琉球大学学術リポジトリ

(C_2H_5NH_3)_2[ZnBr_4]の結晶構造決定

メタデータ	言語:
	出版者: 琉球大学理学部
	公開日: 2008-03-25
	キーワード (Ja):
	キーワード (En):
	作成者: 堀内, 敬三, Horiuchi, Keizo
	メールアドレス:
	所属:
URL	http://hdl.handle.net/20.500.12000/5370

(C₂H₅NH₃)₂[ZnBr₄]の結晶構造決定

堀内敬三

琉球大学理学部海洋自然科学科

Crystal-structure determination of (C₂H₅NH₃)₂[ZnBr₄]

Keizo HORIUCHI

Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara-cho, Okinawa 903-0213

Abstract

The crystal structure of bis-ethylammonium tetrabromozincate $(C_2H_5NH_3)_2[ZnBr_4]$ was determined at room temperature to be orthorhombic with space group of $P2_12_22_1$ by the single-crystal x-ray diffraction method. Lattice constants are a = 7.696(1) Å, b = 10.426(3) Å, c = 17.757(9) Å, and Z = 4.

はじめに

Bis-*n*-alkylammonium tetrahalogenozincate $(n-C_{n}H_{2n+1}NH_{3})_{2}$ [ZnX_i] は β -K₂[SO_i] 型構造(斜 方晶系、空間群*Pnma*(D_{2n} ¹⁶))を持つ A_{2} [*MX*_i] 型化合物([*MX*_i]²⁻ は四面体錯イオン;*M*=Mn, Fe, Co, Ni, Cu, Zn, Cd, Hg; *X*= Cl, Br, I) に属している。この型のイオン結晶の多くが既に 詳しく研究されており、それらは逐次相転移を示したり、不整合相や強誘電相などに転移するもの も多い¹¹。表題化合物の(C₂H₅NH₃)₂[ZnBr_i] について、我々はこれまでに次のような知見を得て いる:⁵¹Brの核四極共鳴(nuclear quadrupole resonance, NQR) 周波数の温度変化測定から、 77 K以上では299.5±0.5 Kに一次の構造相転移がある²¹;示差走査熱量測定(differential scanning calorimetry, DSC)に基づいて、130 Kから融点477 Kの間では302±1 Kに一次の相転 移がある^{3,41}; 観測された転移エントロピーの値(23.0±1.5 J K⁻¹ mol⁻¹)から判断して、この 相転移は秩序無秩序型である^{3,41}。以上を総合すると、表題化合物は77 Kから融点477 Kの間では、 一つの構造相転移、転移温度はおよそ300 Kで秩序無秩序型の一次転移、を起こすことが分かった。 本研究では室温相の結晶構造の決定を行った。

前号の紀要でも指摘したように、X線構造解析において空間群の決定は重要な過程である⁵⁰。空 間群の決定は構造解析のスタートラインなので、これを誤れば、その後の解析でどんなに努力して 堀内敬三

も、誤った結果しか得られない。構造解析を成功させるためには、空間群の決定を正しく行うこと が必須なのである。空間群の決定は回折パターンに現れる消滅則に基づいて行うが、空間群が一つ には絞りきれず、複数の候補がある場合は、慎重な判断が求められる。このようなとき、問題にし ている結晶の対称性に関する情報が他の実験から得られていると、空間群の決定に役立つことが多 い。また、最小二乗法による構造の精密化はR因子の値の変化(減少するかどうか)を目安に行い、 一般にR値が収束するまで行う。最終的なR因子がより低い値になるに越したことはないが、低け ればよいというわけでもない。R因子はあくまでも目安であって、解析結果が正しいかどうかを保 証するものではない。R因子の値が低くなるということは、最小二乗という計算上では(つまり数 学的な見地に立てば)よいことではあるが、物理的には受け入れ難い結果になることもある。今回 の構造解析について、以上のような観点に主眼をおいて報告する。

実験

X線回折実験用の単結晶は、化学量論比のエチルアミンC₂H₅NH₂と臭化亜鉛ZnBr₂を臭化水素酸 HBrに溶かし、その溶液を五酸化二リンP₂O₅を入れたデシケータ中に置き、その中でゆっくりと溶 媒を蒸発させることにより得た。

単結晶X線回折はNonius CAD-4 回折装置を用いて、室温で測定した。これは4軸型の回折装置で、グラファイトで単色化されたMo Ka線(波長0.71073 Å)を使用した。反射データはLp補 正および吸収補正を行った。初期構造(初期位相)の決定は直接法で行い、構造の精密化は完全行 列最小二乗法で行った。これらの計算はVAX station 4000上でプログラムパッケージMolEN⁶⁾を 使って行った。さらに、プログラムパッケージSDPを用いたパソコン上での計算も行った。水素 原子の位置は決定しなかった。ZnとBrは非等方性温度因子で、CとNは等方性温度因子で精密化を 行った。結晶データ、測定条件、構造解析法を表1に示す⁷⁾。

結果と考察

1. 結晶データ

Laue群の判定はmmmで、斜方晶系 (orthorhombic) であることが分かった。予備測定の段階 でコンピュータが選んだ格子のa軸の長さは3.841(2) Åであったが、類似の結晶のデータと比較し て、a軸の長さを倍にとって本測定を行った。また、単位胞の中にある分子の数2を、浮遊法で決 定した⁸)。すなわち、結晶の密度D_mを測定することにより、次式から2を求めた。

 $Z=D_{\rm m}V N_{\rm A} /M$

ここで、単位胞の体積V、分子量M、Avogadro数 N_{Λ} である。(C₂H₃NH₃)₂[ZnBr₄]の場合、V = 1424.7 Å³、 D_{m} =2.25 g cm⁻³、M=477.19なので、

 $Z=2.25\times1424.7\times10^{-24}\times6.022\times10^{23}\div477.19=4.045343...$

となり、Z=4という値が得られた。

反射強度が弱いため、反射点は919個しか測定されなかった。しかも、そのうち反射強度が標準 偏差の3倍という条件を満足する反射は352個しかなかった。Shell1は37.9%が、shell2は76.3% が弱い反射で、shell3には進まなかった。実際に解析に使うことができた反射点の数は352で、パ

Chemical formula				
Formula weight				
Crystal system	Arr.13 Orthorhombia			
Space group				
Lattice constants a/λ	<i>F</i> 212121 7 606(1)			
Lattice constants u/A	10.496(1)			
0 / A	10.420(3)			
C/A	1494 7(9)			
Formula unit per cell	1424.((8)			
Dengity D (z cm ⁻³	4			
Density $D_x / g \mathrm{cm}^3$	2.225			
$D_{\rm m}$ /g cm $^{-1}$	2.25(3)			
Number of reflections for cell measurement	25			
θ range /	5-9			
Linear absorption coefficient / mm ⁻¹	12.861			
Crystal shape	plate			
Crystal color	colorless			
Crystal size / mm ³	$0.50 \times 0.47 \times 0.44$			
Data-collection method	ω -2 θ scans			
Abcomption connection turns	ampinical via the asama			
Absorption correction type	empirical via ψ scans			
Transmission factor	0.4608 – 0.9973			
Transmission factor Number of reflections measured	0.4608-0.9973 919			
Transmission factor Number of reflections measured Number of independent reflections	0.4608 – 0.9973 919 904			
Transmission factor Number of reflections measured Number of independent reflections Number of observed reflections	empirical via \$\$ scans 0.4608-0.9973 919 904 352			
Transmission factor Number of reflections measured Number of independent reflections Number of observed reflections Criterion for observed reflections	0.4608 - 0.9973 919 904 352 $I > 3.0 \sigma (I)$			
Transmission factor Number of reflections measured Number of independent reflections Number of observed reflections Criterion for observed reflections Maximum value of θ / °	0.4608 - 0.9973 919 904 352 $I > 3.0 \sigma$ (I) 20.97			
Transmission factor Number of reflections measured Number of independent reflections Number of observed reflections Criterion for observed reflections Maximum value of θ / ° <i>hkl</i> range	0.4608 - 0.9973 919 904 352 $I > 3.0 \sigma (I)$ 20.97 $h = 0 \sim 7$			
Transmission factor Number of reflections measured Number of independent reflections Number of observed reflections Criterion for observed reflections Maximum value of θ / ° <i>hkl</i> range	$\begin{array}{c} 0.4608 - 0.9973 \\ 0.4608 - 0.9973 \\ 919 \\ 904 \\ 352 \\ I > 3.0 \sigma (I) \\ 20.97 \\ h = 0 \sim 7 \\ h = 0 \sim 10 \end{array}$			
Transmission factor Number of reflections measured Number of independent reflections Number of observed reflections Criterion for observed reflections Maximum value of θ / ° <i>hkl</i> range	$\begin{array}{c} 0.4608 - 0.9973 \\ 0.4608 - 0.9973 \\ 919 \\ 904 \\ 352 \\ I > 3.0 \sigma (I) \\ 20.97 \\ h = 0 \sim 7 \\ h = 0 \sim 10 \\ l = 0 \sim 17 \end{array}$			
Transmission factor Number of reflections measured Number of independent reflections Number of observed reflections Criterion for observed reflections Maximum value of θ / ° <i>hkl</i> range	$\begin{array}{c} 0.4608 - 0.9973 \\ 919 \\ 904 \\ 352 \\ I > 3.0 \sigma (I) \\ 20.97 \\ h = 0 \sim 7 \\ k = 0 \sim 10 \\ l = 0 \sim 17 \\ 3 \end{array}$			
Transmission factor Number of reflections measured Number of independent reflections Number of observed reflections Criterion for observed reflections Maximum value of θ / ° <i>hkl</i> range Number of standard reflections Interval Frequency / min	$\begin{array}{c} 0.4608 - 0.9973 \\ 0.4608 - 0.9973 \\ 919 \\ 904 \\ 352 \\ I > 3.0 \sigma (I) \\ 20.97 \\ h = 0 \sim 7 \\ h = 0 \sim 10 \\ l = 0 \sim 17 \\ 3 \\ 120 \end{array}$			
Transmission factor Number of reflections measured Number of independent reflections Number of observed reflections Criterion for observed reflections Maximum value of θ / ° <i>hkl</i> range Number of standard reflections Interval Frequency / min Intensity decay / %	$\begin{array}{c} 0.4608 - 0.9973 \\ 919 \\ 904 \\ 352 \\ I > 3.0 \sigma (I) \\ 20.97 \\ h = 0 \sim 7 \\ h = 0 \sim 10 \\ l = 0 \sim 17 \\ 3 \\ 120 \\ < 9.46 \end{array}$			
Transmission factor Number of reflections measured Number of independent reflections Number of observed reflections Criterion for observed reflections Maximum value of θ / ° <i>hkl</i> range Number of standard reflections Interval Frequency / min Intensity decay / % R^{n}	$\begin{array}{c} 0.4608 - 0.9973 \\ 919 \\ 904 \\ 352 \\ I > 3.0 \sigma (I) \\ 20.97 \\ h = 0 \sim 7 \\ k = 0 \sim 10 \\ l = 0 \sim 17 \\ 3 \\ 120 \\ < 9.46 \\ 0.094 \end{array}$			
Transmission factor Number of reflections measured Number of independent reflections Number of observed reflections Criterion for observed reflections Maximum value of θ / ° <i>hkl</i> range Number of standard reflections Interval Frequency / min Intensity decay / % R^{n_i} wR^{n_i}	$\begin{array}{c} 0.4608 - 0.9973 \\ 919 \\ 904 \\ 352 \\ I > 3.0 \sigma (I) \\ 20.97 \\ h = 0 \sim 7 \\ h = 0 \sim 10 \\ l = 0 \sim 17 \\ 3 \\ 120 \\ < 9.46 \\ 0.094 \\ 0.101 \end{array}$			
Transmission factor Number of reflections measured Number of independent reflections Number of observed reflections Criterion for observed reflections Maximum value of θ / ° <i>hkl</i> range Number of standard reflections Interval Frequency / min Intensity decay / % R^{n_i} wR^{n_i} S	$\begin{array}{c} 0.4608 - 0.9973 \\ 919 \\ 904 \\ 352 \\ I > 3.0 \sigma (I) \\ 20.97 \\ h = 0 \sim 7 \\ h = 0 \sim 7 \\ h = 0 \sim 10 \\ l = 0 \sim 17 \\ 3 \\ 120 \\ < 9.46 \\ 0.094 \\ 0.101 \\ 3.763 \end{array}$			
Transmission factor Number of reflections measured Number of independent reflections Number of observed reflections Criterion for observed reflections Maximum value of θ / ° <i>hkl</i> range Number of standard reflections Interval Frequency / min Intensity decay / % R^{n_1} wR^{n_1} S Number of reflections used in refinement	$\begin{array}{c} 0.4608 - 0.9973 \\ 919 \\ 904 \\ 352 \\ I > 3.0 \sigma (I) \\ 20.97 \\ h = 0 \sim 7 \\ k = 0 \sim 10 \\ l = 0 \sim 17 \\ 3 \\ 120 \\ < 9.46 \\ 0.094 \\ 0.101 \\ 3.763 \\ 352 \end{array}$			
Transmission factor Number of reflections measured Number of independent reflections Number of observed reflections Criterion for observed reflections Maximum value of θ / ° <i>hkl</i> range Number of standard reflections Interval Frequency / min Intensity decay / % R^{n} wR^{n} S Number of reflections used in refinement Number of parameters	$\begin{array}{c} 0.4608 - 0.9973 \\ 919 \\ 904 \\ 352 \\ I > 3.0 \sigma (I) \\ 20.97 \\ h = 0 \sim 7 \\ k = 0 \sim 10 \\ l = 0 \sim 17 \\ 3 \\ 120 \\ < 9.46 \\ 0.094 \\ 0.101 \\ 3.763 \\ 352 \\ 71 \end{array}$			

表1 結晶データ、測定条件および構造解析法

a) refinement on F

堀内敬三

ラメータの数は71なので、データ数としては不足であった。文献によると、最小二乗法を使って構造の精密化を行うとき、最小二乗法が順調に機能するための一応の基準は、パラメータ数の10倍以上のデータ数があることである⁹¹。ただし、このことが今回の解析結果に実際に及ぼした影響については明らかではない。このように反射強度が弱い原因は、一つには測定温度(約295 K)が相転移温度(300 K)に近いため、ゆらぎの影響などを受けたためではないかと考えられる。また、結晶の大きさが少し大きすぎたことも影響しているかもしれない。しかし、一番の要因は試料の結晶性であろう。試料の合成は4回行ったが、うち2回は細かくて薄い単結晶ができてしまった。残りの2回は比較的厚みがあり大きな単結晶が得られたので、それを用いて実験を行った。X線の測定は全部で7回行ったが、今回のデータは1回目に測定したものである。そのデータの質があまり良くなかったので、その後何度か合成し、測定を繰り返したが、結局、最初に測定したデータが一番良いデータであるという結果に終わった。試料は吸湿性でもろく、いかにも結晶性が悪いように見えた。

2. 空間群の決定

反射強度の結果を表2に示す。これを見ると、h00、0k0、00l、h0l(h+l)、hk0(k)、hk0(h)、 hk0(h+k)に消滅則があるように見える。しかし、これらを全て満足するような空間群はない。 結局、コンピュータは消滅則無しと判断して、消滅則の無い空間群を三つ候補としてあげている。 しかし、これらはどれも出現確率の低いものばかりである。そこで、我々はこれらの中でもhku (h)、hk0(h+k) 反射はその他のものと比較して相対的に強度が強いので、これらの反射を除い たものについては消滅則があると考えて、空間群Pmnb(Danⁱⁿ、No.62)を選んだ(PmnbとPnma は軸の取り方が異なっているだけで、同じ空間群である)。この空間群は、上述したように、β-K₂[SO:]構造の空間群であり、A₂[MX]]型化合物で多く観測される空間群である。(ちなみにPmnb の場合、反射強度が標準偏差の3倍という条件を満足する反射は311個でパラメータの数は50個で ある。表1に掲載されている値は後述する空間群P2,2,2,の場合である。)空間群Pmnbの場合、単 位胞中の一般等価位置の数は8で、Z=4なので、分子イオンが特殊位置にいることが分かる³'。 特殊位置のsite symmetryがm(鏡面)の場合、等価な位置の数は4になるので、単位胞中にある 結晶学的に非等価なカチオンは二つで、アニオンは一つである。ZnBr₁およびC₂H₂NH₃という分子 は鏡面という対称要素を持ちうる。こういう場合、特殊位置にある原子の座標を固定して解析を行 う。 $ZnBr_{1}$ の場合、Znと二つのBrのx座標を固定する(鏡面がa軸に垂直にあるので)。しかし、 C2H3NH3については、鏡面上に炭素原子を固定するとR値が下がらないので、窒素だけを鏡面上に 固定して解析を行った。したがって、炭素原子は鏡面を挟んだ二つのsiteにdisorderする事になっ た。この空間群で構造解析をした結果、最終的にR値は0.098まで下がった。得られた結合距離と 結合角の値を表3に示す。カチオンの結合距離と結合角が異常な値になっているのは、この分子が 鏡面上にあるという条件下で解析した結果、炭素の位置がdisorderしたことが影響していると思わ れる。(通常C-CおよびN-C結合距離はそれぞれ1.54、1.47 A 程度であり¹⁰、C-C-CあるいはN-C-C の結合角は四面体角109.47°に近い値になるはずである。)この空間群では単位胞中に非等価なアニ オンは一つしかなく、また、アニオンは鏡面上にあるので(正確には亜鉛元素と二つの臭素元素が 鏡面上にあるので)、単位胞中の非等価な臭素元素の数は三つである。しかし、以前に我々が行っ た**Br NQR周波数の測定では信号が四つ観測されているので**、単位胞中に存在する非等価な臭

72

表 2	反射	确度	の表
ar	~ ~ ~ ~ ~	الرابلان	

group	condition:		true				fa	lse		
		nref	weak	<i></i>	<s(l)></s(l)>	nref	weak	<i></i>	<s(i)></s(i)>	•
*h00	*total	6	3	3305	41					
	h=2n	3	0	6596	54		3	3	14	28
*0k0	*total	9	4	694	30					
	k=2n	5	1	1241	35		4	3	10	23
*001	*total	15	9	2902	32					
	l=2n	7	2	6203	45		8	7	13	20
*0kl	*total	157	74	591	25					
	k=2n	83	41	740	26	1	74	33	425	24
	l=2n	79	33	900	27	1	78	41	279	23
	k+l=2n	79	36	908	26		78	38	271	24
*h0l	*total	117	75	854	30					
	h=2n	61	39	1311	32	ł	56	36	357	- 28
	l=2n	58	37	1374	33	ł	59	38	344	27
	h+l=2n	58	17	1717	32	E	59	58	7	28
*hk0	*total	69	48	519	27					
	h=2n	36	18	972	29	c c	33	30	24	26
	k=2n	37	17	959	28	Ę	32	31	9	27
	h+k=2n	36	19	971	30	ę	33	29	25	24
*hkl	*total	919	565	290	26					
	k+l=2n	461	293	351	27	45	58 2	72	229	26
	h+l=2n	460	247	435	27	45	59 3	818	145	26
	h+k=2n	462	275	344	27	45	57 2	90	236	26
	h+k+l=2r	u 462	250	398	27	48	57 3	815	182	26
Wi	thin the g	iven monocl	inic cry	vstal s	ystem the	e possib	le spa	ce gro	oup(s)	are:
settir	ng sig isg	inc cen	space	gr ax	is choice	full s	ymbol		percent	age
a b	c 1 16	4 0	P222	2	0	P 2 2	2 2		0.000)
a b	c 1 25	4 0	Pmr	n2	0	Ρm	m 2		0.000)
a b	c 1 47	4 1	Pmr	nm	0	P 2/1	n 2/m	2/m	0.00)

素原子の数は四つのはずである。したがって、このPmnbという空間群は間違っている可能性が高いと思われる。

そこで、次にh00、0k0、00l反射に消滅則があると見なして、空間群P2₁2₁2₁ (D₂⁴、No.19)を選 んだ。この空間群はこの系ではあまり観測されていないが、出現確率の高い空間群である⁹⁰。この 空間群の場合、単位胞中の一般等価位置は四つあり、Z=4なので、単位胞中には結晶学的に非等 価なカチオンは二つでアニオンは一つである。また、この場合は非等価な臭素原子が四つあるので、 堀内敬三

NQRの結果とも一致する。この空間群で構造解析をした結果、R値は最終的に0.104まで下がった。 この値はPmnbの場合よりも良くなかった。しかし、NQRの結果から判断して、P2,2,2,の空間群 が正しい結果であると思われる。(表3を見ると、結合距離や結合角の値もP2,2,2,の方がPmnbよ り改善されていることが分かる。)このように、正しい空間群であっても間違った空間群よりもR 値が大きくなることがあるのである。

次にSDPを使ってP2,2,2,で解析してみた。その結果、最終的なR因子の値は0.094まで下がった。 0.104の場合と、結合距離、結合角を比較すると、0.094場合の結果はより理にかなった値になって いる。SDPで計算した結果R値が下がったことは、最小二乗法の計算の収束は必ずしも極小値に収 束するとは限らず、その付近の別の極値に収束することがあるので、パラメータの初期値や計算の 仕方が変わると、Rの収束値が異なることがあり得る、ということを示している。また、このよう な収束値の大きな違いに対して、データ数がパラメータ数から考えて少ないということが影響して いるかもしれない。しかし、今回のR値の違いはSDPがMolENより優れているということを示唆 するものではない。今度は最終的なR値がP2,2,2,の方(0.094)がPmnbの場合(0.098)より低く なったわけであるが、最小二乗計算に使ったパラメータ数を比較すると、前者は71、後者は50なの で、数学的にいって前者のR値が後者のそれより低くなって当然である。従って、このことのみか ら、P2,2,2,0の空間群が正しいとは言い切れない。

R因子の値が0.1に近いという結果は、あまり良い結果とは言えない。しかし、これは解析の仕 方が悪いのではなくて、データの質の悪いことが原因であると思われる。もう少し強度の強い反射

<i>R</i> 值	0.098	0.104	0.094	0.092	0.085
	(MolEN)	(MolEN)	(SDP)	(SDP)	(SDP)
距離(Å)					
Zn-Br1	2.373(7)	2.38(2)	2.38(3)	2.38(3)	2.37(3)
Zn-Br2	2.36(1)	2.37 (2)	2.37(1)	2.37(1)	2.38(1)
Zn-Br3	2.39(1)	2.38(1)	2.39(1)	2.39(1)	2.39(1)
Zn-Br4	2.39(1)	2.40(1)	2.39(3)	2.40(3)	2.41 (3)
N1-C11	1.68(9)	1.66(9)	1.4(1)	1.5(1)	1.6(1)
C11-C12	1.4(1)	1.4(1)	1.4(1)	1.4(1)	0.9(1)
N2-C21	1.7(2)	1.4(1)	1.4(2)	1.3(2)	1.2(1)
C21-C22	0.9(2)	1.5(1)	1.5(2)	1.3(2)	1.2(1)
結合角(degree)					
Br1-Zn-Br2	111.1 (3)	108.8 (5)	109(1)	109(1)	110(1)
Br1-Zn-Br3	107.8(3)	109(1)	109(1)	109(1)	107(1)
Br1-Zn-Br4	108.4(4)	105(1)	107.4(6)	107.5(6)	108.0(5)
Br2-Zn-Br3	110.4(4)	113(1)	107.4(6)	110.7 (5)	107.5(6)
Br2-Zn-Br4	111.4 (3)	109(1)	114(1)	114(1)	114(1)
Br3-Zn-Br4	107.6(3)	110.5(4)	107(1)	106(1)	107(1)
N1-C11-C12	98(5)	101 (6)	114 (8)	111 (8)	127 (10)
N2-C21-C22	159 (27)	116 (8)	119(13)	135 (26)	167 (31)

表3. 結合距離と結合角

74

が得られれば、R因子ももう少し良い値になったと思われる。そして、反射強度が弱かったのは、 結晶の質が悪いことに主たる原因があると思われるが、相転移点近傍で測定したことも原因の一つ ではないかと思われる。後者の原因については温度を下げて測定してみれば、はっきりするであろ う。

3. R因子による判定

SDPを使ってP2₁2₁2₁で解析しているとき、実はR値は0.094では収束せず、それよりも下がって 0.092になった。Rの値があまり良くなかったので、少しでも下がったことは大変うれしかったの だが、解析結果を見てがっかりした。結合距離と結合角の値を表3に示す。0.094の場合と比較し て、アニオンの値はあまり変わりないが、亜鉛や臭素と比較して電子数の少ない炭素や窒素から成 るカチオンの値は少し変化しており、特にN2カチオンはエチルアンモニウムイオンの結合距離、 結合角としては少し異常な数値である。したがって、0.094と0.092の場合の結合距離、結合角を比 較すると、0.094の結果の方がより正しいと思われる。

その後このデータを別の学生に練習として解析させてみると、Rの値は、なんと0.085まで下がった。しかしその結果は表3に示すように、カチオンはとんでもない値になっていた。これらの結果は以下のことを示していると考えられる。上述したように、最小二乗法の計算の収束は必ずしも極小値に収束するとは限らず、その付近の別の極値に収束することがあるので、パラメータの初期値や計算の仕方が変わると、Rの収束値が異なることがあり得る。そして、数学上より理論式に近いパラメータが得られたとしても、物理的観点からそのような結果が受け入れ難い場合があり得る。

謝辞

論文を査読して下さった物質地球科学科物理系の深水孝則助教授に感謝します。

参考文献

- 1) R. Blinc and A. P. Levanyuk (ed), Incommensurate Phases and Dielectrics, Amsterdam: North-Holland (1986).
- 2) K. Horiuchi and Al. Weiss, J. Mol. Struc., 345, 97 (1995).
- 3) K. Horiuchi, J. Phys. Soc. Japan, 63, 363 (1994).
- 4) Y. Sakiyama, K. Horiuchi, and R. Ikeda, J. Phys.: Condens. Matter, 8, 5345 (1996).
- 5) 堀内敬三, 琉球大学理学部紀要, 81, 105 (2006).
- C. K. Fair, *MolEN*. An Interactive Intelligent System for Crystal Structure Analysis (Enraf-Nonius, Delft, 1990).
- K. Horiuchi, C. Iijima, S. Miyagi, H. Yogi, T. Fukami, and R. Ikeda, Bull. Chem. Soc. Jpn., 77, 2199 (2004).
- 8) 角戸・笹田・笠井・芦田 著、X線結晶解析、東京化学同人(1978).
- 9) 日本化学会 編、第4版 実験化学講座10回折、丸善(1992).
- 10) 日本化学会 編、改訂4版 化学便覧、丸善(1993).