琉球大学学術リポジトリ
On Definition of Affine Algebraic Groups

メタデータ	言語：
	出版者：琉球大学理学部
	公開日： $2008-12-01$
	キーワード（Ja）：
	キーワード（En）：
	作成者：Nakao，Zensho，仲尾，善勝 メールアドレス： 所属：
hRL	http：／／hdl．handle．net／20．500．12000／8333

On Definition of Affine Algebraic Groups

Zensho Nakao*

0. Introduction

An affine algebraic group is defined to be an affine algebraic variety possessing an abstract group structure satisfying the condition that the group multiplication and inversion are polynomial maps.

The objective of this paper is to shorten the definition to only one statement that the group multiplication be a polynomial map. Two examples are given in $[\mathrm{N}]$ with concrete computation, where it is shown that, when K is an infinite field, the polynomial group multiplications on $G_{a}(K)$ and $G_{m}(K)$ make the group inversions polynomial, i.e., algebra homomorphisms $K[X] \rightarrow K[X]$, and $\mathrm{K}[\mathrm{X}, 1 / \mathrm{X}] \rightarrow \mathrm{K}[\mathrm{X}, 1 / \mathrm{X}]$, respectively.

1. Notations

If G is an affine group (or variety), then $\mathrm{K}[\mathrm{G}]$ denotes the coordinate ring of K -valued functions on G; if $m: G \times G \rightarrow G$ is a group multiplication, then we write $m(x, y)=x y$; and for a fixed $x \in G, m_{x}$ denotes a left translation given by $m_{x}(y)=x y$ for all $y \in G$. Also, for $f \in K[G]$ and x $\in G$, f.x designates a function in $K[G]$ defined by $(f . x)(y)=f(x y)$ for all $y \in$. \mathcal{G}. If $f: G \rightarrow H$ is a polynomial map of varieties, then $\mathrm{f}^{*}: \mathrm{K}[\mathrm{H}] \rightarrow \mathrm{K}[\mathrm{G}]$ denotes the associated K -algebra homomorphism. But if V is a K -vector space, then V^{*} denotes the dual space of V .

2. The Theorem

Therem. If G is an affine variety possessing a polynomial group multiplication $\mathrm{m}: \mathrm{G} \times \mathrm{G} \rightarrow \mathrm{G}$ and an abstract group inversion $\mathrm{i}: \mathrm{G} \rightarrow \mathrm{G}$, then the group inversion is also a polynomial map, i.e., G is an affine algebraic group.

Proof. We will proceed in two steps:
(i) There exists an injective polynomial homomorphism from G into a general linear group $G L(V)$ for some finite dimensional K-linear space V.

There is the co-multiplication $\mathrm{m}^{*}: \mathrm{K}[\mathrm{G}] \rightarrow \mathrm{K}[\mathrm{G}] \otimes \mathrm{K}[\mathrm{G}]$ induced by the polynomial group multiplication $m: G \times G \rightarrow G$. For $f \in K[G]$, let $m^{*}(f)=\Sigma g_{i} \otimes h_{i}$, where g_{i} and h_{i} are chosen linearly independent. Then for $x, y \in G, f(y x)=f(m(y, x))=\Sigma g_{i}(y) h_{i}(x)$, so for any $y \in G, f . y=$ $\Sigma g_{i}(y) h_{i}$, hence f.y lies in the K-linear span of $\left\{h_{i}\right\}$ and also $h_{i} \in f . G$ because we can solve the equation f.y $=\Sigma g_{i}(y) h_{i}$ for h_{i} by making $g_{i}\left(y_{j}\right)$ non-singular for suitable $y_{j} \in G$. Let $K[G]=$ $K\left[x_{1}, \ldots, x_{n}\right]$ and let V be the K-linear span of $\left|x_{i} \cdot y: y \in G, i=1, \ldots, n\right|$. Then V is finite dimensional, is stable under $\left(m_{x}\right)^{*}$, and generates $K[G]$ as a K-algebra since all $x_{i} \in V$.

Define a representation $r: G \rightarrow$ end (V), the algebra of endomorphisms of V, by sending z to $\left(m_{z}\right)^{*} \mid \mathrm{V}$. In fact, we have $\left(m_{z}\right)^{*} \mid \mathrm{V} \in \mathrm{GL}(\mathrm{V})$, the general linear group of automorphisms of V. For $(f, y) \in V \times V^{*}$, let $X_{f, y}$ be the matrix coefficient defined by $X_{f, y}(T)=y(t(f))$ for $T \in e n d(V)$. Then $\operatorname{end}(\mathrm{V})$ is an affine variety with coordinate ring $\mathrm{K}[\operatorname{end}(\mathrm{V})]=\mathrm{K}\left[\mathrm{X}_{\mathrm{f} . \mathrm{y}}:(\mathrm{f}, \mathrm{y}) \in \mathrm{V} \times \mathrm{V}^{*}\right]$. Let $\mathrm{D}(\mathrm{T})$ be the determinant of $T \in \operatorname{end}(V)$. Then $G L(V)$ is an affine algebraic group with coordinate ring $K[G L(V)]=K[\operatorname{end}(V)][1 / D]$.

Now, for $z \in G, X_{f . y}{ }^{\circ} r(z)=y(r(z)(f))=y\left(\left(m_{z}\right)^{*}(f)\right)=y(f . z)=y\left(\sum g_{i}(z) h_{i}\right)($ where we set $m *(f)=$ $\Sigma g_{i} \otimes h_{i}$ as before $)=\Sigma g_{i}(z) y\left(h_{i}\right)$, i.e., $X_{f . y}{ }^{\circ} r=\Sigma y\left(h_{i}\right) g_{i} \in K[G]$, which means that $r: G \rightarrow \operatorname{end}(V)$ is a polynomial map.

We further claim that $r: G \rightarrow G L(V)$ is a polynomial map. The polynomial function $D \circ r \in$ $K[G]$ never vanisnes on G, hence it is a unit by Hilbert's Nullstellensatz. So the quotient $1 /(\mathrm{D} \circ \mathrm{r})$ $\in K[G]$. Since $1 /(D \circ r)=(1 / D) \circ r$, the claim is established.
(ii) The co-morphism $r^{*}: K[G L(V)] \rightarrow K[G]$ is surjective.

Since V generates $K[G]$, it is enough to show that each element of a basis $\left\{a_{1}, \ldots, a_{n}\right\}$ of V has a pre-image. Let $\left\{\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right\}$ be the basis of V^{*} dual to $\left.\mid \mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right\}$. Then, for all $\mathrm{T} \in$ $G L(V), T\left(a_{i}\right)=\Sigma y_{j}\left(T\left(a_{i}\right)\right) a_{j}$.

Define $b_{i} \in K[G L(V)]$ by setting $b_{i}=\Sigma a_{j}(e) X_{a_{i}, y_{j}}$, where e is the identity element of G. Then, for all $T \in G L(V), b_{i}(T)=\Sigma a_{j}(e) X_{a_{i}, y_{1}}(T)=\Sigma a_{j}(e) y_{j}\left(T\left(a_{i}\right)\right)=T\left(a_{i}\right)(e)$. But then, for all $z \in G$, $r^{*}\left(b_{i}\right)(z)=b_{i}(r(z))=b_{i}\left(\left(m_{z}\right)^{*} \mid V\right)=\left(m_{z}\right)^{*}\left(a_{i}\right)(e)=\left(a_{i}, z\right)(e)=a_{i}(z)$, so $r^{*}\left(b_{i}\right)=a_{i}$, i.e., $V \subset$ $r^{*}(K[G L(V)])$.

Putting (i) and (ii) together, we see that G is isomorphic to $r(G)$ which is a closed affine algebraic subgroup of $G L(V)$. Hence G is algebraic. This completes the proof.

Reference

[N] Z.Nakao, Polynomial Group Laws. II, Proc. Amer. Math. Soc. 80 (1980), 196-200.

