggl(tlin(%suj(;ig);f; -

(e € D, t €[0,00)).
Let K be a compact subset of [0,00). If
limI,(t) =t wuniformly int € K,

then
lim J,(t) = #*  uniformly int € K.
Proof. We have
La(t)va(t)
Ba(ualt) + va(t))

from which the desired result follows, immediately.

Jo(t) = I2(t) + (a € D, t €[0,00)),

Lemma 4. Let {ma}acp, {Batecn, {tatacp and {vo}acp be as in
Lemma 3 such that B, = o(ma), va(t) > 0 and maua(t) = Batve(t)
foralla € D and all t € [0,00). Let K be a compact subset of [0, 00).
Then there hold

(17) limI,(t) =t wuniformlyint € K
and
(18) lim J,(t) = #* uniformly in t € K.



Proof. Since

t
wa®) = P20 t)  (@eD, te0,00),
Mq
we have .
m
I t) = e D, t 0, 3
o) =g (@€D, te(0,00)
which establishes (17). Therefore, (18) holds by Lemma 3.

Let {na;i}aen;t = 1,2,...,7, be nets of positive integers and let
{bna’i}aep,i =1,2,...,r, be nets of positive real numbers such that
limb,, ;=400 (i=12,...,7).

Let {gn.;}aep and {hn, }aep,i = 1,2,...,7, be nets of nonnegative

functions in C|[0, 00) such that
inf{gn, ;(t) + hn, ;(t) : t € [0,00)} >0
foralla € D and for i =1,2,...,r. Then we define

(19)  Fu(f)(z) = Fu(E; fi2)

H(gna; (z +hnm( i)l

Na,l Na,2 Nar 1

< 33 S T omanlaf (o )

k1=0 ko= kp=0 i=1 na 1 Na,2 Na,r

(a € D, feC(X,E), z=(21,%2...,z,) € X),

where
Mo ‘ h
pna,i’ki(xi) = ( ;:.,l)gnt:t,ik‘("I:’i)h'na,inaJ kl(zt)
?

(aeD, i=12,...,7).

We call F,,a € D, the fractinonal 1nterpolat10n type operators on
C(X,E).
From now on let K;,¢ = 1,2,... ,7, be compact subsets of [0, o)

and we set .
X(] = H Ki.
i=1

Theorem 2. If

(20) ]i(lln To(Nais bng i3 Gna s Mg i3 t) =t uniformly in t € K;
fori=1,2,...,r, then

21) lim [[Fa(£) = fllx, = 0



for all f € BC(X, E).
Proof. We define
Ga(9)(z) = Fo(R;g;2)  (a€ D, g€ C(X,R), z € X).
Then by Lemma 2 (14) and (15), we have
Ga(lx)(z) =1 (e D, z € X)

and
Ga(pi)(m) = Ia(”a,i} bna,;; Ingis hna,;; xz’)

(0 €D, z=(z1,22,...,2,) € X, i =1,2,...,7).
Therefore, (20), Lemma 2 (16) and Lemma 3 yield that
lign“Ga(pi) —pillx, =0 (i=1,2,...,7)
and
lim [Gaed) ~ sl =0 (i=1.2,....7).
Thus, the desired result (21) follows by Corollary 1.
Let

by .
(22) O, , 1= —22 (e D, i=12,...,7)
' Na,i

and we define

(23) To(£)(@) = Tal(E; f;2) = H |z
Na,1 Na,2 a,r T kl 2 kr
X ZZ ZHP‘"«" x,)f( —n——...,b ),
k1=0 k=0  k,=0i=1 2 Tar
(OCGD, fEC(X,E), _($1a$2a--'a 'l‘)eX)a
where

Proioki (Ti) = ( k )(ana 'xt)ka

(@€ D, i=1,2,...,r).

Theorem 3. If
ana,i = 0(1)
fori=1,2,...,r, then

liin I Te(f) = flixo =0
for all f € BC(X,E).



Proof. Let
Rag: = 1j0,00) (eeD,i=1,2,...,7)
and
Gnoi(t) = @, ;the, () (@€ D,i=12,...,71)

for all ¢ € [0,00). Then (19) reduces to (23). Since

bn,; = 0(na) (z=1,2....,1)
and

NaiGng: () = bag ;the, (1) (@€ D, i=1,2,...,7)

for all ¢ € [0,00), we use Lemma 4 and apply Theorem 2 to F, = T,.
Remark 2. (23) generalizes (2) to the r-dimensional Bernstein type
rational vector-valued functions. Also, (3) can be extended by the
following form to the r-dimensional case for vector-valued functions:

(24)  Ra(f)(z) = Ra(E; B A; f; )

)
i=1 (1 + ann'ixi)na'i

Na,l Na,2 Na,r 1

% z z Z H (na,l) "n»imi)kif(bna.hkl ’ bna,z,kw s 7bna‘r,kr)

k1=0 k2=0 k=0 i=1
(e€e D, fe C(X,E), z=(x,22,...,2,) € X),
where
A={a,, ,:aeD,i=12,...,r}
and
B={bn, .k :0<ki<ng, a€D,i=12,...,1}
are families of positive real numbers with
0<bn,;0<bpnoig<bp,,2<---<b
(e€e D, i=1,2,...,7).

In particular, the operator L,(f)(z) defined by (4) is generalized to
the r-dimensional case for vector-valued functions defined as follows:

T Na,l Na,2 Na,r

(25) La(f)(x)=La(E;f;x)—H 1+$ D DD IELDD

k1=0 k2=0 kr=0

d Na,i ki kl k2 kr
H(kt )xx f(nail—kl'*"l’naﬂ—k?-*-l...’na'r—kr-*-l)

i=1
(¢ €D, feC(X,E), z=(x1,29,...,2,) € X).

Na,isNa,i




3. Rates of convergence

Le f € B(X, E) and let § > 0. Then we define
w(f,8) = w(d; f,6) = sup{[|f(z) — f(W)l| : 2,y € X,d(z,y) < 6},

which is called the modulus of continuity of f. Obviously, w(f,-) is a
monotone increasing function on [0, o) and

w(f’ 0) =0, w(fa 5) < 2”f“X

Also, f is uniformly continuous on X if and only if
al—l»Tow(f’ 9)=0.

We give here a quantitative form of Theorem 1, in which we esti-
mate the rate of convergence in terms of the modulus of continuity of
f. For this we suppose that for each a € D,

Xa(ma k) >0

for all (z, k) € X x Y, and that there exist constants C > 1 and K > 0
such that

(26) w(f,£8) < (C + K&)w(f,0)

for all ¢, > 0 and all f € B(X, E).

For the sufficient condition such that (26) holds with C = K =1,
see [17, Lemma 1] (cf. [18, Lemma 2.4]).

Let {€q }acp be a net of positive real numbers.

Theorem 4. Let ¢ > 1. Then for oll f € BC(X,E),z € X and all
a€D,

(27) Ua(f)(2) = F(@)]| < IWallx)(z) — 1l f(z)]
+ (CWa(1x)(z) + Kea(z; 9))w(f, €a),
where
Ca(z; ) = min{e; %pa(z;9), €' (Wallx)(@)' ™ palz; 9)!/7}.
In particular, if Wo(1x) = 1x for all o € D, then (27) reduces to
1Ua(f)(=) = f(@)]| < (C + Kcal(z; 9))w(f €a)

and
ca(2; ) = min{e; "ua(z; ), € palz;q) /).



Proof. Let f € BC(X E) and z € X. Then for all @ € D we have

(28) Walf)@) ~ F@) < [wal@) 3 Xalz, ) (€alk) - (@)
k€Y,
+ || (wale) 3= xala k) = 1) 5|

kEYa
= J(2) + IP(z),
say. We have
JP(z) = [Wallx)(z) — 1[I f ()]l
Also, in view of [18, Lemma 2.7], we obtain
(29)  J(z) < (CWallx)(z) + Kealm;6,8))w(f,8) (6 >0),

where

Ca(®; ¢,6) = min{6 s (z; ), 5 (Wal(lx)(@) ™ pa(z; )/}
Therefore, putting § = ¢, in (29), (28) yields the desired inequality
(27).

Let @ be a nonnegative real-valued function on X2 := X x X and
we define

Ua(é;z) = wa(m) Z Xa(xv k)¢($7§a(k)) (a €D, zeX),
keYs
which is called the #-moment of x, at z with respect to the weight
function w, (cf. [14] - [19]).
Next we suppose that there exist constants ¢ > 1 and x > 0 such
that

(30) d'(z,y) < £(z,y)

for all (z,y) € X2

Remark 3. If

(31) lim po(®; ) = 0 uniformly in z € Xy,

then (30) gives (6). Therefore, by Theorem 1, (5) and (31) establish
that (7) holds for every f € BC(X, E).

Theorem 5. For all f € BC(X,E),z € X and all a € D,
(32) |Ue(f)(z) = f(@)]| < [W(lx)(z) - 1]I|f(2)]

+ (CWa(1x)(z) + K(o(P; 25 ¢))w(f, €a)s
where
Cal®; 73 9)



= min{re; pa(P; z), £7%€" (Wa(1x)(2))' " ua(®; 2)"/}.
In particular, if Wo(1x) = 1x for all « € D, then (32) reduces to
|Ua(F)(2) = f(@)|| < (C + K(a(®; 25 9))w(f, €a)
and
Ca(®; 2 q) = min{re, ta(P; ), K96, 1o (B;2)"/7}.
Proof. By (30), we have
pe(Z;q) < kpa(P32)  (a€ D, z€ X),

which implies ¢c4(z;q) < (o(®P;z;q). Therefore, the desired estimate
(32) follows from (27).

In the rest of this section, let 1 < p < oo be fixed and let

(X,d) = ([0’ Oo)ra dp)

For each ¢ > 1, we set

ro/? (1<p<oo,p#q)
cp,g,r) =41 (1<p<oo,p=g)
1 (p = o00).
Theorem 6. For all f € BC(X,E),z € X and all « € D,
(33) Ua(f)(2) = f(2)l| £ [Wa(lx)(=) — 1]|| f(=)]l

+ (Wa(lx)(z) + 7o(x; 9))w(f, €a),
where
Ta(Z;9)

= min{c(p, q, r)e;"z Wal|pi(z)1x — p:i|%)(z),

i=1

. 1/q
e(p,07) . (3 Wallpi(2)1x - 2l (@) " }-
=1
In particular, if Wo(1x) = 1x for all @ € D, then (33) reduces to

1Ua(f) (=) = F(@)l| < (1 + 7a(z; 9))w(f, €a)-

Proof. By [17, Lemma, 1 (b)] (cf. [18, Lemma 2.4 (b)]), (26) holds
with C = K = 1. Also, we have

T

di(z,y) < c(p,q,7) > Ipilx) —pi()I!  (z,y €R).

i=1



Therefore for all (z,y) € X2, (30) holds with

k=c(p,qr), Pz,y)= Z lpi(z) — pi(y)|Y,

and so by Theorem 5, we obtain the desired result.
Corollary 2. For all f € BC(X,E),z € X and alla € D,
(34) 1Ua(£)(z) - f2)|| < [Wa(lx)(z) - 1|If ()]

+ (Wa(lx)(2) + 7a(2))w(f, €a),

where
To(z) = min{c(p, r)e;’palz), Velp, 1)l Vita(z)}
and
I ks (1<p<oo,p#2)
C(p,T) - {1 (p — 2’ OO)

In particular, if Wo(1x) = 1x for all « € D, then (84) reduces to
Ua(£)(2) = f(2)] < (1 + Ta(2))w(f, €a)-

Concerning the rate of convergence of the net {F,}.ep of the frac-
tional interpolation type operators defined by (19), we get the follow-
ing result.

Theorem 7. For all f € BC(X,E),z = (x,%s,... ,%,) € X and all
a€D,

(35) IFa(f)(z) = f(@)]] < (1 + na(z))w(f, €a),
where

(36) Mo () = min{c(p, r)e;*0a(x), Velp,)e;"' Vba(z)}
and

1
Oa(z) = Z b2 (gna,i (z:) + h"a-i(mi))2

i=1 Ma,

x ((bna,sxi.‘]no,; ("Bi))2 + NoiGna (i) An, (i)
+ 2bn,  Tign,  (T:) (bn,  Tibn, ,(Ti) = Nayign, (i)
+ (bno'gl'ihno_.' (xx) - na,igna,.-(mi))Q)-

Proof. We use Lemma 1 (13) and apply Corollary 2 to U, = F,.



Corollary 3. Let a,,, (a € D, i =1,2,...,r) be as in (22). Then

forall f € BC(X,E),z = (z1,2,... ,2,) € X and all a« € D,
1Ta(f)(2) = f(@)]| < (1 + na(2))w(f, €a),

where 1q(z) is given by (36) and

T.a2 ozt +xi/b,,

(37) Ba(z) =) 7 :

—~ (1+ay,,x)?

Remark 4. Corollary 3 sharply extends and improves [4, Theorem 1]
to the very general settings.

Concerning the rate of convergence of the net { Ry }4cp of operators
definded by (24), we obtain the following result.

Theorem 8. For all f € BC(X,E),z = (%1,22,... ,%;) € X and all

a€D,
[Ba(f)(z) = (@) < (1 +a(z))w(f, €a),

where

Ya(z) = min{c(p, r)ez"va(2), Ve, r)e;" Vralz)}

and

r nﬂ‘l k
n (a -, (i) 2
23 () e )

i=1 k;=0
Proof. Apply Corollary 2 to U, = R,.

Theorem 9. For all f € BC(X,E),z = (z1,23,... ,%,) € X and all

a€D,
| La(f)(x) = f(@)I] < (1 + Cal@))w(f, €a),

where
Calz) = min{c(p, 2"/’0 \/C (p, 7 l\/wa(z)}
and
L o4 Nai k' ki 2
(38)  ale) = ZZ( )W(‘n_-m)

=1 k;=0

Proof. Apply Theorem 8 to R, = L,.
Remark 5. By [7, Remark 3] (cf. [11, (6)]), we have the the following
more explicit expression for the second (absolute) moment (38) of L,:

i a,itl —k.
Z (xz na ‘ "a ‘+l + x?a"+l ni na,i + 1 1:‘1 k.
1 + .’B n., i (1 + IL‘,‘)""" by k; k-1



Theorem 10. For all f € BC(X),z = (z1,%2,... ,2,) € X and all
a€D,
(39) | La(f)(x) = f(2)| < (1 + Ko(z))w(f, €a),
where
Ka(z) = min{c(p,7)e;°0a(2), Velp,r)e' Vou(z)}
. 113,(1 + .'I?i)z
z)=4 ; —na’i

Proof. By [11, (6)], we have

and

oz w2(l4z)  3x(l 4 2)?
Yalz) < 3 (== + Utz)  Soll +2)
=1
Therefore, the desired result follows from Theorem 9.
Remark 6. By putting €,1/0,(x) instead of ¢, in (39), we get the
following inequality for all f € BC(X, E),z € X and all a € D:

40)  La(f) (=) — f(@)I < (1 +min{c(p, r)es”, velp, m)ez'})
X w(f,?ea\lzw).

) < 0q(x).

N, Na,i Na

i=1 a
In particular, if p = 2, 0o, then (40) reduces to

ILa(f)(=) = f(@)Il < (1 +min{ez", €;°})

=1 a,t

which generalizes the estimate given by Khan [11, Theorem 1].
Remark 7. We set

M(z) = max{p;(z)(1 +pi(z))?:i=1,2,...,7}  (x € X).

Then (40) yields the following estimate for all f € BC(X,E),z € X
and all o € D:

(41) ILa(f)(z) - F ()

< (emnf ), VT, S )




which particularly reduces to

1La(f)(2) - f(2)]

N 2 ]
< (1+min{4 Zz(x), iw(”)

if p=2,00.
Remark 8. If

Nai = No (e D, i=1,2,...,7),

where {nq}qsep is a net of natural numbers, then by (41) we obtain
the following estimate for all f € BC(X, E),z € X and all o € D:

(42) | La(f)(z) = f(z)|
5(1+min{4rc(p, VM (z), 2v/re(p, )/ M (z) }) (f i)

N

In particular, if p = 2, 0o, then (42) reduces to

I2a()(e) = 1@ < (14 min{ar b (@), 27/ AT o,y ).
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