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Bayesian Analysis of the Expectations Hypothesis
for the Japanese Term Structure of Interest Rates
with Multiple Structural Breaks

Katsuhiro Sugita

Abstract

This paper investigates the expectations hypothesis for the Japanese
term structure of interest rates using vector error correction models with
multiple structural breaks, focusing on how the breaks affect volatility, risk
premium and speed of the adjustment toward the equilibrium. Using 1985-
2005 data, we find strong evidence of three structural changes. After the
second break point, the term structure relationship is found to be weakened
with nearly zero percent short-term interest rate. This finding is consistent
with the expectations hypothesis since with very low short-term interest
rate the risk premium is dominant in determining long rates.

Key words: Term structure; Structural break; Cointegration; Bayesian
inference; Gibbs sampling; Bayes factor;
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1 Introduction

This paper investigates the expectations hypothesis for the Japanese term structure
of interest rates using vector error correction models with multiple structural breaks
in deterministic terms, adjustment terms, risk premium and covariance-variance
matrices. The term structure of interest rates implies a stable relationship between
interest rates with different maturities. This stable relationship would not be
maintained when the short rate is successively close to zero percent because with
lower short-term rate the spread between the two different rates approaches the risk
premium and contains less information to account for the future long-term rates
(Nagayasu, 2004). We provide a simple methodology for empirical evidence of the
expectations hypothesis using co-integrated VAR models with multiple structural
breaks.

This paper applies a Bayesian approach to analyze a vector error correction
model for the Japanese term structure model, extending Wang and Zivot’s (2000)
method for detecting multiple breaks in univariate models as a problem of model
selection. The Bayesian method with Markov chain Monte Carlo simulation
technique makes testing for and estimating of multiple structural breaks in
cointegration models technically simpler. Furthermore, the Bayesian method provides
useful posterior information such as posterior density and uncertainty in the
location of the break points rather than just point estimation. While Bai et al.
(1998) proposed a method for constructing confidence intervals for the date of a
single break in a classical framework, the Bayesian method provides HPDIs (highest
posterior density interval) for the dates of multiple breaks.

This paper is organized as follows. Section 2 discusses the expectations hypothesis
for the term structure of the interest rate, and reviews briefiy movement of the
Japanese interest rates. Modeling and its estimation method are presented in Section
3. Results of the empirical estimation for the Japanese term structure are reported
in Section 4. Section 5 concludes. All computation in this article was performed
using Ox v3.40 for Linux (Doornik, 2001).

2 A Time Series Model with Multiple Structural Breaks in a Co-integrated
VAR Model

2.1 The Expectations Hypothesis

The expectations hypothesis for the term structure of the interest rates states that
the f-period interest rate is equal to the weighted average of the expected one period
return plus a risk premium. For an overview of the expectations hypothesis theory,
see Shiller (1990). Let r; be the yield to maturity for an f-period at time ¢, L; be
the risk premium for an f-period at time ¢, then the hypothesis implies:
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s =f]ZIEJ'1,c+i—1+L/,z (1)

By rewriting the above equation, the interest rate spread S;. can be expressed as:

1 i
Sf'tEr],[_rl_[=f‘—l ZJ ZIE[A 7’1,¢+,~+L/,t (2)
=1 j=

If r1. 1s integrated of order one, then r; is also integrated of order one and thus 7y,
and r,,. are cointegrated with cointegrating vector (1,—1) as analyzed by Campbell
and Shiller (1987). The risk premium is assumed to be I{0) so that the hypothesis
states that r,,—r..—L; is a stationary process. Equation (2) states that if the change
in expected short-term rate is zero percent, the spread S;. equals the risk premium
Ly..

The expectations hypothesis in equation (2) with constant risk premium implies

the following vector error correction model with p lags:
p—1
Arzth+ a (rm—I_rl.e—I_Lj,z) + ZI‘II:A re-i+ & (3)

where r=(r;, r..)’, D. is the deterministic term, a (2 X 1) is the speed of the
adjustment term, ¥, (2 X 2) is the lag coefficient, and &(2 X 2) is iidN(0 Q). In
this paper the risk premium L, is assumed to be either constant such as L.= ¢ (as
in Hansen, 2003) or constant with trend term such as L.= 6 + 7' within a given

regime.

2.2 Statistical Model

To investigate how structural breaks affect the speed of adjustment, the
cointegrating vector, the risk premium and other terms, we consider the form of a
vector error correction model with multiple structural breaks in equation (3). It is
possible to consider a more general model where lag terms also change with breaks;
however, for parsimonious reason, we assume that the lag terms do not change over
time.

Let X, denote an I{1) vector of n-dimensional time series. The long-run multiplier
matrix is decomposed as @ 8°, both are nXr, where a is the adjustment term and
B’ is the cointegrating vector. In this paper X.= (r,, ) where r,. denotes long-term
interest rate and 7. shor.-term interest rate, and the cointegrating vector B is
defined as (1,—1,— 6,— 7Jso that the long-run equilibrium is represented as S,— 1 —
(6.+ 7:t) where Si-1=r,-1—r. is the spread of the two interest rates, r, and r.,
at t—1 period, 0.+ 7.t denotes the risk premium under the rational expectations
hypothesis. If we assume that all parameters except the lag terms in VECM are subject
to structural breaks, then the bivariate VECM representation is:

—1
AXt=ut+€lt+at(Sl—l_ Gl_Tlt)-l_Z\Il;AXt—i-i_et (4)



BRERK# - SEERTFE (5B76%) 20084E 9 A

where t =p,p+1,..., T,and p is the number of lags, and & are assumed N(0,Q.) and
independent over time. Dimensions of matrices are 1 , & and € (2 X 1), ¥, and
Q. (2 X 2). We assume that the parameters w, & and Q. are subject to m <t structural
breaks with break points k.,...,k., where k,<k.<...<k., so that the observations can be
separated into m+1 regimes.

Equation (4) can be rewritten in the matrix format as:

Y=WB+E (5)

where
. ’ /7 d
Y =|A7, Are - Ar ] E =EE',, € e oo 8'7:|
- T

W - X Z] tee Zm+l ,j| B :|:F,a,l oot a,m+] )

Si,p—l(Sp—l - 6p - Tpp)

Si,p(Sp_ 6p+ 17— Tp-1 (p+ ]- ))
: fort =1,..,m+1,
Sir-1(Sr-1— Or— 7rT)

C =lw = Uwer & 0 & W o \pr—l:|,

Sip tt Smtip Sip Sm+1.p Ar’,,_l Ar,1

Siprt " Smaipti 281 pi1 v 28w AT, AT
X =] : R : : : : : :

Sir tt Sm+ 1T (T—p+ 1)sir - (T—p+ 1 )Sm+|,'r Ary - Ar’T—p*’l

Let t be the number of rows of Y, so that t =T—p+ 1, then X is t X 2 (m+p),
IC'is 2(m+p) X2, Wis t Xk where k=3m+2p+1,and Bis K X2. si,jin X
1s an indicator variable that equals 1 if the regime is i and 0 otherwise. Equation

(5) represents the multivariate regression format of equation (4).

2.3 Prior Distributions and Likelihood Functions

We specify the proper prior distributions for the parameters given in the model (4).
Let k= (ki ,k2,....kn)" denote the vector of break dates. For the prior k, we choose a
prior that is uniform over all ordered subsequences of t=p+ 1,..., T— 1. For priors
for the risk premium terms, let n.=(d,v)’ and o?,i=1,..., m+ 1, be the error
variance in the linear regression of the long run equilibrium S= 0.+ 7it+u, u ~
iidN (0,0%), then the prior for these parameters are such that the joint prior
p(nla?)p(a?) =p(n, d?) is the normal inverted gamma density. For the prior for B
, we consider that the vectorized B is the normal unconditional on Q. We assume
prior independence between k, B, Q, and (n,0?),i=1,2,..., m+ 1, such that



Bayesian Analysis of the Expectations Hypothesis for the Japanese Term Structure of Interest Rates with Multiple Structural Breaks(Katsuhiro Sugita)
p(k, B, Q],..., Qo+ L, Myeesy, Mt 1, 012,..., O,:f,+ 1) =p(k)p(B) H:'"=+ll {p(Qz)p( ni, Uiz)} .

The priors for k, Q;, vec(B), and n: are given as follows:

k ~ uniform (p+1,T —1) (6)

Q: ~ IW (A, h) (7)

vec(B) ~ N (vec(B,), V) (8)

(ny, 02) ~ NIG(n0:,M.iSos Vo (9)

where IW refers to an inverted Wishart distribution with parameters A, €ER**? and
degrees of freedom, h;; N refers to a multivariate normal with mean vec(B,) R***?
and covariance V, ER*** in (8); NIG denotes a normal-inverted gamma density with
mean 7o; R**', covariance Mo, €R**?, 07, so: and Vv, are scalar in (9).

Parameters for the risk premium, n.=(6, 7., are assumed to be independent
from parameters such as B and Q; in the VECM but dependent upon the break
point ki-, and k. Thus, n; is derived from a simple regression S;;= 6;+ 7.+e=zn:+
e, conditional on ki-, and k where S, is the sub-sample of the regime i, z,=(1,?),
and ei,t is the Gaussian error term such as e.~iid (0,0?) under the condition of
the stationarity from the expectations hypothesis. It is, therefore, considered as a
conventional Bayesian linear regression model such that if the natural conjugate prior
with normal-inverted gamma density is assigned, then the marginal posterior density of
n: 1s a Student-¢ distribution, thus the posterior can be obtained analytically.

The joint prior of k, B, Q;, n: and o is given by multiplication of (6)—(9) as
follows:

Dk B, Qi Quit, Niyersy Mmsr, 05, O241)
=pk B, Qi,..., Qus1) p(N1,.c0, Nmsr, 0%,... 0241)

oc<ﬁ|Ai|h/2|Qi|(h.+n+ l)/2> IVol_ 1/2
xexp| =3 fur[S @7 00 | +vee BB ViteeB-B0 | |

m+ 1

XeXp<_% ) [o7 % {soit (ni— N0 Mo (ni— 1 0.) }]) (10)
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The likelihood function for k, B, Q. n; and o’ is given by,

f(k, B, Qi Quv1, Niyeesy Nt 1, 0?,... 0a:11Y)

oc<“ir:1|gi|-v2|o,--t‘) exp(—%tr [2 Q' (Y- WB) (Y~ WiB)}} )

Xexp (—%2 [o7?(Si—Zin)’ (Si“Ziﬂi)])

= (ijIQiI‘“/2 0;"') exp (—% mzl[(vec(Y,-— WB))" (Q:®I.) " (vec(Yi— WB))D

i+1

Xexp {_% il (07 2[&+ (ni—7) " Zi Zi(ni_f]i)])} (1)

i=1

where Y denotes the t;X 2 submatrix of Y values in regime i, W, denotes t:X k
submatrix of W in regime i, and ¢ is the number of observations in regime i when
S¢=i, i=1,2,...,m+ 1 , Siz{Si,I,Si,z,...,Si,ti},, 77:': (Z, Zi) -IZi Si, C i=Si (Iti_Zi(Zi Zi) _IZi) Si,Zi

== (21,22,...,2'&)’ .

2.4 Posterior Specifications and Estimation
The joint posterior distribution can be obtained from the joint priors given in (10)
multiplied by the likelihood function for k, B, and Q; that is,

pk, B, Qi Quur 1, Niyeesy Nt 1, 0 150 O 1 1Y)

=pk, B, Q1,..., 21|V p(n1,..., Nmsr, O1,... Onsilk, Y)
ocplk, B, Qi,..., Q1) Lk, B, Q1,...,Qns11Y)

Xp(N1,yeeey Mt 1, 01y Oms D LN 140y Nt 1, 01y Gt Y)

m+ 1

—(t+htn+v1)/2 _
OC(H{'ALIh/ZIQJ 01“}>|Vo| 12
1

Xexp(——é {tr(mi: QF’Aa) —I_“Z{([UQC(Y:‘_ WB)]'(Q:®I.) 'vec(Yi— WB)) }
+vec(B—Bo)’ Vs 'vec(B—B,)])

X exp{— %2‘[07 2 {So,1+C iH(ni— nod) Mo (mi— no)+(ni—D'Z'Z(ni—7) } ]} (12

Consider first the conditional posterior of k,i=1,2,...,m. Given that 1 =ko<'-<ki— 1
<ki<ki+ 1 < <kn+;= T and the form of the joint prior, the sample space of the conditional

posterior of ki only depends on the neighboring break dates k-, and ki+:. It follows
that, for ki e[ki—l,ki+l:|,

p(ki I[® —ki],Y)OCp(ki lkio ki 1,B, Q5 Qivr, My Niv1, Y) (13)
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for i =1,... m, which is proportional to the likelihood function for ® =", B, Q",,...
Qr+1, M,..., N+ 1) ‘evaluated with a break at & only using data between k.-, and k.-, and
probabilities proportional to the likelihood function.

Next, we consider the conditional posterior of Q; and vec(B). From the joint
posterior in (12, we can write two terms as:

m+1

3, {[vec(Yi= WiB) ) (Q® 1) vec(Yi= WiB) | + [vec(B—Bo)]" Vi vec(B—Bo)

i=

= [vec(B—Bx)]" Vi'vec(B—Bx) +@Q

where

m+ 1

Q = Z{[vec(Yl)](Q@I,) “vec(YD} + [vec(Bo) ]’ Vi 'vec(Bo) — [vec(Byx) )" Mx ' vec (Bx) .

=1

Thus, the conditional posterior of Q;is derived as an inverted Wishart distribution as:
- ti/2 (t+h+n+1)/2 1 —1 ™
p(Q, lk,B, T],’,Y)ocl.ﬂi,*l [Q exp[—gtr(Qi :i,*)] (14)

where E;x=(Y,— W.B) (Y;— W.B) + A.. The conditional posterior of vec (B) is derived

as a multivari-ate normal density with covariance, Vs that is,

p(UGC (B)”C, Niyeery Nim+1, Ql,...,Qm+l,Y)
oc |[Vgl=172 exp[—%{[vec(B—B*)]'VE‘ vec(B—B*)}] (15)

where

m+ 1

vee(Bo = Vit + S0r @ wrw || Vatveed) + S {@@n veewi v} |.

and

Vo= |:Va‘+ Sare (W,-'m))}]'

The posterior of 7n; is a Student-t density conditional on k that is derived
analytically from the joint posterior with o7 (a normal-inverted gamma density) as
the following:

771~t(7_7i,3*i,M*i, Vi) (16)

where M*i=M0i+'ri, Ti,7_7i=M;il (MOi n0i+Ti,Ti77i) ,Sxi=80;+¢ i+ ( n0i_ﬁi), [Msil + (77, Ti) h l]
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"' (noi—7od), Vei= Voi+ti. Thus, the posterior mean of 7 can be obtained as E[ ndyl =7.

Given the full set of conditional posterior specifications above, we illustrate the
Gibbs sampling algorithm for generating sample draws from the posterior. The
following steps can be replicated:

+ Step 1: Set j =1. Specify starting values for the parameters of the model, £,
B and QY for i =1,2,.., m+ 1.

- Step 2a: Compute likelihood probabilities sequentially for each date at k\=k§ "
+1,..,k4”—1 to construct a multinomial distribution. Weight these probabilities
such that the sum of themequals 1. ’

+ Step 2b: Generate a draw for the first break date k&, as a multinomial random
variable on thesample space [k%"”, k%"”] from

p(k({) |kg—1>, kg‘l), B(j—-l)’ Q(lj—l), Q(zj—l)’ 77(1’;“, n(zj—l)’Y')

+ Step 3a: For i =3,...,m+ 1, compute likelihood probabilities sequentially for each
date at k-1 =kT1"+ 1,k " to construct a multinomial distribution. Weight
these probabilitiessuch that their sum equals 1.

- Step 3b: Generate a draw of the (i—1)th break date k£”2, from the conditional
posterior p(k?, k%" k" ,BY"") Return to repeat Step 3a, but imposing the
previously generated break date, to generate the next break date. Iterate until
all breaks are generated.

- Step 4: Compute 77 as E[ nly] =7: where 7 is calculated from the posterior in (16).

- Step 5: Generate BY from p(vec(B)Ik" ", n?,...nd% ., QU "V, Q¥Y,Y)in (5.

- Step 6: Generate QP from p(Q:1 k", B®,n?,Y) for all i=1,...,m+ 1 in (14).

+ Step 7: Set j=j+ 1, and go to Step 2.

Step 2 through to Step 7 are iterated N times to obtain the posterior densities. Note
that the first L iterations are discarded in order to remove the effect of the initial
values.

2.5 Determining the Number of Structural Breaks and Model Selection by Bayes Fac-
tors
Determining the number of structural breaks in a vector error correction model can
be treated as a problem of model selection. In a Bayesian context, the posterior
probabilities for all models under consideration are used for model selection. The
posterior probabilities can be obtained by Bayes factors, defined by the ratio of
marginal likelihoods as BFy=p(y| M) /p(y| M), and there are several methods to
calculate the Bayes factors (see Kass and Raftery, 1995). In this paper we choose the
Schwarz’s Bayesian information criterion (BIC) to approximate the Bayes factors.
The Schwarz BIC can give a rough approximation of the Bayes factors, which is
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easy to use and does not require evaluation of the prior distribution as Kass and
Raftery (1995) noted. Wang and Zivot (2000) employed the Schwarz BIC to calculate the
Bayes factors for detecting the number of structural breaks in a univariate context. The
Schwarz BIC for model j can be obtained as

BIC/=—2In L@1Y'M) +q; In (t) 17

where £(8;1Y;M,) denotes the likelihood function for model j: g; denotes the total

number of estimated parameters in the model j and M; denotes the model indicator

for model j. The likelihood function £(8;1Y;M;) is evaluated at 0, the posterior

means of the parameters for model j based on the output of the Gibbs sampler.
The Bayes factor for model k against model j can be approximated by

BEI( = exp [— 0.5 (BICJ_ BIC) ] (18)

With the prior odds, defined as Pr(M,) /Pr(M.), the posterior odds can be obtained by
multiplying the Bayes factor by the prior odds as PosteriorOdds;;=BFj X PriorOdds;.
We compute the posterior odds for all possible models and then obtain the posterior
probability for each model by

PosteriorOdds;
Pr(M|Y) = - (19
2 m=1PosteriorOdds..

where n is the number of models under consideration.

By using the Schwarz BIC to approximate the logarithm of the Bayes factor, it
is easy to determine the number of breaks and other model specification such as
whether the volatility is subject to

Table 1: Model Selection and the number of the breaks m by the Posterior Probabilities
m=0 m=1 m=2 m=3 m=4 m=5  Pr(ModellY)
Model 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Model 2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Model 3 0.0000 0.0004 0.0002 0.8357 0.1354 0.0000 0.9717
Model 4  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Model 5  0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0002
Model 6  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Model 7 0.0000 0.0005 0.0092 0.0185 0.0000 0.0000 0.0282
Model 8  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Pr(mlY) 0.0000 0.0011 0.0094 0.8542 0.1354 0.0000

Note: m denotes the number of the breaks
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Table 2: Estimates of the Break Points for Model 3

( )=standard deviation,

Post. Mode for Model 3 95% HPDI
d: 1991:04 (0.2611) 1991:02, 1991:07
d: 1999:04 (5.3813) 1998:08, 1999:08
ds 2001:07 (1.4309) 2001:05, 2001.10

structural breaks as a problem of model selection. In our case, we compute the
Schwarz BIC as

BIC,:— 21n f(k,B,Ql,...,anl, N, T)m+1|Y,'Mj) +q,- In (D (20)

We compute BIC; using the posterior modes of k; for j =1,..., m and the posterior
means of the remaining parameters based on the output of the Gibbs sampler.

Alternative methods for calculating the Bayes factor include using the harmonic
mean of the likelihood as the marginal likelihood (Newton and Raftery, 1994), or
using the Gibbs output to calculate the marginal likelihood (Chib, 1995). Compared
with these methods, the BIC approach gives merely a rough approximation although
it is consistent in determining the number of structural breaks as shown by Yao
(1988) and Liu et al (1997).

3 Estimation Results

In this section, we analyze the Japanese term structure of interest rates using the
cointegration models with multiple structural breaks outlined in the previous section.
The data used in this empirical study are 3-month bill rate as the short-term interest
rate and 5-year government bond yield as the long-term interest rate based on the
monthly data taken from IMF’s International Financial Statistics and Datastream
respectively ranged from 1985:01 to 2005:10 with 250 observations.

We consider the VECM with Ar=(Ar,. ,Ar.), where r,. denotes the short-term
interest rate and r, denotes the long-term interest rate, and estimate eight models
with structural breaks in different subset of the parameters with the number of
breaks m =0,1,...,5. The number of lags p is 3 selected by Schwarz BIC. The Gibbs
sampling is performed with 10,000 draws and the first 1,000 discarded. The prior
hyperparameters are chosen as A;=0.11;, h:=2.001 V. in (7), Bo= 0sxs, Vo=0.1Ik in
8), moi=0:2x1, Mo,=0, $0,=01, v,;,=0.01 Vi in (9). These choices of the
hyperparmeters are relatively noninformative.
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Table 3: Parameter Estimates (Posterior Mean) for Model 3
( ) =standard deviation,

Parameter T Tt

a. —0.00364 (0.00095) 0.00123 (0.00039)

. —0.00512 (0.00065) 0.00506 (0.00123)

as 0.00085 (0.00086) 0.00154 (0.00153)

. —0.00408 (0.00414) 0.00055 (0.00109)

&1 52 55 Y

—0.39609 1.6057 1.0528 1.3496

(0.09099) (0.04563) (0.05371) (0.03094)
0.05268 0.02764 0.05278 0.01106
o (0.02764) (0.00632) 0| 0076 (0.00168)
’ 0.02764 0.10592 o 0.01106 0.02468
(0.00632) (0.01958) (0.00168) (0.00344)

- . - ﬁ

0.01206 0.00099 0.03651 0.00050
o (0.01046) (0.00063) 0| 01092 (0.00027)
3_ 0.00099 0.00374 o 0.00050 0.00027
(0.00063) (0.00149) (0.00027) (0.00007)

In this empirical study, we are interested in how the breaks affect the the
adjustment terms, risk premium and covariance-variance matrices so that models
under consideration allow these parameters to change with breaks. The following
eight models with different specifications were estimated':

Model 1: Ar=p.+ X ViAr i+ &

Model 2: Ar=p.+ X ¥iAr-i+ &

Model 3: Ar.=a. (Si-1— 6. ) + Z_\If;An_i+ &
Model 4: Ar=a, (S;-1— 6. )+ Z_\IfiAn_i+ &
Model 5: Arn=a, (S;-1—6)+ Z\I’iAn-ri- &
Model 6: Ar,=a. (S;-1—0d)+ Z\IfiAn_i-l- &
Model 7: Ar=u.+a (Si-1—6)+ Z ViAr, i+ &

Model 8: Ar.=u .+ a(Si-1—6)+ 2\IfiArt_i+ I

1 We -also considered models that contains the time trend in the cointegrating relationship. However, the Bayes
factors for these models are insignificantly small compared with the models considered in this paper.
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where &'~iidN(0,Q,) for Model 1, 3, 5 and 7, and &~iidN(0,Q) for other
models. Model 1 and Model 2 assume that there is no cointegration relationship
between the two variables. Model 1 allows 1 and Q to change with breaks, while
Model 2 assumes constant volatility. The rest of models assume that there exist one
cointegration relationship between the two interest rates. In Model 3 @, 6 and
Q are subject to change with breaks. Model 4 restricts Q to being constant over
the entire sample. Model 5 assumes that @ and Q shift with breaks while in Model
6 Q does not shift. The speed of the adjustment toward the equilibrium in both
Model 5 and 6 is subject to change while the risk premium in these models is not
affected by the breaks. Model 7 assumes that intercept term g and Q shift with
breaks while in Model 8 Q does not change with breaks. In both Model 7 and
8 changes in risk premium does not affect the speed of the adjustment as Model
5 and 6, but the intercept terms are subject to change with the breaks. To compute
the posterior probabilities for the models with a various number of the breaks, the
Bayes factors approximated by (18 and @0 are calculated, and the results are reported
in Table 1. From these results, a cointegration exists once the structural breaks are
considered as Pr(Model 11Y) +Pr(Model 21Y)=0.000. The most appropriate number
of the break is m= 3 since the posterior probability when m= 3, Pr(m=31Y) =
2 Pr(m= 3IModel i,Y) =0.854, which is dominant. Clearly, the no-structural break
model (m=0) is rejected by the data as Pr(m=01Y)=0.000. A cointegration is not
detected if the structural breaks were not considered, although once the breaks were
taken into consideration a model with cointegration is strongly favored. The results
reported in Table 1 show that the models where covariance matrices, Q. change
with breaks (Model 1, Model 3, and Model 5) are strongly supported against
homoscedastic models. A model with the highest posterior probability is Model 3
with 97.2 percent (Pr(Model 31Y)= }.%,Pr(Model 3 Im=i,Y)=0.972). Other models
exhibit ignorably low posterior probabilities. Hence Model 3 with m= 3 is dominant
over other models with Pr(Model 3 Im= 3,Y)=0.836, and thus we focus on this
model to investigate.

The estimated break points and the 95% HPDI (Highest Probability Density
Intervals) of each break point for Model 3 with m= 3 are reported in Table 2.
The posterior mode of the three structural breaks are 1991:4, 1999:4, and 2001: 7.
The first estimated break date seems closely associated with the burst of the bubbled
economy 1n 1990, and the second break seems associated with the implementation of
the zero-interest-rate-policy in March 1999. The third break date seems to correspond
with the introduction of the quantitative easing policy in March 2001.

The estimates of parameters for Model 3 excluding the coefficients of the two
lag terms of the vector error correction model with three structural breaks are
reported in Table 3. The results show that there are significant changes in volatility
Q. For example, Q, in the first regime is the largest and then becomes smaller as
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both rates approach zero. This is not surprising since with the lower interest rates
as in the ZIRP the volatility tends to be smaller. On the other hand, the higher
interest rates tends to fluctuate much more than lower rates. In the third and
fourth regimes, the standard deviations of the covariances between the error terms
of the long-and short-term interest rate are very high; in other words, the
covariances between the two rates are not significant. This suggests that the
movement of the long-term interest rate is almost independent of those of the short-
term interest rate in the third and fourth regimes where the short rate has been
kept as low as zero percent, while in other regimes (regime 1 and 2) the
covariances between the long-and short-term interest rates are significantly different
from zero.

The estimated speed of adjustment toward the equilibrium, a;, clearly differs
between the four regimes. The speed of adjustment for both short-and long-term
interest rates are decreased after the second break date, the implementation of the
zero-interest-rate policy in 1999. In the first and second regimes before the second
break point the speed of both long-and short-term rates are significant with small
standard deviations; however, after the second break, the speed declines and becomes
insignificant. After the second break point, the adjustment speed for both long-and
short-term interest rate approaches almost zero with fairly large standard
deviations. This implies that the cointegration relationship between the two interest
rates is weakened after the second break point. This is consistent with the expectations

hypothesis of the term structure, which implies that when the interest rates are
lower the stable relationship of the interest spread is weakened and the spread is
merely risk premium when the short-term interest rate reaches zero percent. We
compute the Bayes factor using the Savage-Dickey density ratio method with the
restrictions @ ;= a4+= 0. The Savage-Dickey density ratio is used for comparing
nested models where one model is restricted (M1) and the other is unrestricted
(M2). The Bayes factor comparing these two models by Savage-Dickey density ratio
is given by:

p(as;=a.,=01Y,Model 3)

BF1= 21
’ plas=a,=0IModel 3) o

The denominator of the RHS in @) is easily calculated since vec(a;) is a part of
vec(B) which is Normal. The numerator of the RHS in 1) cannot be calculated
directly since we have the conditional posterior for vec(B) (that is vec(a)) which is
Normal, but not the marginal posterior density. The Gibbs output, however, can be
used for estimation of the marginal posterior. Let N be the total number of the
Gibbs iterations, N, be the number of draws that is discarded to remove the effect
of the initial values. Then, averaging p(a:;=a.= 01k, n%, n¥, QP , QP,Ys_,,Model

3) across the draws k™, n{, 0%, QF, QF will yield an estimate of p(a;=a.=01Y,
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Model 3). To be precise, let @ =™, 0P, 0, QF, QP) be the n-th draw from the
Gibbs sampler, then

e 3 plas= .= 010", ¥, ., Model 3)
0 n=No+1

—p(a;=a.=01Y,Model 3) 29

as N goes to infinity. We compute the Bayes factor using @l) and (2 to compare the
restricted model with the unrestricted model. The Bayes factor for this results in
8.842, which suggests that the restricted model of the no-cointegration in regime
3 and 4 is supported with 89.84%.

Table 3 also shows that the changes in the values of the mean 6 in the
cointegrating relationship are significantly affected by the breaks. This parameter
expresses the risk premium according to the expectations hypothesis. It is negative
until the first break when the bubble burst in 1991. It then becomes positive as
the future uncertainty increases in the recession. After the second break the risk
premium again decreases with the expectation of recovery from the long recession.
Then the risk premium is slightly increased after the third break.

4 Conclusion

This paper developed a Bayesian approach for a cointegrated VAR model with multiple
structural breaks in order to analyze the expectations hypothesis for the Japanese
term structure of the interest rates, extending Wang and Zivot’s (2000) approach for
univariate models. The Gibbs sampling method simplifies the estimation of this
model. The number of structural break points are selected by the posterior probability
based on the estimation of the models given the number of possible break dates. The
Bayesian approach provides useful information such as uncertainty in the location of
the dates by the posterior mass function for each estimated break points.

We found strong evidence of three structural breaks during 1985-2005. These
three breaks seemed to be associated respectively with the burst of economic bubble
in 1990, the implementation of the BodJ’s zero-interest rate policy in late 1999, and
the quantitative easing policy in 2001. The speed of the adjustment toward the
equilibrium is found to be affected by the breaks. The adjustment terms approach
almost zero after the second break date for both long-and short-term interest rates,
which implies that there was no cointegration relation in the third regime when the
short-term interest rate was kept at nearly zero percent; that is, it did not respond
to the movement of the long-term interest rate. The Bayes factor calculated by the
Savage-Dickey density ratio supports no cointegration during these periods. This
finding is consistent with the expectations hypothesis of the term structure model
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that implies no cointegration when interest rates are low because the risk premium

is dominant in the yield spread between the two interest rates. We also found that

the volatility and the risk premium were affected by these three breaks.
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