琉球大学学術リポジトリ

APPROXIMATION PROCESSES OF FRACTIONAL INTERPOLATION TYPE OPERATORS

メタデータ	言語:
	出版者: Department of Mathematical Science, Faculty
	of Science, University of the Ryukyus
	公開日: 2008-03-11
	キーワード (Ja):
	キーワード (En):
	作成者: Nishishiraho, Toshihiko, 西白保, 敏彦
	メールアドレス:
	所属:
URL	http://hdl.handle.net/20.500.12000/5128

Ryukyu Math. J., 20 (2007), 25-42

APPROXIMATION PROCESSES OF FRACTIONAL INTERPOLATION TYPE OPERATORS

TOSHIHIKO NISHISHIRAHO

ABSTRACT. We consider approximation processes of fractional interpolation type operators on spaces of functions taking values in normed linear spaces. Consequently, we obtain a far-reaching generalization of the Bernstein type rational functions on $[0,\infty)$ to the multidimensional case for vector-valued functions, and approximation theorems by them with the rate of convergence in terms of the modulus of continuity of functions to be approximated.

1. Introduction

Let \mathbb{N} denote the set of all natural numbers. Let g be a real-valued continuous function on the closed unit interval $\mathbb{I} = [0, 1]$ of the real line \mathbb{R} and let $n \in \mathbb{N}$. Then *n*th Bernstein polynomial of g is defined by

(1)
$$B_n(g)(t) = \sum_{k=0}^n \binom{n}{k} t^k (1-t)^{n-k} g\left(\frac{k}{n}\right) \qquad (t \in \mathbb{I}).$$

It is well known that the sequence $\{B_n(g)\}_{n\in\mathbb{N}}$ converges uniformly to g on \mathbb{I} , and the Bernstein polynomials and their generalizations play an important role in approximation theory (see, e.g., [1], [2], [8], [13]).

In view of these concernments, Balázs [3] introduced and studied several approximation properties of the Bernstein type rational functions defined as follows:

Received November 30, 2007.

Let f be a real-valued function on $[0,\infty)$ and let $n \in \mathbb{N}$, and define

(2)
$$R_n(f;x) = \frac{1}{(1+a_nx)^n} \sum_{k=0}^n \binom{n}{k} (a_nx)^k f\left(\frac{k}{b_n}\right) \qquad (x \in [0,\infty)),$$

where $a = \{a_n\}_{n \in \mathbb{N}}$ and $b = \{b_n\}_{n \in \mathbb{N}}$ are suitably chosen sequences of positive real numbers. To compare (1) and (2), setting

$$q_{n,k}(t) = \binom{n}{k} t^k (1-t)^{n-k}$$
 $(t \in \mathbb{I}, \ k = 0, 1, \dots, n)$

and

$$r_{n,k}(x) = \binom{n}{k} \frac{(a_n x)^k}{(1+a_n x)^n} \qquad (x \in [0,\infty), \ k = 0, 1, \dots, n),$$

we have

$$r_{n,k}(x) = q_{n,k}\left(\frac{a_n x}{1+a_n x}\right)$$
 $(x \in [0,\infty), \ k = 0, 1, \dots, n),$

and so

$$R_n(f;x) = B_n(f|_{\mathbb{I}}) \left(\frac{a_n x}{1 + a_n x}\right),$$

where $f|_{\mathbb{I}}$ denotes the restriction of f to \mathbb{I} .

k=0

In [4], the estimate of the rate of convergence of $R_n(f;x)$ to f(x) given in [3] is improved by an appropriate choice of a and b when f satisfies some more restrictive conditions. Furthermore, in [20] the saturation problem is discussed for $\{R_n\}_{n\in\mathbb{N}}$ and the uniform approximation problem is considered for R_n -like rational functions defined by

(3)
$$R_n(B;a;f;x) = \frac{1}{(1+a_nx)^n} \sum_{k=0}^n \binom{n}{k} (a_nx)^k f(b_{n,k})$$
$$= \sum_{k=0}^n r_{n,k}(x) f(b_{n,k}) \qquad (x \in [0,\infty)),$$

where $B = (b_{n,k})_{0 \le k \le n \ (n=1,2,...)}$ is a matrix whose entries satisfy

$$0 \le b_{n,0} < b_{n,1} < b_{n,2} < \dots < b_{n,n}$$

and f is a real-valued continuous function on $[0, \infty)$ for which $\lim_{x \to \infty} f(x)$ exists. Note that if

 $a_n = 1$ $(n \in \mathbb{N}),$

and if

$$b_{n,k} = \frac{k}{n-k+1} \qquad (0 \le k \le n, \ n \in \mathbb{N}),$$

then (3) reduces to

(4)
$$L_n(f)(x) := \frac{1}{(1+x)^n} \sum_{k=0}^n \binom{n}{k} x^k f\left(\frac{k}{n-k+1}\right),$$

which was introduced by Bleimann, Butzer and Hahn [5]. In [21], the satutration properties of the sequence $\{L_n\}_{n\in\mathbb{N}}$ is established and it is showed that these operators satisfy an asymptotic relation of the Voronovskaja type, i.e.,

$$\lim_{n \to \infty} n(L_n(x_0) - f(x_0)) = f''(x_0) x_0 (1 + x_0)^2$$

if f is a real-valued continuous function on $[0, \infty)$ for which $\lim_{x\to\infty} f(x)$ exists and the second derivative $f''(x_0)$ exists at a point x_0 .

Let $1 \le p \le \infty$ be fixed and let \mathbb{R}^r denote the metric linear space of all *r*-tuples of real numbers, equipped with the usual metric

$$d_p(x,y) := \begin{cases} (\sum_{i=1}^r |x_i - y_i|^p)^{1/p} & (1 \le p < \infty) \\ \max\{|x_i - y_i| : 1 \le i \le r\} & (p = \infty), \end{cases}$$
$$(x = (x_1, x_2, \dots, x_r), \ y = (y_1, y_2, \dots, y_r) \in \mathbb{R}^r).$$

The purpose of this paper is to generalize (2) for vector-valued functions on the r-dimensional first hyperquadrant

$$[0,\infty)^r := \{x = (x_1, x_2, \dots, x_r) \in \mathbb{R}^r : x_i \ge 0, \ i = 1, 2, \dots, r\}$$

and to consider their uniform convergence with rates in terms of the modulus of continuity of functions to be approximated.

2. Convergence theorems

Let (X, d) be a locally compact metric space and let $(E, \|\cdot\|)$ be a normed linear space. Let B(X, E) denote the normed linear space of all *E*-valued bounded functions on *X* with the supremum norm $\|\cdot\|_X$. Also, we denote by C(X, E) the linear space consisting of all *E*-valued continuous functions on *X* and set $BC(X, E) = B(X, E) \cap C(X, E)$. Let $\{Y_{\alpha} : \alpha \in D\}$ be a family of finite sets, where *D* is a directed set and let $\{w_{\alpha}\}_{\alpha \in D}$ be a net of strictly positive real-valued functions on *X*. For each $\alpha \in D$, let ξ_{α} be a mapping of Y_{α} into *X* and let χ_{α} be a real-valued function on $X \times Y_{\alpha}$. Then we define an interpolation type operator with the weight function w_{α} by the form

$$U_{\alpha}(f)(x) = U_{\alpha}(E; f; x) = w_{\alpha}(x) \sum_{k \in Y_{\alpha}} \chi_{\alpha}(x, k) f(\xi_{\alpha}(k))$$
$$(\alpha \in D, \ f \in C(X, E), \ x \in X)$$

(cf. [14] - [19]), and set

$$W_{\alpha}(g)(x) = U_{\alpha}(\mathbb{R}; g; x) = w_{\alpha}(x) \sum_{k \in Y_{\alpha}} \chi_{\alpha}(x, \dot{k}) g(\xi_{\alpha}(k))$$

$$(\alpha \in D, g \in C(X, \mathbb{R}), x \in X)$$

For each $x \in X$ and q > 0, we define

$$\mu_{\alpha}(x;q) = w_{\alpha}(x) \sum_{k \in Y_{\alpha}} |\chi_{\alpha}(x,k)| d^{q}(x,\xi_{\alpha}(k)) \qquad (\alpha \in D),$$

which is called the *q*th absolute moment of χ_{α} at *x* with respect to the weight function w_{α} . Also, 1_X stands for the unit function defined by $1_X(x) = 1$ for all $x \in X$.

Let X_0 be a compact subset of X and suppose that

$$\chi_{\alpha}(x,k) \ge 0 \qquad (\alpha \in D)$$

for all $(x,k) \in X_0 \times Y_\alpha$.

Theorem 1. If

(5) $\lim_{\alpha} \|W_{\alpha}(1_X) - 1_X\|_{X_0} = 0$

and if

(6) $\lim_{\alpha} \|\mu_{\alpha}(\cdot;q)\|_{X_0} = 0$

for some q > 0, then

(7) $\lim_{\alpha} \|U_{\alpha}(f) - f\|_{X_0} = 0$

for all $f \in BC(X, E)$.

Proof. This follows from [15, Corollary 3] (cf. [14, Theorem 2 (b)], [15, Theorem 8], [16, Theorem 1]), which remains true without the completeness of E for interpolation type operators (cf. [17]).

In the rest of this section, let $1 \le p \le \infty$ be fixed and let

$$(X,d) = ([0,\infty)^r, d_p).$$

For i = 1, 2, ..., r, p_i denotes the *i*th coordinate function on \mathbb{R}^r defined by

 $p_i(x) = x_i$ $(x = (x_1, x_2, \ldots, x_r) \in \mathbb{R}^r).$

Tnen we have

$$\mu_{\alpha}(x) := \mu_{\alpha}(x;2) = w_{\alpha}(x) \sum_{i=1}^{'} \sum_{k \in Y_{\alpha}} |\chi_{\alpha}(x,k)| (p_{i}(x) - p_{i}(\xi_{\alpha}(k)))^{2}$$
$$(\alpha \in D, \ x \in X).$$

Note that

$$\mu_{\alpha}(x) = \sum_{i=1}^{n} W_{\alpha} \big((p_i(x) \mathbb{1}_X - p_i)^2 \big)(x) \qquad (\alpha \in D, \ x \in X_0),$$

and so we obtain the following Korovkin type result, which can be more convenient for applications to the concrete weighted interpolation type operators (cf. [14, Theorem 4], [15, Theorems 5 and 6]). For the background of Korovkin-type approximation theory, we refer to the book of Altomare and Campiti [1], in which an excellent source and vast literatures of this theory can be found (cf. [9], [10], [12]).

Corollary 1. If (5) holds and if

r

$$\lim_{\alpha} \mu_{\alpha}(x) = 0 \quad uniformly \ in \ x \in X_0,$$

then (7) holds for all $f \in BC(X, E)$. In particular, if (5) holds and if

(8)
$$\lim_{\alpha} \|W_{\alpha}(p_i) - p_i\|_{X_0} = 0 \qquad (i = 1, 2, \cdots, r)$$

and

(9)
$$\lim_{\alpha} \|W_{\alpha}(p_i^2) - p_i^2\|_{X_0} = 0 \qquad (i = 1, 2, \dots, r),$$

then (7) holds for every $f \in BC(X, E)$.

Remark 1. Conditions (5), (8) and (9) imply that

$$\lim_{\alpha} \|W_{\alpha}(g) - g\|_{X_0} = 0$$

for all $g \in BC(X, \mathbb{R})$ (cf. [15, Theorem 6], [14, Theorem 4 (b)]). Let $n \in \mathbb{N}$ and define

$$p_{n,k}(s,t) = \binom{n}{k} s^k t^{n-k} \qquad (s,t \in \mathbb{R}, \ k = 0,1,\ldots,n).$$

Lemma 1. Let $s, t, u \in \mathbb{R}$. Then the following equalities hold :

(10)
$$\sum_{k=1}^{n} k p_{n,k}(s,t) = n s (s+t)^{n-1}.$$

(11)
$$\sum_{k=2}^{n} k(k-1)p_{n,k}(s,t) = n(n-1)s^2(s+t)^{n-2}.$$

(12)
$$\sum_{k=1}^{n} k^2 p_{n,k}(s,t) = ns(ns+t)(s+t)^{n-2}.$$

(13)
$$\sum_{k=0}^{n} (u-k)^2 p_{n,k}(s,t)$$

$$= (s+t)^{n-2} (s^2 u^2 + nst + 2su(tu - ns) + (tu - ns)^2).$$

In particular, if tu = ns, then (13) reduces to

$$\sum_{k=0}^{n} (u-k)^2 p_{n,k}(s,t) = u(s+t)^{n-2} (s^2 u + t^2).$$

Proof. (10) and (11) immediately follow from the binomial theorem. (12) follows from (10) and (11). Also, (13) follows from (10) and (12).

Lemma 2. Let $\{m_{\alpha}\}_{\alpha\in D}$ be a net of positive integers and let $\{\beta_{\alpha}\}_{\alpha\in D}$ be a net of positive real numbers. Let $\{u_{\alpha}\}_{\alpha\in D}$ and $\{v_{\alpha}\}_{\alpha\in D}$ be nets of real-valued functions on $[0,\infty)$ such that $u_{\alpha}(t) + v_{\alpha}(t) \neq 0$ for all $\alpha \in D$ and all $t \in [0,\infty)$. We define

$$\varphi_{\alpha,k}(t) = \binom{m_{\alpha}}{k} u_{\alpha}^{k}(t) v_{\alpha}^{m_{\alpha}-k}(t) \qquad (t \in [0,\infty), \ k = 0, 1, \dots, m_{\alpha}).$$

Then the following equalities hold for all $\alpha \in D$ and all $t \in [0, \infty)$:

(14)
$$\frac{1}{(u_{\alpha}(t)+v_{\alpha}(t))^{m_{\alpha}}}\sum_{k=0}^{m_{\alpha}}\varphi_{\alpha,k}(t)=1.$$

(15)
$$\frac{1}{(u_{\alpha}(t)+v_{\alpha}(t))^{m_{\alpha}}}\sum_{k=1}^{m_{\alpha}}\frac{k}{\beta_{\alpha}}\varphi_{\alpha,k}(t)=\frac{m_{\alpha}u_{\alpha}(t)}{\beta_{\alpha}(u_{\alpha}(t)+v_{\alpha}(t))}.$$

(16)
$$\frac{1}{(u_{\alpha}(t)+v_{\alpha}(t))^{m_{\alpha}}}\sum_{k=1}^{m_{\alpha}}\left(\frac{k}{\beta_{\alpha}}\right)^{2}\varphi_{\alpha,k}(t)$$
$$=\frac{m_{\alpha}u_{\alpha}(t)(m_{\alpha}u_{\alpha}(t)+v_{\alpha}(t))}{\beta_{\alpha}^{2}(u_{\alpha}(t)+v_{\alpha}(t))^{2}}.$$

Proof. (14) immediately follows from the binomial theorem. For (15) and (16), we take $n = m_{\alpha}$, $s = u_{\alpha}(t)$ and $v_{\alpha}(t)$ instead of t in Lemma 1 (10) and (12), respectively.

Lemma 3. Let $\{m_{\alpha}\}_{\alpha\in D}$ be a net of positive integers and let $\{\beta_{\alpha}\}_{\alpha\in D}$ be a net of positive real numbers with $\lim_{\alpha} \beta_{\alpha} = +\infty$. Let $\{u_{\alpha}\}_{\alpha\in D}$ and $\{v_{\alpha}\}_{\alpha\in D}$ be nets of nonnegative functions in $C[0,\infty) := C([0,\infty),\mathbb{R})$ such that

$$\inf\{u_{\alpha}(t)+v_{\alpha}(t):t\in[0,\infty)\}>0$$

for each $\alpha \in D$. We define

$$I_{\alpha}(t) = I_{\alpha}(m_{\alpha}; \beta_{\alpha}; u_{\alpha}; v_{\alpha}; t) = \frac{m_{\alpha}u_{\alpha}(t)}{\beta_{\alpha}(u_{\alpha}(t) + v_{\alpha}(t))}$$
$$(\alpha \in D, \ t \in [0, \infty))$$

and

$$J_{\alpha}(t) = J_{\alpha}(m_{\alpha}; \beta_{\alpha}; u_{\alpha}; v_{\alpha}; t) = \frac{m_{\alpha}u_{\alpha}(t)(m_{\alpha}u_{\alpha}(t) + v_{\alpha}(t))}{\beta_{\alpha}^{2}(u_{\alpha}(t) + v_{\alpha}(t))^{2}}$$
$$(\alpha \in D, \ t \in [0, \infty)).$$

Let K be a compact subset of $[0,\infty)$. If

$$\lim_{\alpha} I_{\alpha}(t) = t \quad uniformly \ in \ t \in K,$$

then

$$\lim_{\alpha} J_{\alpha}(t) = t^2 \quad uniformly \ in \ t \in K.$$

Proof. We have

$$J_{\alpha}(t) = I_{\alpha}^{2}(t) + \frac{I_{\alpha}(t)v_{\alpha}(t)}{\beta_{\alpha}(u_{\alpha}(t) + v_{\alpha}(t))} \qquad (\alpha \in D, \ t \in [0, \infty)),$$

from which the desired result follows, immediately.

Lemma 4. Let $\{m_{\alpha}\}_{\alpha\in D}$, $\{\beta_{\alpha}\}_{\alpha\in D}$, $\{u_{\alpha}\}_{\alpha\in D}$ and $\{v_{\alpha}\}_{\alpha\in D}$ be as in Lemma 3 such that $\beta_{\alpha} = o(m_{\alpha})$, $v_{\alpha}(t) > 0$ and $m_{\alpha}u_{\alpha}(t) = \beta_{\alpha}tv_{\alpha}(t)$ for all $\alpha \in D$ and all $t \in [0, \infty)$. Let K be a compact subset of $[0, \infty)$. Then there hold

(17)
$$\lim_{\alpha} I_{\alpha}(t) = t \quad uniformly \ in \ t \in K$$

and

(18)
$$\lim_{\alpha} J_{\alpha}(t) = t^2 \quad uniformly \ in \ t \in K.$$

.

Proof. Since

$$u_{\alpha}(t) = \frac{\beta_{\alpha}t}{m_{\alpha}}v_{\alpha}(t) \qquad (\alpha \in D, \ t \in [0,\infty)),$$

we have

$$I_{\alpha}(t) = \frac{m_{\alpha}t}{\beta_{\alpha}t + m_{\alpha}} \qquad (\alpha \in D, \ t \in [0, \infty)),$$

which establishes (17). Therefore, (18) holds by Lemma 3.

Let $\{n_{\alpha,i}\}_{\alpha\in D}$, i = 1, 2, ..., r, be nets of positive integers and let $\{b_{n_{\alpha,i}}\}_{\alpha\in D}$, i = 1, 2, ..., r, be nets of positive real numbers such that

$$\lim_{\alpha} b_{n_{\alpha,i}} = +\infty \qquad (i = 1, 2, \dots, r).$$

Let $\{g_{n_{\alpha,i}}\}_{\alpha\in D}$ and $\{h_{n_{\alpha,i}}\}_{\alpha\in D}$, i = 1, 2, ..., r, be nets of nonnegative functions in $C[0, \infty)$ such that

$$\inf\{g_{n_{\alpha,i}}(t) + h_{n_{\alpha,i}}(t) : t \in [0,\infty)\} > 0$$

for all $\alpha \in D$ and for i = 1, 2, ..., r. Then we define

(19)
$$F_{\alpha}(f)(x) = F_{\alpha}(E; f; x) = \prod_{i=1}^{r} \frac{1}{(g_{n_{\alpha,i}}(x_i) + h_{n_{\alpha,i}}(x_i))^{n_{\alpha,i}}} \\ \times \sum_{k_1=0}^{n_{\alpha,1}} \sum_{k_2=0}^{n_{\alpha,2}} \cdots \sum_{k_r=0}^{n_{\alpha,r}} \prod_{i=1}^{r} \rho_{n_{\alpha,i},k_i}(x_i) f\left(\frac{k_1}{b_{n_{\alpha,1}}}, \frac{k_2}{b_{n_{\alpha,2}}}, \dots, \frac{k_r}{b_{n_{\alpha,r}}}\right) \\ (\alpha \in D, \ f \in C(X, E), \ x = (x_1, x_2, \dots, x_r) \in X),$$

where

$$\rho_{n_{\alpha,i},k_i}(x_i) = \binom{n_{\alpha,i}}{k_i} g_{n_{\alpha,i}}^{k_i}(x_i) h_{n_{\alpha,i}}^{n_{\alpha,i}-k_i}(x_i)$$
$$(\alpha \in D, \ i = 1, 2, \dots, r).$$

We call $F_{\alpha}, \alpha \in D$, the fractional interpolation type operators on C(X, E).

From now on let K_i , i = 1, 2, ..., r, be compact subsets of $[0, \infty)$ and we set

$$X_0 = \prod_{i=1}^r K_i.$$

Theorem 2. If

(20) $\lim_{\alpha} I_{\alpha}(n_{\alpha,i}; b_{n_{\alpha,i}}; g_{n_{\alpha,i}}; h_{n_{\alpha,i}}; t) = t \quad uniformly \ in \ t \in K_i$ for i = 1, 2, ..., r, then (21) $\lim_{\alpha} \|F_{\alpha}(f) - f\|_{X_0} = 0$ for all $f \in BC(X, E)$.

Proof. We define

 $G_{\alpha}(g)(x) = F_{\alpha}(\mathbb{R}; g; x)$ $(\alpha \in D, g \in C(X, \mathbb{R}), x \in X).$ Then by Lemma 2 (14) and (15), we have

 $G_{\alpha}(1_X)(x) = 1$ $(\alpha \in D, x \in X)$

and

$$G_{\alpha}(p_{i})(x) = I_{\alpha}(n_{\alpha,i}; b_{n_{\alpha,i}}; g_{n_{\alpha,i}}; h_{n_{\alpha,i}}; x_{i})$$

(\$\alpha \in D\$, \$x = (x_{1}, x_{2}, \ldots, x_{r}) \in X\$, \$i = 1, 2, \ldots, r]

Therefore, (20), Lemma 2 (16) and Lemma 3 yield that

$$\lim_{\alpha} \|G_{\alpha}(p_i) - p_i\|_{X_0} = 0 \qquad (i = 1, 2, \dots, r)$$

and

$$\lim_{\alpha} \|G_{\alpha}(p_i^2) - p_i^2\|_{X_0} = 0 \qquad (i = 1, 2, \dots, r).$$

Thus, the desired result (21) follows by Corollary 1.

Let

(22)
$$a_{n_{\alpha,i}} := \frac{b_{n_{\alpha,i}}}{n_{\alpha,i}} \qquad (\alpha \in D, \ i = 1, 2, \dots, r)$$

and we define

(23)
$$T_{\alpha}(f)(x) = T_{\alpha}(E; f; x) = \prod_{i=1}^{r} \frac{1}{(1 + a_{n_{\alpha,i}} x_i)^{n_{\alpha,i}}}$$

$$\times \sum_{k_1=0}^{n_{\alpha,1}} \sum_{k_2=0}^{n_{\alpha,2}} \cdots \sum_{k_r=0}^{n_{\alpha,r}} \prod_{i=1}^r \rho_{n_{\alpha,i},k_i}(x_i) f\Big(\frac{k_1}{b_{n_{\alpha,1}}}, \frac{k_2}{b_{n_{\alpha,2}}}, \dots, \frac{k_r}{b_{n_{\alpha,r}}}\Big),$$

(\$\alpha \in D\$, \$f \in C(X, E), \$x = (x_1, x_2, \dots, x_r) \in X),

where

$$\rho_{n_{\alpha,i},k_i}(x_i) = \binom{n_{\alpha,i}}{k_i} (a_{n_{\alpha,i}} x_i)^{k_i}$$
$$(\alpha \in D, \ i = 1, 2, \dots, r).$$

Theorem 3. If

$$a_{n_{\alpha,i}}=o(1)$$

for i = 1, 2, ..., r, then

$$\lim_{\alpha} \|T_{\alpha}(f) - f\|_{X_0} = 0$$

for all $f \in BC(X, E)$.

Proof. Let

$$h_{n_{\alpha,i}} = 1_{[0,\infty)}$$
 $(\alpha \in D, \ i = 1, 2, ..., r)$

and

 $g_{n_{\alpha,i}}(t) = a_{n_{\alpha,i}}th_{n_{\alpha,i}}(t)$ $(\alpha \in D, i = 1, 2, ..., r)$ for all $t \in [0, \infty)$. Then (19) reduces to (23). Since

$$b_{n_{\alpha,i}} = o(n_{\alpha,i})$$
 $(i = 1, 2, \dots, r)$

and

$$n_{\alpha,i}g_{n_{\alpha,i}}(t) = b_{n_{\alpha,i}}th_{n_{\alpha,i}}(t) \qquad (\alpha \in D, \ i = 1, 2, \dots, r)$$

for all $t \in [0, \infty)$, we use Lemma 4 and apply Theorem 2 to $F_{\alpha} = T_{\alpha}$. **Remark 2.** (23) generalizes (2) to the *r*-dimensional Bernstein type rational vector-valued functions. Also, (3) can be extended by the following form to the *r*-dimensional case for vector-valued functions:

(24)
$$R_{\alpha}(f)(x) = R_{\alpha}(E; \mathcal{B}; \mathcal{A}; f; x) = \prod_{i=1}^{r} \frac{1}{(1 + a_{n_{\alpha,i}} x_i)^{n_{\alpha,i}}}$$

$$\times \sum_{k_1=0}^{n_{\alpha,1}} \sum_{k_2=0}^{n_{\alpha,2}} \cdots \sum_{k_r=0}^{n_{\alpha,r}} \prod_{i=1}^r \binom{n_{\alpha,i}}{k_i} (a_{n_{\alpha,i}} x_i)^{k_i} f(b_{n_{\alpha,1},k_1}, b_{n_{\alpha,2},k_2}, \dots, b_{n_{\alpha,r},k_r}) (\alpha \in D, \ f \in C(X, E), \ x = (x_1, x_2, \dots, x_r) \in X),$$

where

$$\mathcal{A} = \{a_{n_{\alpha,i}} : \alpha \in D, \ i = 1, 2, \dots, r\}$$

and

$$\mathcal{B} = \{b_{n_{\alpha,i},k_i} : 0 \le k_i \le n_{\alpha,i}, \ \alpha \in D, \ i = 1, 2, \dots, r\}$$

are families of positive real numbers with

$$0 \leq b_{n_{\alpha,i},0} < b_{n_{\alpha,i},1} < b_{n_{\alpha,i},2} < \cdots < b_{n_{\alpha,i},n_{\alpha,i}}$$
$$(\alpha \in D, \ i = 1, 2, \dots, r).$$

In particular, the operator $L_n(f)(x)$ defined by (4) is generalized to the *r*-dimensional case for vector-valued functions defined as follows:

(25)
$$L_{\alpha}(f)(x) = L_{\alpha}(E; f; x) = \prod_{i=1}^{r} \frac{1}{(1+x_i)^{n_{\alpha,i}}} \sum_{k_1=0}^{n_{\alpha,1}} \sum_{k_2=0}^{n_{\alpha,2}} \cdots \sum_{k_r=0}^{n_{\alpha,r}} \prod_{k_r=0}^{r} \binom{n_{\alpha,i}}{x_i} \frac{k_1}{x_i} \frac{k_2}{x_i} \frac{k_2}{x_i} \frac{k_r}{x_i}$$

$$\prod_{i=1}^{n} {\binom{a,b}{k_i}} x_i^{k_i} f\left(\frac{1}{n_{\alpha,1}-k_1+1}, \frac{1}{n_{\alpha,2}-k_2+1}, \dots, \frac{1}{n_{\alpha,r}-k_r+1}\right) (\alpha \in D, \ f \in C(X, E), \ x = (x_1, x_2, \dots, x_r) \in X).$$

-34-

3. Rates of convergence

Le $f \in B(X, E)$ and let $\delta \ge 0$. Then we define

$$\omega(f,\delta) = \omega(d;f,\delta) = \sup\{\|f(x) - f(y)\| : x, y \in X, d(x,y) \le \delta\},\$$

which is called the modulus of continuity of f. Obviously, $\omega(f, \cdot)$ is a monotone increasing function on $[0, \infty)$ and

$$\omega(f,0) = 0, \quad \omega(f,\delta) \le 2||f||_X.$$

Also, f is uniformly continuous on X if and only if

$$\lim_{\delta \to +0} \omega(f, \delta) = 0.$$

We give here a quantitative form of Theorem 1, in which we estimate the rate of convergence in terms of the modulus of continuity of f. For this we suppose that for each $\alpha \in D$,

$$\chi_{lpha}(x,k)\geq 0$$

for all $(x, k) \in X \times Y_{\alpha}$ and that there exist constants $C \ge 1$ and K > 0 such that

(26)
$$\omega(f,\xi\delta) \le (C+K\xi)\omega(f,\delta)$$

for all $\xi, \delta \ge 0$ and all $f \in B(X, E)$.

For the sufficient condition such that (26) holds with C = K = 1, see [17, Lemma 1] (cf. [18, Lemma 2.4]).

Let $\{\epsilon_{\alpha}\}_{\alpha\in D}$ be a net of positive real numbers.

Theorem 4. Let $q \ge 1$. Then for all $f \in BC(X, E), x \in X$ and all $\alpha \in D$,

(27)
$$||U_{\alpha}(f)(x) - f(x)|| \leq |W_{\alpha}(1_X)(x) - 1|||f(x)||$$
$$+ (CW_{\alpha}(1_X)(x) + Kc_{\alpha}(x;q))\omega(f,\epsilon_{\alpha}),$$

where

$$c_{lpha}(x;q) = \min\{\epsilon_{lpha}^{-q}\mu_{lpha}(x;q), \ \epsilon_{lpha}^{-1}(W_{lpha}(1_X)(x))^{1-1/q}\mu_{lpha}(x;q)^{1/q}\}.$$

In particular, if $W_{\alpha}(1_X) = 1_X$ for all $\alpha \in D$, then (27) reduces to

$$||U_{\alpha}(f)(x) - f(x)|| \le (C + Kc_{\alpha}(x;q))\omega(f,\epsilon_{\alpha})$$

and

$$c_{\alpha}(x;q) = \min\{\epsilon_{\alpha}^{-q}\mu_{\alpha}(x;q), \ \epsilon_{\alpha}^{-1}\mu_{\alpha}(x;q)^{1/q}\}.$$

— 35 —

Proof. Let
$$f \in BC(X, E)$$
 and $x \in X$. Then for all $\alpha \in D$ we have
(28) $||U_{\alpha}(f)(x) - f(x)|| \leq \left| \left| w_{\alpha}(x) \sum_{k \in Y_{\alpha}} \chi_{\alpha}(x, k) (f(\xi_{\alpha}(k)) - f(x)) \right| \right|$
 $+ \left\| \left(w_{\alpha}(x) \sum_{k \in Y_{\alpha}} \chi_{\alpha}(x, k) - 1 \right) f(x) \right\|$
 $= J_{\alpha}^{(1)}(x) + J_{\alpha}^{(2)}(x),$

say. We have

$$V_{\alpha}^{(2)}(x) = |W_{\alpha}(1_X)(x) - 1| ||f(x)||.$$

Also, in view of [18, Lemma 2.7], we obtain

(29)
$$J_{\alpha}^{(1)}(x) \leq (CW_{\alpha}(1_X)(x) + Kc_{\alpha}(x;q,\delta))\omega(f,\delta) \qquad (\delta > 0),$$
where

$$c_{\alpha}(x;q,\delta) = \min\{\delta^{-q}\mu_{\alpha}(x;q), \ \delta^{-1}(W_{\alpha}(1_X)(x))^{1-1/q}\mu_{\alpha}(x;q)^{1/q}\}.$$

Therefore, putting $\delta = \epsilon_{\alpha}$ in (29), (28) yields the desired inequality (27).

Let Φ be a nonnegative real-valued function on $X^2 := X \times X$ and we define

$$\mu_{\alpha}(\Phi; x) = \omega_{\alpha}(x) \sum_{k \in Y_{\alpha}} \chi_{\alpha}(x, k) \Phi(x, \xi_{\alpha}(k)) \qquad (\alpha \in D, \ x \in X),$$

which is called the Φ -moment of χ_{α} at x with respect to the weight function w_{α} (cf. [14] - [19]).

Next we suppose that there exist constants $q \ge 1$ and $\kappa > 0$ such that

(30)
$$d^q(x,y) \le \kappa \Phi(x,y)$$

for all $(x, y) \in X^2$. Remark 3. If

(31)
$$\lim_{\alpha} \mu_{\alpha}(\Phi; x) = 0 \quad \text{uniformly in } x \in X_0,$$

then (30) gives (6). Therefore, by Theorem 1, (5) and (31) establish that (7) holds for every $f \in BC(X, E)$.

Theorem 5. For all $f \in BC(X, E)$, $x \in X$ and all $\alpha \in D$,

(32)
$$\|U_{\alpha}(f)(x) - f(x)\| \leq \|W(1_X)(x) - 1\|\|f(x)\|$$
$$+ (CW_{\alpha}(1_X)(x) + K\zeta_{\alpha}(\Phi; x; q))\omega(f, \epsilon_{\alpha}),$$

where

$$\zeta_{\alpha}(\Phi;x;q)$$

 $= \min\{\kappa \epsilon_{\alpha}^{-q} \mu_{\alpha}(\Phi; x), \ \kappa^{1/q} \epsilon_{\alpha}^{-1}(W_{\alpha}(1_X)(x))^{1-1/q} \mu_{\alpha}(\Phi; x)^{1/q}\}.$ In particular, if $W_{\alpha}(1_X) = 1_X$ for all $\alpha \in D$, then (32) reduces to

$$||U_{\alpha}(f)(x) - f(x)|| \le (C + K\zeta_{\alpha}(\Phi; x; q))\omega(f, \epsilon_{\alpha})$$

and

$$\zeta_{\alpha}(\Phi;x;q) = \min\{\kappa \epsilon_{\alpha}^{-q} \mu_{\alpha}(\Phi;x), \ \kappa^{1/q} \epsilon_{\alpha}^{-1} \mu_{\alpha}(\Phi;x)^{1/q}\}$$

Proof. By (30), we have

$$\mu_{\alpha}(x;q) \leq \kappa \mu_{\alpha}(\Phi;x) \qquad (\alpha \in D, \ x \in X),$$

which implies $c_{\alpha}(x;q) \leq \zeta_{\alpha}(\Phi;x;q)$. Therefore, the desired estimate (32) follows from (27).

In the rest of this section, let $1 \le p \le \infty$ be fixed and let

$$(X,d) = ([0,\infty)^r, d_p)$$

For each $q \ge 1$, we set

$$c(p,q,r) = \begin{cases} r^{q/p} & (1 \le p < \infty, \, p \ne q) \\ 1 & (1 \le p < \infty, \, p = q) \\ 1 & (p = \infty). \end{cases}$$

Theorem 6. For all $f \in BC(X, E), x \in X$ and all $\alpha \in D$, (33) $||U_{\alpha}(f)(x) - f(x)|| \le |W_{\alpha}(1_X)(x) - 1|||f(x)||$

$$||U_{\alpha}(f)(x) - f(x)|| \leq |W_{\alpha}(1_X)(x) - 1|||f(x)| + (W_{\alpha}(1_X)(x) + \tau_{\alpha}(x;q))\omega(f,\epsilon_{\alpha}),$$

where

$$\tau_{\alpha}(x;q) = \min \left\{ c(p,q,r) \epsilon_{\alpha}^{-q} \sum_{i=1}^{r} W_{\alpha}(|p_{i}(x)1_{X} - p_{i}|^{q})(x), \\ c(p,q,r)^{1/q} \epsilon_{\alpha}^{-1} \left(\sum_{i=1}^{r} W_{\alpha}(|p_{i}(x)1_{X} - p_{i}|^{q})(x) \right)^{1/q} \right\}.$$

In particular, if $W_{\alpha}(1_X) = 1_X$ for all $\alpha \in D$, then (33) reduces to $\|U_{\alpha}(f)(x) - f(x)\| \le (1 + \tau_{\alpha}(x;q))\omega(f,\epsilon_{\alpha}).$

Proof. By [17, Lemma 1 (b)] (cf. [18, Lemma 2.4 (b)]), (26) holds with C = K = 1. Also, we have

$$d_p^q(x,y) \le c(p,q,r) \sum_{i=1}^r |p_i(x) - p_i(y)|^q \qquad (x,y \in \mathbb{R}^r).$$

Therefore for all $(x, y) \in X^2$, (30) holds with

$$\kappa = c(p,q,r), \quad \Phi(x,y) = \sum_{i=1}^{r} |p_i(x) - p_i(y)|^q,$$

and so by Theorem 5, we obtain the desired result.

Corollary 2. For all
$$f \in BC(X, E), x \in X$$
 and all $\alpha \in D$,
(34) $||U_{\alpha}(f)(x) - f(x)|| \leq |W_{\alpha}(1_X)(x) - 1|||f(x)||$
 $+ (W_{\alpha}(1_X)(x) + \tau_{\alpha}(x))\omega(f, \epsilon_{\alpha}),$

where

$$\tau_{\alpha}(x) = \min\left\{c(p,r)\epsilon_{\alpha}^{-2}\mu_{\alpha}(x), \sqrt{c(p,r)}\epsilon_{\alpha}^{-1}\sqrt{\mu_{\alpha}(x)}\right\}$$

and

$$c(p,r) = \begin{cases} r^{2/p} & (1 \le p < \infty, \, p \ne 2) \\ 1 & (p = 2, \, \infty). \end{cases}$$

In particular, if $W_{\alpha}(1_X) = 1_X$ for all $\alpha \in D$, then (34) reduces to $\|U_{\alpha}(f)(x) - f(x)\| \le (1 + \tau_{\alpha}(x))\omega(f, \epsilon_{\alpha}).$

Concerning the rate of convergence of the net $\{F_{\alpha}\}_{\alpha \in D}$ of the fractional interpolation type operators defined by (19), we get the following result.

Theorem 7. For all $f \in BC(X, E)$, $x = (x_1, x_2, \dots, x_r) \in X$ and all $\alpha \in D$,

(35)
$$||F_{\alpha}(f)(x) - f(x)|| \leq (1 + \eta_{\alpha}(x))\omega(f, \epsilon_{\alpha}),$$

where

(36)
$$\eta_{\alpha}(x) = \min\{c(p,r)\epsilon_{\alpha}^{-2}\theta_{\alpha}(x), \sqrt{c(p,r)}\epsilon_{\alpha}^{-1}\sqrt{\theta_{\alpha}(x)}\}$$

and

$$\theta_{\alpha}(x) = \sum_{i=1}^{r} \frac{1}{b_{n_{\alpha,i}}^{2}(g_{n_{\alpha,i}}(x_{i}) + h_{n_{\alpha,i}}(x_{i}))^{2}} \\ \times \left(\left(b_{n_{\alpha,i}} x_{i} g_{n_{\alpha,i}}(x_{i}) \right)^{2} + n_{\alpha,i} g_{n_{\alpha,i}}(x_{i}) h_{n_{\alpha,i}}(x_{i}) \right. \\ \left. + 2 b_{n_{\alpha,i}} x_{i} g_{n_{\alpha,i}}(x_{i}) \left(b_{n_{\alpha,i}} x_{i} h_{n_{\alpha,i}}(x_{i}) - n_{\alpha,i} g_{n_{\alpha,i}}(x_{i}) \right) \right. \\ \left. + \left(b_{n_{\alpha,i}} x_{i} h_{n_{\alpha,i}}(x_{i}) - n_{\alpha,i} g_{n_{\alpha,i}}(x_{i}) \right)^{2} \right).$$

Proof. We use Lemma 1 (13) and apply Corollary 2 to $U_{\alpha} = F_{\alpha}$.

Corollary 3. Let $a_{n_{\alpha,i}}$ ($\alpha \in D$, i = 1, 2, ..., r) be as in (22). Then for all $f \in BC(X, E), x = (x_1, x_2, ..., x_r) \in X$ and all $\alpha \in D$,

$$||T_{\alpha}(f)(x) - f(x)|| \le (1 + \eta_{\alpha}(x))\omega(f, \epsilon_{\alpha}),$$

where $\eta_{\alpha}(x)$ is given by (36) and

(37)
$$\theta_{\alpha}(x) = \sum_{i=1}^{r} \frac{a_{n_{\alpha,i}}^2 x_i^4 + x_i / b_{n_{\alpha,i}}}{(1 + a_{n_{\alpha,i}} x_i)^2}.$$

Remark 4. Corollary 3 sharply extends and improves [4, Theorem 1] to the very general settings.

Concerning the rate of convergence of the net $\{R_{\alpha}\}_{\alpha\in D}$ of operators definded by (24), we obtain the following result.

Theorem 8. For all $f \in BC(X, E)$, $x = (x_1, x_2, \ldots, x_r) \in X$ and all $\alpha \in D$,

$$||R_{\alpha}(f)(x) - f(x)|| \le (1 + \gamma_{\alpha}(x))\omega(f, \epsilon_{\alpha})$$

where

$$\gamma_{\alpha}(x) = \min\{c(p,r)\epsilon_{\alpha}^{-2}\nu_{\alpha}(x), \sqrt{c(p,r)}\epsilon_{\alpha}^{-1}\sqrt{\nu_{\alpha}(x)}\}$$

and

$$\nu_{\alpha}(x) = \sum_{i=1}^{r} \sum_{k_{i}=0}^{n_{\alpha,i}} \binom{n_{\alpha,i}}{k_{i}} \frac{(a_{n_{\alpha,i}}x_{i})^{k_{i}}}{(1+a_{n_{\alpha,i}}x_{i})^{n_{\alpha,i}}} (x_{i}-b_{n_{\alpha,i},k_{i}})^{2}.$$

Proof. Apply Corollary 2 to $U_{\alpha} = R_{\alpha}$.

Theorem 9. For all $f \in BC(X, E)$, $x = (x_1, x_2, \ldots, x_r) \in X$ and all $\alpha \in D$,

$$||L_{\alpha}(f)(x) - f(x)|| \le (1 + \zeta_{\alpha}(x))\omega(f, \epsilon_{\alpha}),$$

where

$$\zeta_{\alpha}(x) = \min\{c(p,r)\epsilon_{\alpha}^{-2}\psi_{\alpha}(x), \sqrt{c(p,r)}\epsilon_{\alpha}^{-1}\sqrt{\psi_{\alpha}(x)}\}$$

and

(38)
$$\psi_{\alpha}(x) = \sum_{i=1}^{r} \sum_{k_{i}=0}^{n_{\alpha,i}} {n_{\alpha,i} \choose k_{i}} \frac{x_{i}^{k_{i}}}{(1+x_{i})^{n_{\alpha,i}}} \left(x_{i} - \frac{k_{i}}{n_{\alpha,i} - k_{i} + 1}\right)^{2}.$$

Proof. Apply Theorem 8 to $R_{\alpha} = L_{\alpha}$.

Remark 5. By [7, Remark 3] (cf. [11, (6)]), we have the the following more explicit expression for the second (absolute) moment (38) of L_{α} :

$$\psi_{\alpha}(x) = \sum_{i=1}^{r} \frac{(x_{i} - n_{\alpha,i})x_{i}^{n_{\alpha,i}+1}}{(1+x_{i})^{n_{\alpha,i}}} + \frac{x_{i}^{n_{\alpha,i}+1}}{(1+x_{i})^{n_{\alpha,i}}} \sum_{k_{i}=2}^{n_{\alpha,i}+1} \binom{n_{\alpha,i}+1}{k_{i}} \frac{x_{i}^{1-k_{i}}}{k_{i}-1}.$$

Theorem 10. For all $f \in BC(X)$, $x = (x_1, x_2, \ldots, x_r) \in X$ and all $\alpha \in D$,

(39)
$$||L_{\alpha}(f)(x) - f(x)|| \leq (1 + \kappa_{\alpha}(x))\omega(f, \epsilon_{\alpha}),$$

where

$$\kappa_{\alpha}(x) = \min\{c(p,r)\epsilon_{\alpha}^{-2}\sigma_{\alpha}(x), \sqrt{c(p,r)}\epsilon_{\alpha}^{-1}\sqrt{\sigma_{\alpha}(x)}\}$$

and

$$\sigma_{\alpha}(x) = 4 \sum_{i=1}^{r} \frac{x_i(1+x_i)^2}{n_{\alpha,i}}.$$

Proof. By [11, (6)], we have

$$\psi_{\alpha}(x) \leq \sum_{i=1}^{r} \left(\frac{x_i}{n_{\alpha,i}} + \frac{x_i^2(1+x_i)}{n_{\alpha,i}} + \frac{3x_i(1+x_i)^2}{n_{\alpha,i}} \right) \leq \sigma_{\alpha}(x).$$

Therefore, the desired result follows from Theorem 9.

Remark 6. By putting $\epsilon_{\alpha}\sqrt{\sigma_{\alpha}(x)}$ instead of ϵ_{α} in (39), we get the following inequality for all $f \in BC(X, E), x \in X$ and all $\alpha \in D$:

(40)
$$\|L_{\alpha}(f)(x) - f(x)\| \leq (1 + \min\{c(p, r)\epsilon_{\alpha}^{-2}, \sqrt{c(p, r)}\epsilon_{\alpha}^{-1}\})$$
$$\times \omega\Big(f, 2\epsilon_{\alpha}\sqrt{\sum_{i=1}^{r} \frac{x_{i}(x_{i}+1)^{2}}{n_{\alpha,i}}}\Big).$$

In particular, if $p = 2, \infty$, then (40) reduces to

$$\begin{aligned} \|L_{\alpha}(f)(x) - f(x)\| &\leq (1 + \min\{\epsilon_{\alpha}^{-1}, \epsilon_{\alpha}^{-2}\}) \\ &\times \omega\Big(f, 2\epsilon_{\alpha}\sqrt{\sum_{i=1}^{r} \frac{x_{i}(x_{i}+1)^{2}}{n_{\alpha,i}}}\Big), \end{aligned}$$

which generalizes the estimate given by Khan [11, Theorem 1]. Remark 7. We set

$$M(x) = \max\{p_i(x)(1+p_i(x))^2 : i = 1, 2, \dots, r\} \qquad (x \in X).$$

Then (40) yields the following estimate for all $f \in BC(X, E), x \in X$ and all $\alpha \in D$:

(41)
$$||L_{\alpha}(f)(x) - f(x)||$$

$$\leq \left(1 + \min\left\{\frac{4c(p,r)M(x)}{\epsilon_{\alpha}^{2}}, \frac{2\sqrt{c(p,r)}\sqrt{M(x)}}{\epsilon_{\alpha}}\right\}\right)\omega\left(f, \epsilon_{\alpha}\sqrt{\sum_{i=1}^{r}\frac{1}{n_{\alpha,i}}}\right),$$

which particularly reduces to

$$\|L_{\alpha}(f)(x) - f(x)\| \le \left(1 + \min\left\{\frac{4M(x)}{\epsilon_{\alpha}^{2}}, \frac{2\sqrt{M(x)}}{\epsilon_{\alpha}}\right\}\right) \omega\left(f, \epsilon_{\alpha}\sqrt{\sum_{i=1}^{r} \frac{1}{n_{\alpha,i}}}\right)$$

if $p = 2, \infty$. Remark 8. If

 $n_{\alpha,i} = n_{\alpha}$ $(\alpha \in D, i = 1, 2, \dots, r),$

where $\{n_{\alpha}\}_{\alpha \in D}$ is a net of natural numbers, then by (41) we obtain the following estimate for all $f \in BC(X, E), x \in X$ and all $\alpha \in D$:

 $(42) ||L_{\alpha}(f)(x) - f(x)||$

$$\leq \left(1 + \min\left\{4rc(p,r)M(x), \ 2\sqrt{rc(p,r)}\sqrt{M(x)}\right\}\right)\omega\left(f,\sqrt{\frac{1}{n_{\alpha}}}\right).$$

In particular, if $p = 2, \infty$, then (42) reduces to

$$\|L_{\alpha}(f)(x) - f(x)\| \le \left(1 + \min\left\{4rM(x), \ 2\sqrt{r}\sqrt{M(x)}\right\}\right)\omega\left(f, \sqrt{\frac{1}{n_{\alpha}}}\right).$$

References

- [1] F. Altomare and M. Campiti, Korovkin-Type Approximation Theory and its Applications, Walter de Gruyter, Berlin/New York, 1994.
- [2] G. A. Anastassiou and S. G. Gal, Approximation Theory, Birkhäuser, Boston/Basel/Berlin, 2000.
- [3] K. Balázs, Approximation by Bernstein type rational functions, Acta Math. Acad. Sci. Hungar., 26 (1975), 123-134.
- [4] K. Balázs and J. Szabados, Approximation by Bernstein type rational functions. II, Acta Math. Acad. Sci. Hungar., 40 (1982), 331-337.
- [5] G. Bleimann, P. L. Butzer and L. Hahn, A Bernstein-type operator approximating continuous functions on the semi-axis, Indag. Math., 42 (1980), 255-262.
- [6] K. Donner, Extension of Positive Operators and Korovkin Theorems, Lecture Notes in Math. 904, Springer-Verlag, Berlin/Heidelberg/New York, 1982.
- [7] B. Della Vecchia, Some properties of a rational operator of Bernsteintype, Progress in Approximation Theory (ed. by P. Nevai and A. Pinkus), 177-185, Academic Press, Inc., 1991.

- [8] R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin/Heidelderg/New York, 1993.
- [9] K. Donner, Extension of Positive Operators and Korovkin Theorems, Lecture Notes in Math., 904, Springer-Verlag, Berlin/Heidelberg/New York, 1982.
- [10] K. Keimel and W. Roth, Ordered Cones and Approximation, Lecture Notes in Math., 1517, Springer-Verlag, Berlin/Heidelberg/New York, 1992.
- [11] R. A. Khan, A note on a Bernstein-type operators of Bleimann, Butzer and Hahn, J. Approx. Theory, 53 (1988), 295-303.
- [12] P. P. Korovkin, *Linear Operators and Approximation Theory*, Hindustan Publ. Corp., Delhi, 1960.
- [13] G. G. Lorentz, Bernstein Polynomials, Univ. of Toronto Press, Toronto, 1953.
- [14] T. Nishishiraho, Approximation processes of integral operators in Banach spaces, J. Nonlinear and Convex Analysis, 4 (2003), 125-140.
- [15] T. Nishishiraho, The convergence of equi-uniform approximation processes of integral operators in Banach spaces, Ryukyu Math. J., 16 (2003), 79-111.
- [16] T. Nishishiraho, The degree of convergence of equi-uniform approximation processes of integral operators in Banach spaces, Proc. the 3rd Int. Conf. on Nonlinear Analysis and Convex Analysis (Tokyo, 2003), 401-412, Yokohama Publishers, 2004.
- [17] T. Nishishiraho, The degree of interpolation type approximation processes for vector-valued functions, Ryukyu Math. J., 17 (2004), 21-37.
- [18] T. Nishishiraho, Quantitative equi-uniform approximation processes of integral operators in Banach spaces, Taiwanese J. Math., 10 (2006), 441-465.
- [19] T. Nishishiraho, Convergence rates of equi-uniform approximation processes of integral operators in Banach spaces, to appear in Proc. the 2nd Int. Sympo. on Banach and Function Spaces.
- [20] V. Totik, Saturation for Bernstein-type rational functions, Acta Math. Hung., 43 (1984), 219-250.
- [21] V. Totik, Uniform approximation by Bernstein-type operators, Indag. Math., 46 (1984), 87-93.

Department of Mathematical Sciences Faculty of Science University of the Ryukyus Nishihara-cho, Okinawa 903-0213 JAPAN