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Abstract

The Helmholtz-Thevenin theorem together with its dual equivalent Mayer-Norton's

one is generalized to that of n-terminal networks. The new theorem asserts that any

n-terminal network can be reduced to a set of the equivalent circuits which consist of

(n-1) (n-2)/2 impedances and (n-1) active 2-terminal elements(Helmholtz-

Thevenin's or Mayer-Norton's equivalent circuits). Their graph is the complete one,

and the active elements are connected to each other so that they make a tree. The

number of the possible equivalent circuits is nn2 for an n-terminal network, if we do not

distinguish a Helmholtz-Thevenin's circuit from Mayer-Norton's one.

Introduction

It is well known that any two-terminal network has a simple equivalent circuit given by

the Helmholtz-Thevenin theorem. Such a circuit has a special significance in the successive

analysis of a cascade connection of two ports1*. The circuit as well as its dual equivalent

one given by Mayer-Norton's theorem consists of two components, an impedance and an

electric source. Since neither component can be omitted to simulate the network

completely, these theorems are regarded as to give the simplest equivalent circuits to a two-

terminal network. Such consideration naturally leads to a question upon the simplest

equivalent circuit for a network which has more terminals than two. Of course, this

classical problem must have been long since investigated deeply, but the results seem to be

scattered in the literature2-3). Then a systematic up-to-date treatment is given here.

Definitions

An n-terminal network is defined as a circuit which has n terminals and contains some

linear elements (R, C and L) and some independent electric sources. As in Fig. 1, we can

choose one terminal as the ground and measure all the voltages and currents from this node.

So there are (n-1) voltages and (n-1) currents which determine the state of the circuit.

Our purpose is to get a circuit which is equivalent to such an n-terminal network as to the

voltages and currents at the terminals and is as simple as possible.

The choice of components of the equivalent circuit needs careful consideration.

Impedances and electric sources may seem natural and inevitable components at first

sight. However such a choice brings the following inconvenience. If we apply it to a two-

terminal network, Helmholtz-Thevenin's theorem gives an equivalent circuit with three

nodes while Mayer-Norton's theorem gives one with two nodes as in Fig. 2. Then Mayer-

Norton's circuit is regarded as simpler than Helmholtz-Thevenin's one as to the nodes.

Therefore the above choice violates the equivalence of the two circuits which should be
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(a)

Fig. 1 An n-terminal network.

(b)

Fig. 2 Source elements.

(a) Helmholtz-Thevnin's element.

(b) Mayer-Norton's element.

treated alternatively to each other. To avoid this disadvantage, let us adopt these two

circuits themselves as a constituent element and neglect their inner structures. This choice

is not artificial but based on the nature of the actual source. If there were any source

without accompanying an impedance, it could supply an infinite energy to a load. Therefore

a sole source is an ideal element which can never exist physically. A set of a source and an

impedance should be always treated as an inseparable component. Since our definition does

not take the inner node in the Helmholtz-Thevenin's circuit into account, both circuits have

two nodes at their ends. We make no distinction between the two circuits and call either

circuit a source element. Since the other kind of components is just an impedance,

source elements and impedances are the components of our equivalent circuit hereafter.

The use of physically realizable sources instead of ideal ones should be also applied to

the given circuit, because a solitary source often brings an inconvenient but not essential

restriction to a systemmatic analysis of the circuit. So we assume that in the given circuit

every voltage or current source has an impedance in series or in parallel respectively

between its two nearest terminals.

Reduction of Nodes and Branches

In order to get a simplified equivalent circuit we should reduce the nodes and branches

as many as possible. Each step of the reduction can be performed with either one of the

following procedures.

(1) Unifying a series connection, which decreases a node and a branch.

(2) Unifying a parallel connection, which decreases a branch.

(3) Applying a generalized Y-A (star-mesh) transformation, which decreases a node at

a cost of increasing some branches unless the original branches are less than 4.

(4) Applying a generalized A-Y(mesh-star)transformation, which decreases some

branches at a cost of increasing a node unless the original branches are less than 4.



The Simplest Equivalent Circuit of a Multi-Terminal Network

Since (1) and (2) have no counteraction, they should be done by all means. The procedure

(3) must have priority over (4), because (3) is always applicable to any star, while (4) is

only possible to the mesh which satisfies a certain special condition4 5). Let us apply the

procedures (1), (2) and (3) as far as there remains a node or a branch parallel to another

branch within the circuit. Then we will finally get a graph with exactly one branch

connecting each pair of terminals and no inner nodes. Such a graph is called a complete

graph and is obviously the simplest with regard to the nodes, because there are no nodes

other than the given terminals. We can not give assurance that the circuit is also the

simplest with regard to the branches, because they may be reduced further at a cost of

adding inner nodes. However since a generalized A-Y transformation is impossible in

general, such a reduction of branches is possible only in the case when the special relation

holds among the elements given. Thus the complete graph is usually the simlest one as to

the branches too. So we regard the complete graph as the most favorable one and always

choose it as our final object.

Reduction of Sources

Even after we have obtained the complete graph, there remains another possibility of

reduction. Some electric sources may be eliminated.

According to our assumption, a source does not connect the terminals solely. We can

expect that this condition is kept after all the equivalent transformations. Then any voltage

source can be transformed into a current source and vice versa. Let all the sources be

current sources for the convenience of discussion.

If any current sources make a loop, at least one can be eliminated with the following

process. We may add a set of the identical current sources along a loop, with each source

parallel to each branch, which gives no influences on the other part of the circuit5). It means

that we can eliminate any one source by putting the sources with the same value inversely

to all the branches in parallel as in Fig. 3. Therefore we can always cut every loop open, if

any. If we trim the loops completely, we wll reach the final circuit that has no loop of the

sources. In the graph theory, a set of branches with no loop is said to make a tree.

current source iopedance

Fig. 3 An example of reducible current source.
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A tree of a complete n-terminal graph is composed of (n—1) branches. Hence our final

equivalent circuit contains only (n —1) sources that make a tree. Such sources are

contained in source elements according to our convention. Since each source element has

two constants, the total number of the constants in source elements is 2(n—1). All the

other branches may be made of impedances and their number is n(n—1)/2 — (n—1) =

(n —2) (n —1)/2. The total number of the characteristic parameters is 2(n- 1) +

(n—2) (n—1)/2 = (n +2) (n—1)/2. Let us call such a circuit a standard equivalent circuit.

Thus we have reached the result which can be regarded as an expansion of Helmholtz-

Thevenin's theorem and Mayer-Norton's one. It should be noted that the standard equivalent

circuit is not unique in general but has an arbitrariness of choosing a tree of sources. The

number of the standard equivalent circuits is ntt2 for the complete graph of «-nodes according

to Cayley's theorem6). If we apply the result to a 2-terminal case, we get a unique circuit that

contains a single branch composed of a source element, as is expected.

Characteristic Equations and their reduction

Let us consider how each component of a standard equivalent circuit can be obtained

from those of the given one. Suppose that the original circuit has b branches and m nodes

which include n terminals. The voltages and the currents of all the branches are

independent variables which can specify a state of the circuit. Among these 2b variables,

there hold (m—1) equations by KCL and (b—m+1) ones by KVL. In addition, the voltage

and the current of each branch are connected by Ohm's law, or either value is given directly

when the element is a source. They give other b equations. Thus the total number of the

equations is (m-1) + (b-m+1) +b = 2b which is equal to that of the variables. We will call

these equations the inner equations.

Let us assume that each terminal is newly connected to the ground through some

arbitrary element. These (n—1) outer elements are introduced only for the purpose of

completing the set of the equations and their characters have no influences on the following

procedure. When we add a new branch between some two nodes, a new loop equation is

added. So we get (n —1) new equations on the whole. We also must change (n —1) node

equations into those which contain the outer current. Thus the following two vector

equations are obtained in general.

B (D

D (2)

Equations (1) and (2) correspond to the set of revised inner equations and that of new

loop equations respectively. Here y is a vector whose components are 2b inner variables,
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and x is one whose components are (n—1) terminal variables, while the others are either a

constant matrix or a constant vector. The size of A, B, C, D, p and q are 2b X 2b, 2b X 2n,

(n-1) X 2b, (n-1) X 2n, 2b X 1 and (n-1) X 1 respectively.

Let us multiply both ends of Eq. (1) by the inverse matrix of A, and solve the equation

for y. Substituting the value of y into Eq. (2), we get the following equation for x only.

(CA »B - D) • x = q - CA-'p

Let us rewrite it as follows.

(3)

K x (4)

Here we have defined as K =CA1B-D, and r=q-CAlp, whose size are (n-l)X

2(n —1), and (n—1) X 1 respectively. This equation should be called a terminal equation.

Further we can simplify the equation by solving it for any half of the variables. For the

convenience of the discussion, we choose the following equation,

u
I

V

(5)

+ L V = s

where U is an identity matrix, and I and V are the terminal currents and voltages

respectively. It can be rewritten as

(6)

The matrix L is symmetric because of the reciprocity theorem. So among its (n—1) X (n—

1) components only the n(n—1)/2 ones are independent. Since s has (n-1) components,

the total number of the independent constants in Eq. (6) is n(n —1)/2 + (n —1) =

(n+2) (n-l)/2 which agrees with that of a standard equivalent circuit.

Determination of the Constants of a Standard Equivalent Circuit

Now we can determine every value of the components of any standard equivalent circuit

by comparing it with the corresponding constant in Eq. (6). For instance, we get the

followng values when the active elements are made of Mayer-Norton's circuits.

(7)

(8)

B-l

2 /,-/ = si (9)
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where Zij and Itj are an impedance and a current source respectively between the terminal

i and j. The value of In is defined along the direction from j to i and therefore It; = —In holds.

When the active elements are composed of Helmholtz-Thevenin's circuits, we have only

to replace Eq. (9) to the following.

"2 Eij/ZtJ=si (10)

where Eij is a voltage source between the terminal i and j defined along the direction from

j to i.

Thus we got a standard equivalent circuit explicitly.

Examples

As was stated previously, the standard equivalent circuit is not unique but has an

arbitrariness of choosing a tree of sources. The number of the standard equivalent circuits

is nn~2 for the complete graph of w-nodes according to Cayley's theorem6). If we apply the

conclusion to a 3-terminal network and a 4-terminal one, the types shown in Fig. 4 are

obtained as their standard equivalent circuits.

( a)

(b)

source eleaent iopedance

Fig. 4 Examples of standard equivalent circuits.

(a) 3-terminal circuits.

(b) 4-terminal circuits.
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vz

Fig. 5 An example of 3-terminal circuit, a Wheatstone bridge.

Let us apply our result to a familiar Wheatstone bridge in Fig. 5. The circuit is

regarded as a 3-terminal one because either of the two output terminals is not grounded.

The equations corresponding to (1) and (2) are as follows.
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If we eliminate all the inner variables in these equations, we get the following terminal

equation which corresponds to (6).

iA+fi/za+i/Zb o ] fvA = [e/z2\
Iz) I 0 1/Zc + 1/ZfJ I Vz) [e/ZcJ

(13)

,, i,

Fig. 6 The standard equivalent circuit of 3-terminal one.

On the other hand, the standard equivalent circuit of 3-terminal network has a form shown

in Fig. 6, which corresponds to either of the three types in Fig. 4 (a), if we equate one of

the sources 1%, r02, or l°a to zero. Its terminal equation is given as follows using equations

(7),(8), and (9).

Ii j + I 1/Zio + I/Z12 -I/Z12 j Vi

I2J I - I/Z12 I/Z20 + I/Z12) {V2

Comparison of (14) with (13) gives the following equations.

Zl2=°°

ZlO = ZaZb/(Za + Zb)

110 1 112 = E/Za

120 ~ 112 = E/Zc

(15)

(16)

(17)

(18)

(19)

(14)

Thus the impedances are determined uniquely with the first three equations, but the values

of current sources in (18) and (19) have the following three possible solutions.
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(a) In case of 1%= 0,

Iw = E/Za

1% = E/Zc

(b) In case of 1% = 0,

I%= UZa + 1/Zr

/ u = ~~ E/Zc

(c) In case of 1% = 0,

/12 = E/Za

1% = 1/Z, + 1/Zc

(20)

(21)

(22)

(23)

(24)

(25)

These three solutions are shown in Fig. 7. Though the three types are equivalent, the first

one is most favorable to give the wellknown equilibrium condition,

Zb/Za = Zd/Zc

which is easily obtained from the comparison of Vi with V2.

(26)

• V2,l8

V,.!,

-• v,.i.

f(T

z.zb

Zo+Zb

E.E(t

ZO+ZU Zo+Zd

ZoZd

(b)

zozb

zo+zb

va.is

V,.l,

Zo+Zd

(c)

Fig. 7 The three types of the standard equivalent circuit of Fig. 5.
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Conclusions

We conclude this paper as follows.

(1) Every n-terminal network can be reduced to a standard equivalent circuit, the

graph of which is complete.

(2) In a standard equivalent circuit (n—1) branches chosen to make a tree consist of

source elements ( Helmholtz-Thevenin's circuits or Mayer-Norton's ones),

while the other branches are composed of impedances.

(3) A standard equivalent circuit is always the simplest as to the nodes, and also is

the simplest as to the branches in usual cases where no special relation holds

among the elements of the given network.

(4) A standard equivalent circuit has alternatives due to different choice of a tree of

the sources. Their total number is nn~2 for an n-terminal network.
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