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Perfectly Matched Layers for Water Wave Absorbing Boundaries

in Infinite Domain Problems

Shigeaki TSUTSUI *

Abstract

As an absorbing boundary in infinite domain problems, the perfectly matched layer (PML) is introduced to

attenuate outgoing waves. The PML equation of wave propagation in a nonphysical absorbing material is

derived from the governing equation with the aide of the complex coordinate stretching; both the domain of

analysis and the PML are dealt with the equivalent wave equations. Because of the coordinate independence in

stretching, the PML in one-dimension is essential for multidimensional problems. Through finite element

computations for basic, linear and nonlinear wave propagation problems, we investigate the PML parameters to

design efficient PMLs. The result shows the ability and efficiency of the PMLs for absorbing boundaries.

keywords: Perfectly matched layer (PML), PML equation, Complex coordinate stretching, Wave absorbing,

Open boundary conditions, Infinite domain problems, Nonlinear waves, Finite element analysis.

1. Introduction

Problems of wave propagation and scattering in infinite

domains arise from physical modeling in many fields of

applications: oceanography, electromagnetics, geophysics,

seismics, acoustics, and optics. For a numerical solution to

a problem in an infinite domain, the computational domain

must be reduced to a finite size with artificially imposed

boundaries that truncate unbounded fields and must not

reflect waves back. In addition, outgoing waves toward

infinity are allowed as an infinite-domain solution only if

they satisfy the Sommerfeld radiation condition (SRC).

Taking care of this condition at infinity, therefore, the

proper specification of boundary conditions along the

artificial boundaries is of particular importance to simulate

the wave behavior.

The interest of the present paper lies in the treatment of

boundary conditions for problems of wave propagation in

an unbounded coastal domain. Consider, for example,

numerical experiments of water waves in an open harbor.

The domain of analysis can be set up with three model

boundaries: the real shoreline that consists of coastlines

and the boundary lines of coastal structures, the offshore

boundary in the far-field where the water depth is usually

assumed to be constant, and the inshore boundary in the

intermediate coastal region where the water depth varies in

general; the last two are artificially imposed boundaries.
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Boundary conditions on the real shoreline are those of

wave reflection and wave breaking. Along the offshore

boundary in the far-field, the SRC is enforced. A typical

boundary condition adopted is the transparent one that

combines the numerical solution in the domain of analysis

with the exterior truncated-domain solution.

One way is to discretize an exact boundary equation

satisfied by outgoing waves (e.g., Yu, 1998), or to use the

Dirichlet-to-Neumann (DtN) mapping that specifies the

relation between the Dirichlet and the Neumann conditions

along the artificial boundary (Turkel, 1998, Mesquit and

Pavanello, 2005). The DtN mapping is an operator leading

the exact boundary condition with desired asymptotic

behavior of a solution at infinity. An alternative approach

is to build an approximate boundary condition or solution

based on the asymptotic behavior of outgoing waves, e.g.,

the series representation of the exterior solution (Chen &

Mei, 1975) and the mapped infinite elements (Bettess, et

ai, 1984; Zienkiewicz et al., 1985; Chen, 1990; Park et

a/., 1991; Chadwick et al, 1999; Tsutsui, 2003). These

transparent boundary conditions require usually that the

artificial boundary has a particular shape, such as a circle

or a circular arc, because they are designed typically for

homogeneous media.

In the exterior region truncated by the inshore boundary

in the intermediate coastal region, the water depth varies in

general. Since neither a fundamental solution nor a series

solution is known explicitly to problems with this exterior

inhomogeneous region, the transparent boundary condition

above cannot be formulated along the inshore boundary,

and therefore only the absorbing boundary conditions are



TSUTSUI : Perfectly Matched Layers for Water Wave Absorbing Boundaries in Infinite Domain Problems

applicable. The chief purpose of the side-conditions is to

prevent the reflection of outgoing waves from the artificial

boundaries. A typical approach to this is the construction

of a nonphysical material with a finite thickness, placed

adjacent to the model boundary; this material must

attenuate perfectly outgoing waves. It is this approach that

the present paper focuses on.

The sponge layer approach was introduced to absorb

outgoing waves in a nonphysical material (Larsen and

Dancy, 1983). Waves passing through the sponge layer are

damped on the way to the artificial boundary. The sponge

layer has the same roles as wave absorbers, usually laid

along the sides of a two-dimensional, experimental wave-

flume. Although the sponge layers have been frequently

adopted in wave propagation and scattering problems, the

interface between the sponge layer and the domain of

analysis is not reflectionless. To be effective, therefore, the

sponge layer must be designed not to reflect waves back

from this interface.

To improve this unfavorable condition of sponge layers

in wave absorbing problems, Berenger (1994) invented a

perfectly matched layer (PML) method for problems of

electromagnetic wave propagation, governed by Maxwell's

equation. The PML is a refinement of the sponge layer.

Although the PML was derived for electromagnetism, the

same idea works with general linear wave equations.

In the split-field PML, Berenger's original formulation,

the wave solutions are split into the sum of artificial field-

components (e.g., Teixeira, et al. 2000; Zeng, et al, 2001;

Navon, et al, 2004). A more common uniaxial PML

expresses the PML domain as the ordinary differential

equation combined with anisotropic absorbing materials

(Sacks, 1995). Nowadays, both the split-field and uniaxial

PML formulations are reinterpreted as a complex-valued

change of coordinates, complex coordinate stretching (e.g.,

Chew and Weedon, 1994; Teixeira and Chew, 1997;

Bindel and Govindjee, 2005). It is applicable to any linear

wavelike equation (Turkel and Yefet, 1998) and only

transforms the governing equation with a general way into

the PML equation that governs wave propagation in a

absorbing material. Thus, both the domain of analysis and

the PML are dealt with the system of equivalent equations.

The PML is highly effective to absorb rapidly incident

waves over a wide range of frequencies and of incident

angles. Theoretically there is no spurious reflection of

waves at the interface between the PML and the domain of

analysis; that is, the PML perfectly matches the rest of the

domain. This zero-reflection allows a more effective

absorbing boundary than the classical sponge layer. From

the numerical examinations of wave absorption in various

fields, the PML approaches have been shown to provide

significantly better accuracy than the other artificial

boundary conditions.

With respect to absorbing boundary conditions in the

field of coastal engineering, since the proposal of sponge

layers, the sponge layer and its variants combined with the

SRC have been adopted widely and successfully in wave

propagation and scattering problems (e.g., Yamashita et

al, 1990; Ohyama and Nadaoka, 1990; Wei and Kirby,

1995; Gobbi and Kirby, 1999; Abohadima et al., 1999;

Akikawa and Isobe, 1999; Lee and Yoon, 2004). Another

approaches are the construction of absorbing material that

work with the linear term in the governing equation, the

same as the energy dissipation term due to wave breaking

and bottom friction (e.g., Sato et al., 1988; Kubo et al.,

1992; Ishii et al, 1994; Cruz et al, 1993, 1997). To date,

however, there has been relatively little analysis of the

PML equation. Under the circumstances, a treatment of the

open boundary condition in the finite difference scheme

(Kiyokawa et al, 1996) is similar to the concept in the

PML methodology; this boundary condition has to be dealt

with the equation equivalent to the governing equation.

The present paper* introduces typical PMLs available to

problems of wave-deformation in infinite domains. The

PML method is applicable to the nonlinear wave equation

implemented, coastal wave-deformation model (Tsutsui et

al, 1996, 1998; Tsutsui and Ohki, 1998; Tsutsui, 2003),

because its linear terms are the mild-slope equation. The

complex coordinate stretching, applicable to the linear

wave system, results in the PML equation.

Although the main interest of numerical simulations

lies in multidimensional problems, in deriving a PML

equation for an absorbing material in two-dimension, we

can use the PML methodology in one-dimension. When

the problem is posed in the Cartesian coordinates, we can

stretch each Cartesian component independently based on

the complex coordinate stretching. Consequently, the

clarification of the PML characteristics in one-dimension

is of particular significance in design of multidimensional

PMLs.

Based on the finite element method (FEM), the one-

dimensional numerical experiments of the coastal wave-

deformation model combined with the PMLs is presented

for some basic problems of linear and nonlinear wave

propagation. Through these experiments, we make clear

the effects of domain discretization and PML parameters

on the wave absorbing characteristics, and then give

guidelines to design the PMLs. The result shows ability

and efficiency of the present technique with the PMLs for

nonlinear wave simulation in unbounded coastal domains.

2. Complex Coordinate Stretching and PML Equation

When specifying appropriate boundary conditions along

the boundaries imposed artificially to reduce the size of the

computational domain, we make simplifications to the

space far from the domain of analysis:

• Bathymetric homogeneity; a constant water depth.

• Linearity and time-invariance; linear and steady state

conditions for a wave field.
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Under these assumptions, the governing equation for

linear water waves in a domain of constant water depth is

the Helmholtz equation:

where (x,y) are the horizontal space variables, the

coordinate origin being on the still water level, £ is the

free surface displacement, and k is the wave number. For a

solution to infinite domain problems, the SRC in the far-

field must be enforced to make the Helmholtz problem

well-posed, i.e.,

limr
d-\

= 0. (2.2)

where r is the distance from the origin of disturbances, d is

the dimension of the wave field, and i = (- l)l/2 is the

imaginary unit.

The Helmholtz equation in one-dimension is

:2C = 0, (2.3)
dx2 b '

where the wave properties are independent of y. If the time

dependence is assumed to be exp(iQ)t), where t is the time

and a) is the frequency, a particular solution to Eq. (2.3)

with the SRC is given by

C = aexp(-ikx), (2.4)

where a is an amplitude. Note that this wave propagates

toward x ~ + oo in the time dependence here.

Consider the change of coordinates in Eqs. (2.3) and

(2.4). The key concept is that since the solution (2.4) is an

analytical function of the real jc, it is continued analytically

to the complex value; similarly, Eq. (2.3) is also continued

analytically. By the analytical continuation, therefore, it

holds that

= 0, (2.5)

(2.6)£ = aexp(-ita),

in the complex variable z = x — iy t.

The original problem corresponds to the real axis of z,

and then in this case Eq. (2.6) gives an oscillating solution

exp(-/Jbc). Along the contour in the complex z-plane

where the imaginary part y takes nonzero values, the

solution becomes exp(-ikx - ky), showing exponential

decay with respect to the increase in y; i.e., the solution in

the region for y > 0 acts like the solution in an absorbing

material.

Figure 2.1 shows an example of the result of complex

coordinate stretching described above:

(1) The linearly deformed contour:

y = 0forx<5;;y >0for;c>5.

(2) The solution doesn't change in the region for x < 5

with no-deformation but, because of the stretching of

the contour, it decays exponentially in the region for

t The sign of the imaginary part y depends on the sign of the time factor.

1 -

0

-1

-2

1 1

1 1

Absorbing region

-

0 2 4 6^8 10

(1) Deformed contour; linearly increasing y.

6 x 82 4

(2) Solution (k = 5).

Figure 2.1. Deformed contour in the complex z-plane and the decay of an

oscillating solution.

x > 5 that corresponds to an absorbing region. This is

the solution we are interested in.

Note that the analytically continued solution (2.6) satisfies

the differential equation (2.5) with the same form as the

original equation (2.3). A crucial difference from usual

absorbing materials, such as sponge layers, is that the

deformed contour in the z-plane acts like an absorbing and

reflectionless material; this is a PML.

The only problem, however, is that solving differential

equations along contours in the complex z-plane is rather

inconvenient than that in the real x. To fix this difficulty,

we have to use the variable x in place of z. In doing so, it is

convenient that the imaginary part of z is a function of x:

z = x-if(x), (2.7)

where /(jc) is a function that indicates how the contour is

deformed with the real x-axis. The analytically continued

equation has a differential and then dz = (1 - idfldx) dx.

The relation dfldx = (p{x)lk is preferable for water wave

problems because of the form of solution (2.6). Now,

define the continuous, complex-valued function so that

(2.8)

rx > (2.9)
p(x) = / (p(s)ds

C = a exp(-fc) = a exp{- ikx - p(x)}, (2.10)

where p(x) is the attenuation rate.

and thus the following relations hold:
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In the example demonstrated in Fig. 2.1 (1), (p(x) is a

step function; i.e., zero for x < 5 because of f(x) = 0 and

a positive constant for x > 5 because /(*) is a linearly

increasing function. In Fig. 2.1 (2), analytically, there is no

reflection at the interface x = 5 between these two regions

because the solution is only an analytical continuation of

the original solution from x to z.

In the analytical region of interest where (p = 0, the

wave equation and thus the oscillating solution are

unchanged; in the absorbing region where (p > 0, the

solution turns into exponentially decaying one. Therefore,

(p is termed an attenuation function, and the region for

cp > 0 a perfectly matched medium (PMM), where the

outgoing wave decays exponentially. Therefore, the design

of the attenuation function cp is of importance for the PML.

The differential relation between z and x is

d
dz

1 d
(2.11)

(2.12)

and therefore the equation (2.5) becomes

The transformed equation (2.12) is the PML equation that

governs wave propagation in a PMM. The general solution

to this equation is given as

£ = am exp(ikz) + flu exp(- ikz)

= aln exp{p (x)} exp(ikx)

+ <3oul exp{-p(x)} exp(- ikx), (2.13)

where ain and aout are the amplitudes of incoming and

outgoing waves. So long as (p(s) = 0 and thus p(x) = 0,

the solution (2.13) agrees with the solution to the original

Helmholtz equation (2.3). When (p{s) > 0, the outgoing

wave decays with exp{— p(x)}, and the incoming wave

grows with exp{p(x)}. Conceptually, the process above

based on the analytical continuation indicates a simple

transformation of the original differential equation through

the correspondence:

ik^- (214)
For the two-dimensional Helmholtz equation (2.1), the

PML equation is obtained in the same way as in the one-

dimensional problem. For convenience in handling the

system, we can assume that the complex-valued function

A, depends only on x and A2 only on y. We can therefore

stretch each Cartesian component independently, and the

two-dimensional analogue to Eq. (2.14) is given by

dx a* • dy ~ A2(y) dy •

Thus, Eq. (2.1) is transformed into

13/1 dC\ . 13/1

The equations (2.12) and (2.17) are interpreted as the

equations for waves in an inhomogeneous and anisotropic

material; the PMLs used in computational wave dynamics

can similarly be interpreted as layers with specially-tuned

values for the constitutive parameters. Furthermore, due to

the coordinate independence in the complex coordinate

stretching, the clarification of the PML characteristics in

one-dimension is of especial significance in design of

multidimensional PMLs.

3. One-Dimensional PML

3.1 Right-PML

Consider plane-wave propagation in an unbounded domain

extend to x =±oo. Incident waves arriving from x ~ + oo

are scattered by obstacles in the domain of analysis; some

of the scattered waves are reflected back to x ~ + oo, and

the rest are transmitted toward x — oo. For the solution to

this problem, we must truncate both sides of the domain of

analysis by the PMLs on the jc-axis. The first truncation

model is setting up of the right-PML to absorb outgoing

waves toward x~ + oo. The term "right" means that the

PML is set up on the right-hand side of the domain of

analysis, as shown in Figs. 3.1 and 3.2.

A. Power PML

Suppose that the attenuation function (p(s) is defined by a

power function:

fO [0,/?]

rppi, (3-D

Multiplying Eq. (2.16) by kO results in

with D = RP — R, where the bounded domain of analysis is

[0, R], next to this domain the right-PML is set up in the

interval [/?, Rp], as in Fig. 3.1, D is a PML thickness, m is

an index of powers, and ft is a scaling parameter. In this

PML, the profiles for m = 1 and 2 are usually used in

various fields, such as electromagnetics and acoustics.

The deformed contour is

z = x-jp(x), (3.2)

with the attenuation rate:

p(x)= fX(p(s)ds=/5D-m(x-R)m+l. (3.3)

Note that this contour is continuous and its imaginary part

takes the value zero at the interface x = R between the

PML and the domain of analysis because of p(R) = 0.

The waves are given, from Eq. (2.13), as

\am exp (ikx) + amK exp(- ikx\ 0<x<R

C = | flta exp{p(x)} exp(ikx) (3.4)
[+ aoul exp{-p(jc)}exp(-ikx), R<x< Rp

and are continuous at the interface x = R because of
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<P <P

Bounded domain

R Rp

PML region

Figure 3.1. Piece-wise power attenuation function, set up in the interval

p(R) = 0. In the PML, x > R, the outgoing wave from

the origin toward x ~ + oo decays like exp{-p(x)}. This

decaying property in the PML is written as

(3.5)

with £ = x - R and y = /3D.

To specify the reflection and transmission coefficients

at the end-side of the PML, x = Rp, if we prescribe

£(0) = 1 for input and £{RP) = 0 for output, the boundary

conditions become

flin + flout = 1 1

flm exp(y) exp(iW?p) + floul exp(-y) exp(-ikRp) = 0 J'

(3.6)

and the coefficients flin and flout are thus evaluated by

exp(- 2y) exp(- 2ikRp)

*in ~ 1 - exp(- 2y) exp(- 2ikRp)

= -exp(-2y)exp(-2*Mp), (3.7.1)

a°ut ~ l-exp(-2y)exp(-2*Mp)

N 1 + exp(-2y)exp(-2flW,). (3.7.2)

The wave in the PML is approximated by

C =-exp{- 2y + p (x)} exp(to - 2ikRp)

+ exp{-p(#)}exp(-to), (3.8)

and p(x) = y as x^Rp. Therefore, both the reflection

and transmission coefficients are given by

|/?| = exp(-y) with y = /?£>. (3.9)

B. Singular PML

If a singular attenuation function (Bermudez et al., 2004):

0 [0,R]

<p(s) = \ fiP (3.10)

is used as the right-PML, as shown in Fig. 3.2, the

attenuation rate is

p(x) = fX<p(s)ds = (3.11)

As is in the power PML, this contour is continuous, and its

imaginary part takes the value zero at the interface x = R

between the PML and the domain of analysis. Therefore,

the following relations hold.

• Waves:

0 R Rp

Bounded domain PML region

Figure 3.2. Piece-wise singular attenuation function, set up in the interval

flin exp Wcx) + flout exp (- ikx\ 0<x<R

flin exp{p (*)} exp (ikx)

+ flout exp{-p(*)}exp(-/foe), R<x<Rp

Decaying property:

(3.12)

(3.13)

with £ = x - R and y = fiD.

• Coefficients ain and flout:

The prescriptions £(0) = 1, £(xb) = 0, and p(x0) —-oo

as Ax -* 0 (x0 = RP- Ax) give

flout =

- exp{- 2p(x0)} exp(- 2too)

1
= 1. (3.14.2)

(3.15)

1 - exp {- 2p (#(>)} exp (- 2to0)

• Wave in the PML:

C = exp{-pU)}exp(-to).

• Reflection and transmission coefficients:

\R\= lim expf-ylogr,^ ) = 0. (3.16)
x-+Rp \ i\p x /

3.2 Left-PML

The second truncation model on the x-axis is setting up of

the left-PML to absorb transmitted waves propagating

toward x — oo. The term "left" means that the PML is set

up on the left-hand side of the domain of analysis.

A. Power PML

As shown in Fig. 3.3, the left-PML is set up in the interval

[RP,R], next to the domain of analysis [/?,/?»]. The

attenuation function (p (s) is defined by a power function:

0 [R9tL]

with D = R — Rp. The attenuation rate is

p(x)= fX<p(.s)ds=-pD-m(R-x)m+'. (3.18)

The waves are given, from Eq. (2.13), as

fflin exp (ikx) + Oout exp (— ikx\ R<x <RX

£ = \ flin exp{p(x)} exp (to)

[+ flout exp {-p (x)} exp (- ikx), Rp<x<R
(3.19)
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0 Rp R

PML region Bounded domain

Figure 3.3. Piece-wise power attenuation functions, set up in the interval

[RP,R].

and are continuous at the interface x = R because of

p(R) = 0. In the PML, x < R, the outgoing wave from

x = Rx toward x—oo decays like exp{p(x)}. This

decaying property in the PML is written as

0 = expj- y \jj) J, (3.20)

with £ = R - x and 7 = fiD.

' To specify the reflection and transmission coefficients

at the end-side of the PML, x = Rp, we prescribe

£(R) = 1 for input and £(RP) = 0 for output. The

boundary conditions become

am exp(ikR) + cu exp(-ikR) = 1 1

am exp(-y) exp(ikRp) + aou{ exp(y) exp(-ikRp) = 0 J'

(3.21)

and the coefficients a^ and <ZoUt are thus evaluated by

exp (-ikR)

flin " 1 - exp(-2y) exp(2ikRp) exp(-2ikR)

= exp(- /«?) + exp(- 2y) exp{2ikRp) exp(- 3i*R),

(3.22.1)

exp(- 2y) exp(2ikRp) exp(-ikR)

- exp(- 2y) exp(2ikRp) exp(- 2/A:/?)

= -exp(-2y) exp{2ikRp)exp(-ikR). (3.22.2)

Because of the first boundary condition in Eq. (3.21), the

phase-shift arises in Eq. (3.22). The wave in the PML is

approximated by

£ = exp(pOc)} expdkx - ikR)

-exp{- 2y - p(x)} exp(-ikx - ikR) exp(2ikRp),

(3.23)

and p(Rp) =-y as x-^Rp. Therefore, the reflection and

transmission coefficients are given by

|#| = exp(-y) withy=/3Z). (3.24)

B. Singular PML

Similar to the power PML, the singular PML is set up in

the interval [RP,R], the left-hand side of the domain of

analysis [/?,/?*], as shown in Fig. 3.4. If the singular

attenuation function with the PML thickness D

flout =— -

is used, the attenuation rate is

(3.25)

0 Rp R Rco

PML region Bounded domain

Figure 3.4. Piece-wise singular attenuation function, set up in the interval

p(x) = f* <p(s) ds = /5D log
JRx

Therefore, the following relations hold.

• Waves:

x-Rp
(3.26)

am exp(ikx) + <zoul exp(- ikx\ R<x<Rx

ain exp{p(jc)} exp(ikx)

+ aoul exp{-p (x)} exp (- ikx), Rp<x<R

Decaying property:

(3.27)

(3.28)

with £ = R -x and y = (iD.

• Coefficients am and aoui:

The prescriptions £(R) = 1, £0t0) = 0, and p(x0) — — oo

as Ax — 0 (x0 = RP + Ax) give

exp(-ikR)

(3.29.1)= exp(-iiW)>

exp{2p(jc0)} exp(2/bc0) exp(- /

a°ul " " 1 - exp{2p0t0)} exp(2flkxo) exp(- 2ikR) " *

(3.29.2)

• Wave in the PML:

C = exp{p(x)} expdkx - ikR). (3.30)

• Reflection and transmission coefficients:

\R\= Hm = 0. (3.31)

3.3 Wave reflection and the scaling parameter

The incident wave to the PML with the thickness D will

give rise to two reflected waves from the boundaries of the

PML, as shown in Fig. 3.5:

• Discretization-waves or numerical-waves reflected at the

interface, £ = 0.

• PML-waves reflected at the end-side, £ = D.

Theoretically, the PML is reflectionless if we are solving

the exact wave equation. As soon as discretized, however,

we are solving an approximate wave equation, and thus the

interface between the PML and the domain of analysis is

no longer reflectionless. As a result, the reflection of

discretization-waves occurs, but may be small because the

discretization is presumably a good approximation to the

exact wave equation. Thus, with the aid of the appropriate
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Domain of

analysis

Figure 3.5. Reflection of waves at the boundaries of the PML.

discretization, it becomes small.

For the PML-waves, the reflection coefficient in the

power PML is generally given by

|/?| = exp(-y), (3.32)

where y = fiD. In implementation of the power PML in

finite element computations, the PML thickness D has to

be designed when discretizing the domain of analysis,

together with the reflection coefficient | R |, and therefore

the scaling parameter is specified by fi = yID. If y is too

large, however, the wave decays so quickly on the way to

the end-side of the PML that many nodal points in the

PML are required to achieve an accurate discretization for

this quick decay.

For the singular PML, on the contrary, there is no

relation between PML parameters because the reflection of

PML-waves is always zero, i.e., |/?| = 0. Further, the

optimal parameter )3 depends on the finite element mesh

size and the properties of the problem (Bermudez et ai,

2004).

3.4 Comparison ofPMLs

First, we discuss the basic characteristics of power PMLs

with the parameters m = 0 (constant), 1 (linear), and 2

(quadratic). Figure 3.6 (1) shows the decaying properties

(3.5) in the right-PMLs for various values of y = /5D.

Since, in order for a PML to be an absorbing material,

the outgoing wave height must decrease to zero when

approaching the end-side of the PML, the PML for large

values of y has a possibility to be a wave absorber. For

large values of y, the constant PML linearly absorbs

waves near the interface at £ = 0 between the PML and

the domain of analysis. Linear and quadratic PMLs show

gradual decaying properties near the interface. For higher

powers, this property becomes remarkable. After that, the

PMLs sharply attenuate outgoing waves on the way to the

end-side £ = D of the PML.

If the reflection coefficient in the power PMLs is

negligibly small, i.e., exp(-y) < 1, the outgoing waves in

the domain of analysis and the PML can be written, from

Eqs. (3.4) and (3.7), as

Jexp(-/ibt), 0<x<R

'jexp{-p(;c)}exp(-ikx\ R<x<Rp*

where the attenuation rate p(x) is given by Eq. (3.3).

Figure 3.6 (2) shows examples of decaying wave profiles

(3.33), in which the right-PMLs are set up in the interval

[R,RP] = [5,10] and y = 5 decided from Fig. 3.6 (1) so as

to satisfy the condition exp(-y) < 1. Difference in wave

decaying properties due to PMLs appears clearly.

Compared with the sudden absorption of waves in the

constant PML, which occurs near the interface x = R = 5

(£ = o) between the PML and the domain of analysis, the

gradual absorption of waves in linear and quadratic PMLs

is favorable to prevent the reflection of discretization-

waves at £ = 0. The reason alluded briefly to this point is

as follows: This reflection can be made small as long as

the medium in the PML (the deformed contour) is slowly

varying because of an adiabatic theorem (Johnson et <z/.,

2002). To prevent the reflection of discretization-waves,

therefore, the PML must be an anisotropic absorber turned

on gradually and smoothly enough.

For appropriate values of y, the bounded solution, such

as Eq. (3.4), can be an approximation to the solution in the

infinite domain. Since the reflection coefficient for PML-

waves at the end-side of the power PML is given by Eq.

(3.32), exp(-4.6) = 0.01, and exp(-6.9) = 0.001, these

two values of y are standard values to make the reflection

of PML-waves less than 1%. In practice, especially for

nonlinear wave propagation, it has to be specified through

the numerical experiments because wave decaying

properties depend on the finite element mesh.

A replacement of the far-field condition analogous to

the SRC in one-dimension, i.e., d = 1 in Eq. (2.2), is that

a solution must decay to zero as x — oo; a corresponding

approximation is obtained if we enforce C(RP) = 0 at the

end-side of the PML. This condition is also useful to

suppress the reflection of PML-waves at the end-side of

the PML.

Similarly, Fig. 3.7 shows the decaying properties in the

singular right-PML, given by Eq. (3.13), and an example

of wave profiles decaying in the PML, approximated by

Eqs. (3.11) and (3.33), where y = 5. The singular PML is

a special absorbing material because it always achieves

0-0, i.e., | R | -* 0 at the end-side of the PML, £ = D.

For small values of y, outgoing waves are absorbed

gradually near £ = 0 and quickly in the region very close

to £ = D. For large values of y, the singular PML

linearly absorbs waves near the interface at £ = 0, as was

in the constant PML.

To implement the singular PML, however, element

integrals with the discontinuous function are required,

though the integrals are bounded. In addition, as described

before, the optimal parameter /? depends on the finite

element mesh and the properties of the problem. These are

disadvantages for the use of the singular PML. Therefore,

in the following discussions, we adopt the power PMLs as

absorbing materials.
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Figure 3.6. Wave decaying property and wave profiles in the power PMLs.

(1) Decaying property. (2) Waves in the PML.

Figure 3.7. Wave decaying property and wave profiles in the singular PML.

4. Weak Form for FEM

4.1 Two-dimensionalproblems

For a numerical solution to a problem of wave propagation

and scattering in an infinite domain, the computational

domain must be reduced to a finite size with artificially
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imposed boundaries that truncate the unbounded far-field.

The domain of wave analysis is therefore subdivided into

two domains, 12 and 12*, by the boundary F, as shown in

Fig. 4.1, where the region of nonlinear wave analysis, 12«,

is included in 12. The infinite domain 12* surrounds the

domain 12 and expands to infinity.

In the wave-deformation modeling, the water depth in

12=o is usually assumed to be constant to easily handle the

far-field boundary condition, but this restriction is released

here to deal with the actual bathymetric condition, i.e., the

water depth in 12« may vary. For example, in the harbor

model in Fig. 4.1 (b), the water depth in front of the coast

line varies. In doing so, the domain 12* is further truncated

by using the PML with a finite width denoted by the

boundaries F to Fx\ the PML is used as an absorbing

material for outgoing waves that enter into the PML and

are attenuated on the way toward the end-side of the PML,

denoted by the broken line Foo.

Waves in 12 are governed by the model equation for

wave-deformation, Eq. (A.3), resulting from application of

the Fourier spectral method to the equation of continuity

and the momentum equations of motion. Waves in the

PML, a part of 12*,, are governed by the PML equation,

Eq. (A.7.2). Consider the case that, in the domain 12, there

may be the boundary FB, such as coast lines and artificial

structures, and the lines of water depth discontinuity FD,

such as boundaries of dredged regions and reef coasts.

The governing equations and the boundary conditions

are given in Appendix; they are written as follows:

= 0 in 12, (4.1)

= u in 12W, (4.2)

on F,

on FB,

(4.3)

(4.4)

on Fd, (4.5)

Sommerfeld's radiation condition at infinity. (4.6)

Equation (4.2) is the PML equation for the mild-slope

equation in 12^, where (V,,V2) = (d/dx.d/dy). At the

interface F between the domain of analysis and the PML,

both Ai and A2 take the value unity, and thus in this case

Eq. (4.2) is identical to the mild-slope equation.

The significance in the model above with the use of

PMLs is that the whole domain 12 +12*, of finite element

discretization is governed by the system of equivalent

equations because the PML equation applied to wave

absorbing materials in 12^ is the linearized version of the

governing equation to the domain of analysis 12.

The weak form for FEM is described for the system of

governing equations and boundary conditions, Eqs. (4.1)-

(4.5); Eq. (4.6) is satisfied in implementing the PML in the

domain 12,0. The domain integrals for the product of a

(a) Islands model

r / PML
1 OO *

(b) Harbor model.

Fig. 4.1. Model definition with the absorbing boundaries by the PML.

shape function and the governing equations, Eqs. (4.1) and

(4.2), are transformed, with the aid of Green's formula,

into the weak forms. Furthermore, satisfying the boundary

conditions in the curvilinear integrals obtained from Eqs.

(4.3)-(4.5), we can eliminate the derivatives of free surface

displacement, V£ and V,-£". As a result (Appendix), the

weak form becomes

-f ViCcgB£ds -f VtDCds = 0,
J Fh j Fd

(4.7)

where Vi is the shape function.

This is the equation for an equilibrium state of wave

field. Since there is no source function that generates an

incident wave to the domain of analysis, it must be added

in the right-hand side of Eq. (4.7) as an external force. If

the water depth varies in 12„, as in a general bathymetric

condition, waves being incident to the domain of analysis

have already been deformed due to bathymetric changes in

12,0; this history of waves can be described by the mild-

slope equation. Therefore, the line-source must be created

along the interface F between the domain of analysis and

the PML, while outgoing waves from the domain of
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analysis to 42* are attenuated in the PML.

If the element mesh consists of linear triangles, denote

by (ni,nj9nk) the nodes of an element, a side («,,«,) of

which is on the line /\ (£?.£?»#?) the component of

geometric optics, and {Kijk} the element's local stiffness

matrix for the mild-slope equation, the second domain

integral in Eq. (4.7). The line-source is made by supplying

the quantities evaluated by

to the corresponding nodes in the matrix equation obtained

from discretization of Eq. (4.7). The factor 2.0 comes from

the fact that elements in both sides of the line ij affect the

quantities at the nodes i andy, and the minus sign is due to

phase matching.

4.2 One-dimensionalproblems

A. Method 1

The PMLs are set up on both sides of the domain of

analysis i2, in i2« and Q-«> as shown Fig. 4.2, and it is

assumed that waves are incident from the offshore domain

Qoo. With the similar discussion for the two-dimensional

problem above, the weak form for FEM in this case is

given as follows (Appendix):

= 0. (4.9)

With the aid of the same approach descried for Eq.

(4.7), the point-source can be added at the node between

the domain of analysis and the PML. The quantity to be

supplied to the node i is given by

{qi}=-2.0{KiJ}{Cf,a,-Y, (4.10)

for the linear element, where {/£,} is the element's local

stiffness matrix in the domain Q*>. The factor 2.0 comes

from the fact that two elements affect the quantity at the

node i, and the minus sign is due to phase matching.

B. Method 2

On the other hand, if the wave field in the offshore

domain £« is assumed to be linear, the radiative boundary

condition can be applied at the end-side of the domain of

analysis. Thus the PML is set up only on the transmission

side, in £2-x, and then the weak form for FEM is given as

follows (Appendix):

± -^fd)c + vlQ}vlQ}dQ

(4.11)

Fig. 4.2. Model definition in one-dimension.

The right-hand side acts as an external force, a source

function, specified by the boundary value. Waves in 0»

consist of incident and reflected waves, i.e., £ = exp(ikx)

+JUexp(-ikx), where JU is the reflection coefficient.

Taking differentiation V£ and eliminating JU from these

two equations gives V£. Thus, it follows with Vi = 1 that

on the line F

i & ^ \p i * ^ ^ i/*

= - ikccg C + 2ikccg exp (ifcc). (4.12)

5. Discussions

To exploit the power PML as an absorbing material, we

have to specify two of the three PML parameters: the PML

thickness D, the scaling parameter # and the parameter y

for the reflection coefficient for PML-waves. Through

numerical experiments for linear and nonlinear wave

propagation in one-dimension, the discussion on these

unknowns is proceeded to clarify the characteristics of

PMLs and, as a result, to show how to design them.

5.1 Linear wave propagation

The first issue is wave propagation on water of constant

depth, in which the mild-slope equation is implemented

with the power PML. The experimental conditions are: the

constant water depth is 30 cm, the incident wave period is

1.5 sec, and the length of the domain of analysis is 14 m.

This domain is discretized with the linear finite element

using 20 nodal points per wavelength L. The incident wave

arrives form x ~ + oo. Note that the wave period of 1.3

sec is used in mesh generation to generate a little small

size elements. The PML is set up only on the transmission

side (Method 2). At the wave incident side, x = 14 m, the

incident wave is specified as the boundary value problem,

and the linear transparent boundary condition for outgoing

waves toward x ~ + oo is applied.

(1) Parameter y for the reflection of PML-waves

Figure 5.1 shows a comparison of the wave absorption

in the PMLs (m = 0,1,2,4), where the abscissa is the

distance in meters, the ordinate is the dimensionless wave

height K relative to the incident wave height, and the left-

PML with the thickness of 20 nodal points is set up in the

domain x<0, i.e. D = L. In this figure, however, the

domain x < 4 is illustrated.

Each figure indicates the effects of the parameter y on

the reflection of PML-waves with constant (m = 0), linear
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Figure 5.1. Wave absorption in the PMLs: D = L.

Table 5.1. Outgoing wave heights for various power PMLs.

m

0

1

2

4

5

PML

Constant

Linear

Quadratic

Fourth power

Fifth power

7 = 5

0.014

0.014

0.013

0.012

0.011

7 = 6

0.0051

0.0050

0.0047

0.0040

0.0035

(m = 1), quadratic (m = 2), and fourth power (m = 4)

attenuation functions. The values of y from 2 to 6 with an

interval of 1 are examined. Note that the exact solution in

the domain x > 0 is unity, i.e., K = 1.

Among the PMLs, the constant PML may be sensitive

to the reflection of discretization-waves at the interface

x = 0 between the PML and the domain of analysis

because of a sudden decrease in wave heights. To make

this reflection small, the absorption of waves in the PML

has to be turned on gradually and smoothly; the constant

PML cannot achieve this.

A common property in these PMLs is the reflection of

PML-waves for y = 2, i.e., resulting ripples propagate

toward x ~ + oo. For large values of 7, the PMLs except

the constant PML gradually absorb waves near the

interface at x = 0 and then sharply absorb waves on the

way to the end-side of the PML. Increase in y makes the

PMLs effective.

Table 5.1 gives the outgoing wave heights at the end-

side of various power PMLs, resulting form the numerical

experiments. Since the outgoing wave at the end-side of

PML is given, from Eq. (3.33) in the present case, by

C =. exp(-y)exp(-//:/?„), x=-RP9 (5.1)

the outgoing wave height is approximated theoretically by

AT~2exp(-y). Since exp(-5) = 0.0067 and exp(-6)

= 0.0025, the numerical results given in Table 4.1 agree

well with the theoretical ones. In the PMLs for m < 2 with

7 = 6, the outgoing wave height is about 0.5% of the

incident wave height; i.e., the reflection of PML-waves is

about 0.5%. The higher order power PMLs for m > 2

absorb outgoing waves more gradually near the interface

at x = 0, and the reflection of PML-waves becomes small

enough. Consequently, in the following discussions, the

quadratic PML with the parameter y = 6 is exploited as a

wave absorber, along with the prevention of the reflection

of discretization-waves.

(2) PML thickness

Figure 5.2 shows the effect of the PML thickness on

wave absorbing properties, where the PML thickness is

D = L/2. In Fig. 5.2 (1), the number of nodes in the PML

is 10 points, and the element size is L/20, the same as in

Fig. 5.1. In Fig. 5.2 (2), the number of nodes is 20 points,

and thus the element size is L/40.

Since the PML thickness is the half of that used in Fig.

5.1, the wave entering into the PML has to decay much

quicker than that in Fig. 5.1 (3). The wave attenuation in

the PML with 10 nodal points is not enough because

disagreeable ripples due to the PML-waves appear in the

domain x > 0; the reason is the lack of nodal points in the

PML. On the contrary, the PML with 20 nodal points

attenuates accurately the wave.

Generally, if the PML thickness becomes narrow, the

decay of waves is so rapid that many nodal points in the

PML are needed to simulate accurately the wave decaying
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Figure 5.2. Effects of the PML thickness and the number of nodes on

wave absorption: D = LI2.
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Figure 5.3. Comparison of the methods for incident conditions: D = 2L.

property. Consequently, there may be no benefit to make

the PML thickness narrow; the matter of considerable

significance in design of the PML is the number of nodal

points in the PML.

(3) Methods for incident wave conditions

So far, the PML is set up only on the transmission side

(Method 2). Method 1 is the case where the PMLs are set

up on both the incident and transmission sides of the

domain of analysis. Figure 5.3 compares these methods to

evaluate their ability of outgoing wave absorption and to

examine the approaches for source function setting. The

experimental conditions are: the constant water depth is 30

cm, the incident wave period is 1.5 sec, the length of the

domain of analysis is 10 m (0 < x < 10) with the linear

finite element using 20 nodal points per wavelength L, the

PMLs are in the regions x < 0 and x > 10, and the PML

thickness is D = 2L; it is enough length to remove the

effects of discretization-waves on the numerical results.

The results obtained from these two methods coincide

with in the computational region of interest. This shows

the ability of Method 2 and the validity of Method 1 if the

incident side domain is assumed to be linear.

5.2 Nonlinear wave propagation

The second issue is nonlinear wave propagation, in which

higher harmonics appear due to the nonlinear interaction.

The model wave equation is an infinite set of coupled

nonlinear partial differential equations for all harmonics

(Appendix). Therefore, the PML must absorb all the target

harmonics.

Consider an example of nonlinear wave propagation on

a step-type reef, without wave breaking, as shown in the

bottom of Fig. 5.4, where the abscissa is the distance in

meters. The bathymetric conditions are: the water depth in

the offshore domain (10 < x < 16) is hi = 37.5 cm, the

water depth on the reef flat (x < 10) is h2 = 7.5 cm, and

the water depth ratio is 5 = h2lhi = 0.2. In this figure,

however, the domain x < 14 is illustrated.

The incident wave arrives from x~ + oo, the deeper

side of the step, the incident wave period is T= 1.02 sec,

and the amplitude is (h = 11 cm. The offshore domain is

assumed to be a linear because of T(glh2)m = 5.21, and

the domain on the reef flat be a nonlinear because of

T(g/h2y12 = 11.7. The element size in the offshore

domain is 1/20 of the wavelength L for an incident wave.

Although must be specified based on higher harmonics

and properties of the problem, in this case, the element

size on the reef flat is decided as 1/20 of the wavelength

evaluated using the incident wave period.

The quadratic left-PMLs with the thickness L and 2L

are set up only in the domain x < 0 (Method 2). The PML

parameter for the reflection coefficient is 7 = 6, and the

element size in the PMLs is the same as that on the reef

flat. At the wave incident side, x = 16 m, the incident

wave is specified as the boundary value problem, and the

linear transparent boundary condition for outgoing waves

toward x ~ + oo is applied. The PML equation is derived

from the complex coordinate stretching of the mild-slope

equation, the same as the linear parts of the governing

equation; this means that the PML equation is applied

separately to each harmonic. It is assumed here that the

number of harmonics is five, i.e., M = 5.

To investigate the effects of PML thickness upon the

ability of absorption for nonlinear waves, Fig. 5.4 shows

the distribution of dimensionless amplitudes for the first

five harmonics | £M | (m = 1,2, •••, 5) and the wave height

K, in which the local wave height is defined as a crest to

trough height. Differences of the distribution of amplitudes

and the wave height for x > 0 between the results for the

PML thickness DIL = 1 (solid lines) and for DIL = 2

(broken lines) are hardly visible in the figure; they

distribute smoothly on the reef flat (0 < x < 10) and are

thus acceptable. Theoretical results are fairly agree with
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Fig. 5.4. Distribution of amplitudes of harmonics on the step-type reef: DIL = 1 and 2.
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Fig. 5.5. Distribution of amplitudes of harmonics on the step-type reef: B = 10 and 12 m.

the experimental ones, denoted by the dots (Ohki, 1997).

The outgoing wave heights at the end-side of the PML

are K= 0.0059 and 0.0066 for DIL = 1 and DIL = 2,

respectively. Probably because of nonlinearlity of waves;

on the reef flat, these values are a little larger than the

wave height K = 0.005 designed for each harmonic, but

the total reflection of PML-waves is about 0.6-0.7% of the

incident wave height; therefore, it is small enough.

Similarly, two widths of the domain of analysis, 8 and

10 m on the reef flat, are examined to evaluate the

reflection of discretization-waves. As shown in Fig. 5.5,

the PML with DIL = 2 is set up on the transmission side

(Method 2). Both distributions of the amplitude for

harmonics and the wave height coincide for x> 2; this

indicates that there is no reflection of discretization-waves

at the interface between the PML and the domain of

analysis.

The result discussed above implies the ability and

efficiency of the PMLs for outgoing wave absorption. The

efficient PML requires (1) gradual wave absorption near

the interface between the PML and the domain of analysis

and (2) enough nodal points to follow accurately quick

decay in wave heights. The PML with a wide thickness is

effective to both requirements: gradual wave absorption,

which also diminishes discretization-waves, and enough

nodal points with the same element size as in the domain

of analysis. An approach to the second requirement is to

use smaller elements in the PML than that in the domain of

analysis, as was the case in Fig. 5.2 (2).

A typical PML thickness is one or two times the

wavelength for an incident wave, as was used in obtaining

the finite difference solutions to nonlinear water wave

propagation problems (e.g., Gobbi and Kirby, 1999), in

which the thickness of the absorbing materiel is two times

the wavelength.

6. Concluding Remarks

The perfectly matched layer, especially the power PML, is

effective and easy to exploit as an absorbing material for

linear and nonlinear waves with arbitrary frequencies. The

model wave equation implemented for nonlinear wave-

deformation problems is convenient to introduce the PML

because the linear terms are identical to the mild-slope

equation; the PML methodology has to apply to the linear

wave equation. In nonlinear wave propagation problems, it

is significant to absorb gradually each harmonic in the

PML with the wide thickness and enough nodal points.

The PML equation for multidimensional problems is

derived by the independent complex coordinate stretching,

the same way as in one-dimensional problems. Therefore,

characteristics of the one-dimensional PML is especially

significant in design of PMLs.

As a result of numerical experiments for water wave
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propagation in one-dimension, based on the FEM, the

PML available as a nonlinear wave absorber can be

designed as follow.

(1) The use of the quadratic PML or higher order power

PMLs is recommended.

(2) The parameter for the reflection coefficient for PML-

waves is y = 6 or a little larger value.

(3) The PML thickness D for the linear wave analysis is

nearly equal to the wavelength for an incident wave,

and the element size is 1/20 of the wavelength.

(4) The PML thickness D for the nonlinear wave analysis

is equal to or two times the wavelength for an incident

wave, and the element size must be specified taking

account of the wavelength for higher harmonics.

(5) The scaling parameter is specified by /3 = yID.
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Appendix. Governing Equations, Boundary conditions,

and Weak Form for FEM

1. Governing Equation

1.1 Model wave equation

The nonlinear wave-deformation model implemented in

CATWAVES (Tsutsui et al., 1996, 1998; Tsutsui and

Ohki, 1998; Tsutsui, 2003) is described. The physical

variables are non-dimentionalized by the representative

length Ao\ the time (ho/g)u\ and the velocity (g/io*)"2,

where K is a constant water depth, g is the acceleration of

gravity, and the asterisk (*) denotes dimensional variables.

Denote by (**,/) the horizontal coordinates, where the

coordinate origin being on the still water level, K the local

water depth, rf the free surface displacement, and Ck the

incident wave amplitude, CD* the frequency, k* the wave

number, c* the wave velocity, and c/ the group velocity.

The dimensionless variables are then defined as:

(x,y, h, t], ao) = (x\y\ h\ rj\ a;) IK

t (A.I)

Assume that the free surface displacement can be

expressed as the Fourier series:

rj(x,y,t) = - imCOt), (A.2)

with m = ±1, ±2,---, where / = (- I)1'2 is the imaginary

unit and TJ-m is the complex conjugate of T]m. The model

wave equation for the m-th harmonic of the Fourier

components is given by

=icc'{ dx dx + dy dy

6

"2,

dx2 dy2

with/=±l,±2,--- and

c2 =

dxdy dxdy

2kh

shinh2kh

(A.3.1)

. (A.3.2)

In the equation (A.3), the energy dissipation by wave

breaking (Dairymple, et ai, 1984) and bottom friction is

taken account of in the coefficient fd, and the physical

quantities: the frequency CO, the wave number k, the wave

velocity c, and the group velocity cg, are the values for the

m-th harmonic.

Equation (A.3) is an infinite set of coupled nonlinear

partial differential equations for all harmonics. If the

nonlinearlity is weak, the significance of higher harmonics

diminishes with increase in the Fourier modes. We can

therefore truncate the Fourier series after a finite number

of terms (say M) and solve the M sets of equations for the

M unknown free surface displacement with well-posed

boundary conditions.

For the maximum number of Fourier modes, M, the

nonlinear terms Q in the model wave equation can be

modified as follows:

with

A,.-. = j(m2- 2ml - 2l2) CO2 *f t_,

A2.-i = j(m2- 2ml - 2l2)a>2 ^- £.,

em + l

, (A.5.1)

(A.5.2)
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C - c
l{m-l)a>2 * dx2

c2 a Ci

l(m-l)CO2CCg~dxdy

C,.., = +e-

C4,-,=-e-

2 cCg <\ 2
* dx

2c2

(A.5.3)

■l)0)2CCg dxdy

where the subscripts +/ for Ak, Bk, and Ck indicate that

these are functions of £±/.

When all the nonlinear terms in the right-hand side of

Eq. (A.3) are neglected, the model wave equation reduces

to the mild-slope equation with energy dissipation:

= 0 (A6)

Therefore, the finite element approximation based on the

model wave equation (A.3), a variant of the mild-slope

equation, covers both linear and nonlinear wave motion.

The complex coordinate stretching for the PML can be

applied only to the linear parts of the wave equation, i.e.,

Eq. (A.6). With the aid of Eq. (2.15), the PML equation is

given by

1 1I

Multiplying Eq. (A.7.1) by A,(x)\2(y) results in

= 0. (A.7.2)

1.2 Boundary conditions

The domain of wave analysis is subdivided into two

domains, Q and Q*>, by the boundary F, as shown in Fig.

4.1. The infinite domain i2» surrounds the domain Q and

expands to infinity. To release the simplifications of a

constant water depth in the far-field, the domain £L is

further truncated by using the perfectly matched layer

(PML) with a finite width. Waves in Q are governed by

the model wave equation (A.3) and waves in the PML by

the PML equation. Further, the boundary FB and the lines

of water depth discontinuity FD are considered in the

domain Q.

The boundary conditions are therefore as follows: Note

that, hereafter, the subscript m for C is omitted for brevity.

(2) Continuity condition through the boundary F:

£ = £«, #i-VC + w.,-V£. = 0, (A.8)

where V = (d/dx,d/xy), £ and £» are the free surface

displacement in Q and .&», and vectors n and n* are the

outward normal from Q and Q~.

(2) Reflective condition along the boundary FB (Tsutsui

and Lewis, 1992):

B = k[-ia
tanh^/z dh *

+cosh£/z dnB

a = T+^sm^

(A.9)

where the vector nB is the outward normal to the reflective

boundary, or is a real, dimensionless dumping coefficient,

R is the reflection coefficient, and fib is an incident angle

to the reflective boundary. The total reflection is given by

a = 0, the total absorption by a = 1, and 0 < a < 1 for

any partial reflection.

(3) Conservation of energy flux at the line of depth

discontinuity FD (Tsutsui and Zamami, 1993):

(A. 10)

where the vector nD is the outward normal to the line of

bathymetric discontinuity £0, along which the coefficient

7 is specified, and water depths at the deeper and

shallower sides are denoted by hd and h, respectively. It

is assumed in Eq. (A. 10) that waves approach from a

deeper to shallower side.

(4) Energy dissipation due to breaking and bottom

friction:

The experimental formula of the coefficient of energy

dissipation presented by Izumiya and Horikawa (1984) is

adopted and it can be approximated by

H

h
(AM)

where Cf is the dimensionless coefficient of bottom

friction, fi0 the coefficient related with energy dissipation

due to wave breaking, //the local wave height, h the still

water depth, and (Hlh)s the relative minimum wave height

in the surf zone. The energy dissipation due to wave

breaking can be applied only if the square root is a real

number. The estimated empirical values of coefficients for

the slope of 1/20 are fiQ = 1.8 and (Hlh)i = 0.72.

The same expression with Eq. (A.I 1) have been applied

to wave breaking at the tip of the reef (Sulaiman, et ah,

1994). The empirical formula for the coefficient fi0 are

given as follows:

(a) For the step-type reef

/30 = 4.88exp(-0.092ir) + 0.12, (A.12.1)

(b) For the slope-type reef

fio = 3.27exp(-0.1027D+ 1.73 fors= 1/20 \

fio = 4.26exp(-0.0896D + 0.74 fors= 1/10 J

(A. 12.2)

where T = T* y/g/h*, K is the water depth on the reef flat,

and s is the slope in front of the reef.
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2. Weak form for FEM

2.1 Two-dimensionalproblems

The governing equations and the boundary conditions are

summed up as follows:

(^) = Q infl, (A.13)

A2C~ = 0 in 0., (A.14)

ao = 0 onf, (A. 15)

on A, (A. 16)

% on FD, (A.17)

Sommerfeld's radiation condition at infinity. (A. 18)

In Eqs. (A.13) and (A.14), fd = fJ(mC0) for brevity.

Equation (A.14) with (V,, V2) = (d/dx,3/dy) is the PML

equation (A.7.2) for the mild-slope equation in Q*. At the

interface F between the PML and the domain of analysis,

both Ai and A2 take the value unity, and then Eq. (A.14) is

identical to the mild-slope equation.

We construct the weak form for FEM to the system of

governing equations and boundary conditions, (A. 13)-

(A.17); Eq. (A. 18) is be satisfied in implementing the

PML in the domain i2«. In terms of shape functions vk

(k= 1,2,---), it follows that

l

v,2 ( )ds

f
JTo

The first and second domain integrals in Eq. (A. 19) are

transformed, with the aid of Green's formula, into the weak

forms as follows:

(1) The first integral in Q:

°[+v,Q

(A.20)

(2) The second integral in

'"=-//

(A.21)

where (ni,n2) are the components of the vector nx.

Inserting Eqs. (A.20) and (A.21) into Eq. (A. 19) leads

ff { (^ ) ^

dQ,

-I ds

- j" + v4(nB-VC-BC)}ds

=0.

(A.22)

In addition, with respect to the curvilinear integral

along FD in Eq. (A.22), as shown by the broken line in

Fig. A.I, the cut made on the line FD divides this path of

integration into FD+ and FD~, and then the curvilinear

integral along the line FD becomes

Fig. A. 1 Curvilinear integral along the line of water depth discontinuity.

f v(f)n*ly/ds
-'To

= J v(pnD*Vlffds + f v(p{-nD)*Vy/ds

= frv[<pnD-Vyf]ll-ds. (A.23)

Thus, the last term in Eq. (A.22) is replaced by

ID = /r {v,[cc, a-Vf]£ + v4cc.no-VC]$-DC)}ds.

(A.24)

To satisfy the boundary conditions, the derivatives of

free surface displacement, V£ and V£°\ in the curvilinear

integrals in Eqs. (A.22) and (A.24) are eliminated.

(a) On the line F:

The condition C = C°° is the natural boundary condition
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fr

on the line F, which is satisfied by the PML. Taking

account of X\ = 1 and A2 = 1 on the line F and thus

fliVj^ + AZzV^00 = /ioo*Vf", set v32=-v2ccg to

eliminate /!«• V^30, and further setting v2 = v, yields

(--)ds = fr{(vt - v2)ccgn*VC}ds = 0. (A.25)

(b) On the line T.:

In order for the PML to be effective, waves are required to

decay exponentially on the way to the line /"*> in the far-

field. This leads £°° -* 0, V,£°° -* 0, and V2£~ -* 0; thus,

the curvilinear integral along Fx vanishes. The PML is

therefore exploitable as a replacement of the far-field

radiation condition (SRC, Eq. (A. 18)).

(c) On the line FB:

Taking account of nB — n in i2, set v4, = — vxccg to

eliminate nB • V£, and then

fn(~-)ds = (A.26)

(d) On the line A:

In Eq. (A.24) instead of the last term in Eq.(A.22), taking

account of nD = n in Q, set v5j = - v, to eliminate

/iz>#V£, and then

-)ds = frvxD£dsm (A.27)

With the the discussions (a)-(d) above, the weak form

(A.22) for FEM becomes

ccgVv,

= 0. (A.28)

2.2 One-dimensional problems

If the PMLs are set up on the both sides, in Q*> and Q-<*,

of the domain of analysis Q, as shown in Fig. 4.2, and it is

assumed that waves are incident from the offshore domain

I?*. Similar to Eq. (A.22), the weak form for FEM is

given as follows:

^fVv2

2 (n •

(A.29)

Through the discussion similar to (a)-(d) for the two-

dimensional problems, the boundary terms on F, Fx, F-,

and F-x vanish, and then we have

^ Vv, - v, (mco)2 (f - if,

= 0. (A.30)

On the other hand, if the wave field in the offshore

domain i2oo is assumed to be linear, the radiative boundary

condition can be used at the end-side of the domain of

analysis. Thus the PML is set up only on the transmission

side, in fi-oc, of the domain of analysis. Similar to Eq.

(A.22), the weak form for FEM is given as follows:

{ccfVv, Vf -

fa {x

+ V32 (n • + n.

v,ccsti • VC + v5([cc8nD• VC]j: - D £) [p = 0.

(A..31)

In this case, the boundary terms on F- and F-» vanish,

and then we have

{ccsVv, VC -c {

-| v,cctBCl. ~| v,cc8£»C L = I v,ccgn-VC I. (A.32)


