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Liquidus and Gaseous Line in Phase Diagram

Tatsuhiro YOGI* and Minoru YAGA*

Abstract

This paper describes that negative pair-interaction energy averaged over all particles and its density
dependence gives van der Waals’ equation of state through mean-field modeling and that liquidus and
gaseous line for vapor-liquid phase are rigorously calculated from the equation of state, so that latent heat
of vaporization and vapor pressure are obtained. Phase diagram is constructed from these lines and it is
shown that the critical temperature depends not only on the size of molecule and the averaged magnitude
of interaction energy but also on the mass of molecule. As a property of such system Kamerlingh-Onnes’

constant is obtained.

Key Words: liquidus and gaseous line, phase diagram, critical temperature, latent heat, vapor pressure,
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1. Introduction

The phase transition problems have been always at-
tracted physicist and chemists in fundamental and in-
dustrial application field both from the practical view
point of seeking for useful theory of properties of mat-
ter and from the further understanding the discontinu-
ities associated with phase transitions in thermodynamic
functions. So it is useful to describe some typical works
for phase transition briefly. Mayer’s work has been well
known in the field of the theory of condensation of gases
(1)~[5], however Lee and Yapg have shown the inade-
quacy of Mayer's method for dealing with a condensed
phase [6]~(7]. They have also shown that an example of
two-dimentional lattice regions in p- V diagram is exactly
calculated. Hill has treated the question of whether or
not "loop” should be expected in y — N/V or p— N/V
curve for an exact theory of first-order phase transition
using canonical ensemble [8]. A careful argument has
been described by Van Hove showing that no loop is ob-
tained from complete evaluation of canonical ensemble
partition function of fluid [9]. The phase transition is
to be characterized by the fact that the partition func-
tion of finite system suffers a sudden change at some
value of parameters. Katsura has calculated the parti-
tion function of the system which has finite number of
lattice points as its volume and described the possibility
of cooperative phenomena even in pretty small system-
s [10]~[11]. Many description on the lattice gas model
have been shown in textbooks [12]~[15]. The Percus-
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Yevick equation of state for the Lennard-Jones 6-12 po-
tential derived not only from the compressibility for sev-
eral isotherms but also from the pressure equation is not
in agreement with experimental data. Particularly in co-
existent state of liquid and vapor this equation has no-
solution of experimental flat region[18]. Liquidus and
gaseous lines are conventionally understood by the ex-
istence of double local minimum of Gibbs energy in a
given system. The previous work of such problems for
matter have not given satisfactory explanation for re-
sults of experiments. The occurrence of the discontiniu-
ties associated with phase transitions will be further un-
derstood by the more correct liquidus and gaseous line.
This leads us much intensive study for existence of lig-
uidus and gaseous line, so that we can construct phase
diagram not only with coexistent state but also with sep-
arate phases of vapor and liquid. Therefore this paper
will be concerned with two curves representing liquidus
and gaseous line below critical temperature. We have
studied the first-order phase transition for simple matter
by using canonical emsemble with mean-field approach,
which is quite simple and fairly practical and indeed show
the existence of two separate phases and coexistent state
of both liquid and vapor. If we neglect the interaction
between particles both in liquid and vapor phases, the
partition function with the mean field approximation is
available to obtain the distribution of interaction ener-
gy par particle and the linear dependence of the energy
on density in each phase by MD computer simulation.
The contribution of mean-field theory to the distribu-
tion and density-dependence of interaction energy par
particle is acceptable over a wide temperature range for
many substance. The canonical partition function in the
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present paper gives van der Waals’ equation of state in
each phase. We suppose that thermal and mechanical
equilibrium are established in the system(ie., T} = Ty
and p; = pg), therefore liquidus and gaseous lines are de-
rived from the equation of state only without Maxwell’s
equiareal rule and the vapor pressure are obtained for
several simple substance at any given temperature. We
show that above two lines separate the parts of liquid,
vapor and coexistent state in phase diagram and exam-
ine the thermodynamic properties of such system. The
present paper shows that Maxwell’s equiareal rule based
on these lines is satisfied near critical temperature. Our
theory provides that the isotherms stay flat in coexis-
tent state between liquidus and gaseos line and that the
isotherms is a function only of temperature. These fea-
ture is quite different from Mayer’s theory and Lee and
Yang’s theory. The characteristic feature of liquidus and
gaseous line experimentally determined are well repro-
duced by the theory. Thermodynamic properties such
as latent heat of vaporization are satisfactory in the re-
gion between liquidus and gaseous line. It sholud be
emphasized that the purpose of this paper is to derive
liquidus and gaseous line in vapor-liquid coexistent state
and to derive thermodynamic properties of such system
through mean-field approach. we will show the solution
for the discrepancy for molecular size between van der
Waals and quantum mechanics. In section 2, we intro-
duce practical method for liquidus and gaeous line and
construct phase diagram for simple matter. We analyze
and discuss the usefulness of this method for results in
section 3. The conclusion is described in section 4.

2. Theoretical Frame

We consider one component closed system and assume
that one particle interacts with other particles with at-
tractive potential function. Let NV and V be the number
of particles and volume in system with the restriction of
N(const.) and V(variable). We can write the canonical
ensemble partition function as follows;

N N
1
Q= [T [ [[an @)
: i=1 i=1

where

N pi? .
K=3om 2)
and
N N
U=3"> ¢ (3)
i=1 j>i

Since the interaction between particles exists in single
phase above equation(1) can not be analytically calcu-
lated except some simple cases. Therefore we should

expect the problem to represent somewhat less serious
mathematical difficulties than rigorous way. We calcu-
late an averaged interaction energy a particle around all
other particles by computer simulation(MD), so we ob-
tain the concentration-dependence of energy in each of
liquid and vapor phases. We investigate the subject that
an averaged interaction energy is of attractive type, so
we suppose that the interaction potential is of Lennard-
Jones type as typical one of attractive force. We consider
a monoatomic gas or liquid with the interaction

U =4e(()" = (=)°) (4)

Tij Tij

where r;; is the distance between the i-th and j-th atoms
in a phase and o the diameter of atoms and € a cou-
pling constant( the magnitude of interaction), in detail,
4¢ =.320kp and o = 3.56A4 for Ar. The value of ¢ is
different from that used in Rahman[16]. All sampling
for statistics was averaged over the next 10000 steps af-
ter the initial 4000 steps calculation for equilibrium with
dt* = 0.0064 as a scaled time step). The usual periodic
boundary condition, in which the simulated box is sur-
rounded by images of itself, is applied and we used Nose’s
method to controle the temperature of a system[20],[21].
Let ¢ be the averaged energy a particle. In the most
probable state for energy obtained by MD simulation,
the representative particles is thought of as moving in
some averaged potential due to all the other particles in
the system, we thus approximate the energy function in
phase as follows;

N N,
Y ) by~ N (5)

i=1 >4
.= N(-l|elp+ o)), (6)

where |¢| is an averaged interaction energy a particle and
p is density of phases(see fig.1).

It is shown from eqgs.(5) and(6) that the averaged in-
teraction energy is of attractive type. ¢ is commonly
written by a linear function only of density over liquid
and vapor phases. Each molecule is assumed to be free
to move in the volume V-Nuvy(vp is 2 molecular volume),
therefore we obtain the canonical partition function as
follows;

Q= g GV EW - Nu)¥eos, (1)
where 8 = (kgT)~ " and kg is Boltzmann constant. The
theory can be easily generalized to diatomic gas or liquid;
the rotational and vibrational energy are easily calculat-
ed in canonical partition function, however, these energy
terms are disappeared by the settlement of the condi-
tions of 73 = T» and p; = py, which must be satisfied
in an equilibrium state. The result shows the linear de-
pendence of energy on density and the attractive type of
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Fig. 1. The density dependence and attractive type of energy
for Ar over a wide temperature range. Other substance shows

the same as the linear dependence of energy on density and
attractive type.

interaction, therefore we progress to calculate the canon-
ical partition function for system dealing with the inter-
action energy by the mean field theory. The problem of
seeking the liquid and vapor curves is to find the solu-
tion which satisfy 77 = T3 and p; = ps in the coexistent
state. The state equation for phases are

an@
= —kT—— %

N
= Ko +BGD  ©®
o el 2} ©)

where b = B|e|m and c is number density of phase N/V.
Above eqns.(8) and (9) are indeed van der Waals’ equa-
tion of state, so we derive the critical temperature from
the local maximum and minimum value(denoted by as-
terisk).

4 = -cIZ), (10)
g = 31(1-cos<”+9)), (1)
G = o(1+cos(3)), (12)

where tan 8 = 6/3D/(27 — D), D = 8b/vy—27. If 6 =0
at a temperature in egs.(10) and (11), then ¢} and ¢
coincide with each other, therefore we obtain the well
known relation for critical temperature

_ 8lejm
T 2Tvokp

(13)

It is remarked that the critical temperature depends not
only on vy and |¢| but also on the mass of molecule.
We define the number density ¢; = N/V; in vapor and

2.5
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i
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Fig. 2. Liquidus and gaseous line Ne, Ar and Kr, when use the re-
lation d/b. = 1/3, which is independent of the molecular size.
These are not quantitatively but qualitatively in good agree-
ment with experimental data. Ne: dashed and solid lines: cal-
culation, O and X: experiments. Ar: dash-dooted and dashed
lines: calculation, x and A: experiments. Kr: dotted lines:
calculation, ¢ and +: experiments.

¢2 = N/V, in liquid phases, respectively. The liquidus
and gaseous line is obtained at 7} = T, and p, = po, if
the following relations is satisfied

1

Tef’u—g‘ —bey = deg, (14)
and 1

- - = 15

1-— Cato bCZ dcl) ( )

where the constant d is determined by experiments as
shown in later. Therefore we have

alT) = 5= (- 9Q) (16)
and 1

c(T) = 2—”0(f+gQ), (17)
where f = 1 —-4d/b, g = 1 +d/b and Q =

v/1—4(vo/b)/(g%f). This means that Maxwell's equal-

areal rule is not necessarily required to determine the va-

por and liquid lines in a coexistent state(see figs.2 ~ 5).
The vapor pressure in coexistent state is written

p(T) = gcl (T)ex(T), (18)

where p is a function only of temperature(see fig.6).
The rectilinear diameter rule is given by

pr+p2 = mc+e)
m
= = 1
w! (19)

and the so-called order parameter is

m
p2—p1=—gQ (20)
Vo
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Fig. 3. Liquidus and gaseous line for N3, O and CO3, when use
the relation d/b. = 1/3, which is independent of the molecu-
lar size. As shown in fig.(2), these are not quantitatively but
qualitatively in good agreement with experimental data. Nj:
dashed and solid lines: calculation, O and x: experiments. Oa:
dash-dotted and dashed lines: calculation, x and A: experi-
ments. COjz: dotted lines: calculation, ¢ and +: experiments.

where p; and p; are density of vapor and liquid state,
respectively. Ising models of lattice gas have generally
shown the relation of p; + p2 = const. (7], but the theory
shows that eq.(19) is a function only of temperature.
Our method will give a good qualitative behavior as an
approximate theory. The latent heat of vaporization is
given by Clausius-Clapeyron’s equation

@9 _ L
dT ~ T(V,— Vi)
L v, p
73 (7) ok (21)

Equation (21) yields the latent heat L(T') after using
p(T) and dp/dT in eq.(18)(see figs.7 and 8).

This is not in good agreement with the experiments,
however, if eq.(21} is connected to the empirical equation
for vapor pressure [17], the good agreement is obtained
as follows:

d
@ _ 5,4TC‘;—€ (empirical formula), (22)
then
5.4gQ Vo,
L= — . 23
Be (d) (23)

Above latent heat of vaporization is shown as fig.9. The
well known experimental fact that c¢;(T.) = c2(T.) and
L(T.) = 0 requires Q to vanishes at a critical tempera-
ture. so we obtain the value d

m 2pcvg PcV0 o
d= 1- 1-
(1= 2y Py,

where vg is a molecular volume. Van der Waals’ equa-
tion of state conventionally yields the critical volume

25
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Fig. 4. Liquidus and gaseous line for Ne, Ar and Kr, when use
use eq.(24) as d/bc. A good agreement with experiment is
better than that of fig.(2) quantitatively. Ne: dashed and solid
lines: calculation, O and X: experiments. Ar: dash-dotted and
dashed lines: calculation, X and A: experiments. Kr: dotted
lines: calculation, ¢ and +: experiments.

Ve = 3vp. If one uses the relation p. = m/(3vg), then
d = 9up/8 but the value of vp will not give correct molec-
ular size, in this case thermodynamic properties are not
in good agreement with experiments(e.g. latent heat of
vaporization or vapor pressure). This discrepancy can be
solved by 2p. = m(1 —d/b.) /vy, if one fits the value of vo
with a true value, then the value of d/b, is determined
at a critical temperature, so that the curves of ¢;(T") and
c2(T), L(T") and p(T) are in good agreement with each
experiment. Thus we will give a role of fitting parameter
to the volume of molecule vg. This is the advantage of
our theory. The value of vy is not necessarily determined
only within the frame of thermodynamics. We examine
the Maxwell’s equiareal rule as an integral of p(T) over
the range of V| and V; at a temperature written by
‘/9 vy
pdV = p(T) dv (25)
v Vi |
This rule is usually used to determine the vapor pressure
» Vi and V; at a desired temperature and holds on near
the critical temperature, however, the coincidence of two
values is not good in the low temperature near triple
point when using d = 9vy/8. On the other hand, this
rule holds on well in our theory, if an appropriate value
of vg is employed. (see figs.10 ~ 12).
Kamerlingh Onnes’ constant is given by

Ky = pVep., (26)
- f2
- 26% ? (27)

where e; = 1 — p.vp/m and e3 = 2e; — 1. This is in
good agreement with experimental value, for example,
eq.(26) gives K, = 0.3412 at r = 2.200A and K,,, =

Al
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Fig. 5. Liquidus and gaseous line for N2, Oz and CO32, when
use eq.(24) as d/b., which is dependent on a molecular size.
As shown in fig.(4), these are qualitatively in good agreement
with experimental data. Nj3: dashed and solid lines: calcu-
lation, O and X: experiments. Oj: dash-dotted and dashed
lines: calculation, x and A: experiments. CO3: dotted lines:
calculation, ¢ and +: experiments.
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Fig. 6. The vapor pressure curves of Ar. (a) Experiments. (b)
when use eq.(24) with r=2.105 A. (c) when use d/b. = 1/3.

When use r=2.105 A in eq.(24), the agreement is better than

that of d/b. = 1/3.

0.2548 at r = 2.300A with eq.(24) for Ar, on the other
hand, if one employs the relation of d = 9uy/8, then
K, = 0.375. Equation(26) also gives fairly good value
for another substance and we conjecture that the interval
of K, and pcvp/m are 0 < Ky, < 0.5 and 0 < pcvg/m <
0.5, respectively.

We can construct the isotherms in pvT diagram from
eqs.(8),(9) and (18)(see fig.13).

3. Result and Discussion

Negative pair-interaction energy averaged over all par-
ticles and its density dependence gives van der Waals’
equation of state and that liquidus and gaseous line for

250

200

1501

Latent heal (J/g)

60 80 100 120 1:10 160

Temp.(K)
Fig. 7. The latent heat of vaporization of N2, Oz and Ar, when use
d/b. = 1/3. Dashed and solid lines:calcualtion from eq.(21).
Bold lines: drawn from eq.(23). A,x and x : experiments.
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Fig. 8. The molecular-size dependence of latent heat for N2, O2
and Ar drawn by egs.(21) and (24). Dashed and solid lines:
r=2.130 A for Ar, r=2.270 A for N2 and r=2.140 A for Oz. The
peculiar behavior, appears in low temperature region, which
intends to diverge. Bold lines: r=2.105 A for Ar, r=2.222 A
for N2 and r=2.092 A for Oz3.

vapor-liquid phase are rigorously calculated from the e-
quation of state. We found the existence of two phas-
es of liquid and vapor and coexistent state through the
canonical partition function with mean-field approach.
The vapor, liquid and flat region phases are continuous-
ly connected in phase diagram, thus we can identify the
pvT diagram. The Percus-Yevick equation of state for
the Lennard-Jones 6-12 potential derived not only from
the compressibility for several isotherms but also from
the pressure function is not in agreement with experi-
mental data. Particularly in coexistent state of liquid
and vapor this equation has no solution of experimen-
tal flat region(18],[19]. Thermodynamic properties given
by eq.(21) are less satisfactory in the latent heat of va-
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Fig. 9. The latent heat of vaporization of N2, Oz and Ar drawn
by egs.(23) and (24). r=2.105 A for Ar, r=2.222 A for Ng
and r=2.092 A for Oz, o,+ and x:experiments. Bold lines:
drawn from eq.{23). These curves are in good agreement with
experiments.

T{K)

Fig. 10. The Maxwell’s equiareal rule in eq.(25) with d/b. = 1/3,
apart from the factor 8. This rule holds on near the critical
temperature well, however this rule does not hold on in low
temperature region. The curves denoted by asterisk means
the left-hand side of eq.(25) and the other the right-hand side
of eq.(25).

porization, which is smaller than the value calculated by
empirical formula, however this results from the second
law of thermodynamics. If the value of vy is conven-
tionally employed by p. = m/(3vg) in van der Waals’
equation of state, then one obtains d/b. = 1/3. Howev-
er this value does not coincide with the value obtained
from the relation d/b. = 1 — 2p.v9/m with appropriate
value of vg. The peculiar behavior in the latent heat of
vaporization and Maxwell’s equiareal rule disappear in
the low temperature near triple point, if the appropriate
value of vy is employed(see figs.9 and 11). The appropri-
ate value of density along liquid and gaseous line should

1
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ol %9 . .
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Fig. 11. The Maxwell’s equiareal rule with eq.(24) and in eq.(25),
apart from the factor 8. This rule is satisfied in Ne, N2, CO,
Ar, Kr and CO3 well, whenr=2.126 A(Ar), 1.755 A(Ne), 2.282
A{Kr), 2.295 A(CO), 2.302 A(CQ3) and 2.258 A(Nz), respec-
tively. If the suitable value of vp is employed, then a good
agreement with experiments is obtained. Other substances
shows good agreement with respective experiments, when the
adequate values of vp are used.

be required for good agreement with experimental data
precisely examined as shown in fig.8.

4. Conclusion

The computer simulation shows the attractive interac-
tion as averaged energy over all particles and the density-
dependence of pair-interaction energy in each phase. We
showed alternative method deriving the equation of s-
tate both of liquid and vapor phases through mean field
modeling with attractive type force. There have been
some attempts with models, as seen in previous section,
our theory will be a simple and one of the practical ap-
proximation methods. The liquidus and gaseous line in
phase diagram are derived and is in good agreement with
experimental data for several simple substance. We can
identify the liquid, vapor and transition regions in the
pvT diagram and the isotherms thus obtained are flat
in the transition region and rise very rapidly with de-
creasing volume in the liquid phase. The vapor pres-
sure is calculated and is somewhat higher than exper-
imental value for simple substance in higher tempera-
ture, however in low temperature the pressure is fairly
in good agreement with experiment for vapor pressure.
It should be remarked that a critical temperature is con-
cerned with structure of molecule, mass of molecule and
the averaged magnitude of interaction energy a particle
in the phase. The latent heat of vaporization obtained
in eq.(21) is compared with experimental value and the
agreement with experiment is not good (about half of
experimental data), The heat of vaporization of eq.(23)
is in good agreement with experimant. The discrepancy
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Fig. 12. The Maxwell’s equiareal rule for Oz in eq.(24) and (25),
apart from the factor 8. These curves do not satisfied the rule,
even when r=2.129 A. This rule is fulfilled near the critical
temperature, however does not hold on in low temperature.
solid line: the left-hand side of eq.(25). ¢: the right-hand side
of eq.(25).

V {cm 3/mole) .

Fig. 13. The isotherms for Ar in pvT diagrams. One can iden-
tify the flat region of coexistence of vapor and liquid. Other
substance reveals the same behavior as Ar.

between our results and experiments(or empirical for-
mula) will indicate not to results from neglecting the in-
teraction between particles in both phases but to result
from the second law of thermodynamics. The thermody-
namic properties are shown to be sensitive to the molec-
ular size in this paper; if the equation p. = m/(3vg) is
used to determine the volume of molecule, this value does
not coincide with other theory (e.g., quantum mechanics
etc.), on the other hand, our theory has an advantage
that one can employ correct values of critical density
and molecular size in eq.(28). Liquidus and gaseous line,
the latent heat of vaporization and Maxwell’s equiareal
rule should be satisfied by using suitable values of g,
therefore we will have to reexamine these thermodynam-

ic values. Although our theory should be restricted to
a system whose potential is of attractive type through
the mean-field theory, by comparison of our results with
experimental data, we conclude that such mean-field ap-
proach work more satisfactorily than those of previous
work [1]~[3],[6]~[8],[10],[18]. If the interaction between
particles is of repulsive type as shown in egs.(5) and (6),
we will predict the negative critical temperature from
eq.(13). This remarkable result corresponds to the sit-
uation of ferromagnetism with Curie temperature and
antiferromagnetism with Neel temperature in the second
order phase transition of magnetism. Therefore we will
show the classification of phase transition by whether the
interaction between particles in fluid system is attractive

or repulsive.
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