琉球大学学術リポジトリ

有限モノドロミー群をもつ超幾何微分方程式の
Schwarz map

メタデータ	言語：
	出版者：加藤満生
公開日：2009－02－27	
	キーワード（Ja）：
	キーワード（En）：hypergeometric function，monodromy group，Schwarz map 作成者：加藤，満生，Kato，Mitsuo メールアドレス： 所属：
http：／／hdl．handle．net／20．500．12000／8947	

A Simple Pfaffian Form Representing the Hypergeometric Differential Equation of Type $(3,6)$

Mitsuo KATO

1 Introduction.

The system $E(k, n)=E\left(k, n ; a_{1}, a_{2}, \cdots, a_{m}\right)$ of differential equations of type (k, n) is defined on the Grassmanian $G_{k, n}$ and has many symmetries. Thanks to these symmetries, we can reduce the system $E(k, n)$ to the system $E(k, n)^{\prime}=$ $E\left(k, n ; a_{1}, a_{2}, \cdots, a_{m}\right)^{\prime}$ of differential equations on $\mathbf{C}^{(k-1)(n-k-1)}$ of $\operatorname{rank}\binom{n-2}{k-1}$.

In [MSY], Matsumoto, Sasaki and Yoshida studied the system $E(3,6)=$ $E\left(3,6 ; a_{1}, a_{2}, \cdots, a_{6}\right)$ and explicitly got the reduced differential equations $E(3,6)^{\prime}=E\left(3,6 ; a_{1}, a_{2}, \cdots, a_{6}\right)^{\prime}$ on \mathbf{C}^{4} with rank 6 . They represented $E(3,6)^{\prime}$ in the form

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{i} \partial x^{j}}=G_{i j} \frac{\partial^{2} u}{\partial x^{1} \partial x^{4}}+\sum_{k=1}^{4} A_{i j}^{k} \frac{\partial u}{\partial x^{k}}+A_{i j}^{0} u \quad(1 \leq i, j \leq 4) \tag{1.1}
\end{equation*}
$$

(Theorem 1.7.1 in [MSY]). They also obtained an equivalent Pfaffian form

$$
\begin{equation*}
d \vec{u}=\omega \vec{u}, \tag{1.2}
\end{equation*}
$$

where

$$
\vec{u}={ }^{t}\left(u, u_{1}, u_{2}, u_{3}, u_{4}, u_{14}\right), \quad u_{j}=\frac{\partial u}{\partial x^{j}} \quad u_{i j}=\frac{\partial^{2} u}{\partial x^{i} \partial x^{j}}
$$

(see [MSY, pp.52-55]). Unfortunately, this Pfaffian form is somewhat complicated.

In this paper, we replace \vec{u} with $\tilde{u}:=\Lambda \vec{u}$, where Λ is the diagonal matrix with elements $1, x^{1}, x^{2}, x^{3}, x^{4}, D_{2}:=x^{1} x^{4}-x^{2} x^{3}$. Then the Pfaffian form (1.2) changes to the following simple form :

$$
\begin{equation*}
d \tilde{u}=\tilde{\omega} \tilde{u}, \quad \tilde{\omega}=\sum_{j} P_{j} d \log f_{j}, \tag{1.3}
\end{equation*}
$$

where P_{j} are constant 6 by 6 matrices and f_{j} are defining functions of irreducible components of singular locus of $E(3,6)^{\prime}$ in \mathbf{C}^{4} (see Theorem below).

2 Main theorem.

The system $E(3,6)$ has six parameters $a_{j} ; 1 \leq j \leq 6$ satisfying the relation $\sum a_{j}=3$. We denote

$$
a_{i j}=a_{i}+a_{j} \quad \text { and } \quad a_{i j k}=a_{i}+a_{j}+a_{k} .
$$

The reduced system $E(3,6)^{\prime}$ on C^{4} is written in the form of (1.1), where $x^{j}(1 \leq j \leq 4)$ are the coordinates on C^{4} and $u=u(x)$ is the unkown function. Let

$$
\begin{aligned}
& u_{j}=\partial u / \partial x^{j}, u_{i j}=\partial^{2} u / \partial x^{i} \partial x^{j} \\
& D_{1}=\left(x^{1}-1\right)\left(x^{4}-1\right)-\left(x^{2}-1\right)\left(x^{3}-1\right), D_{2}=x^{1} x^{4}-x^{2} x^{3}
\end{aligned}
$$

The singular locus of $E(3,6)^{\prime}$ are defined by

$$
\prod_{j=1}^{4} x^{j}\left(x^{j}-1\right) \cdot\left(x^{1}-x^{2}\right)\left(x^{1}-x^{3}\right)\left(x^{2}-x^{4}\right)\left(x^{3}-x^{4}\right) D_{1} D_{2}=0
$$

(see [MSY, p.51]).
Theorem . The system $E\left(3,6 ; a_{1}, a_{2}, \cdots, a_{6}\right)^{\prime}$ is equivalent to the following Pfaffian form:

$$
d \tilde{u}=\tilde{\omega} \tilde{u},
$$

ẅhere

$$
\tilde{u}={ }^{t}\left(u, x^{1} u_{1}, x^{2} u_{2}, x^{3} u_{3}, x^{4} u_{4}, D_{2} u_{14}\right)
$$

and

$$
\begin{aligned}
\tilde{\omega}= & \sum_{j=1}^{4} P_{j} d \log x^{j}+\sum_{j=1}^{4} Q_{j} d \log \left(x^{j}-1\right) \\
& +P_{12} d \log \left(x^{1}-x^{2}\right)+P_{13} d \log \left(x^{1}-x^{3}\right)+P_{24} d \log \left(x^{2}-x^{4}\right) \\
& +P_{34} d \log \left(x^{3}-x^{4}\right)+R_{1} d \log D_{1}+R_{2} d \log D_{2},
\end{aligned}
$$

$$
\begin{aligned}
& P_{1}=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 2-a_{246} & 0 & 0 & 0 & 0 \\
0 & a_{6}-1 & 0 & 0 & 0 & 0 \\
0 & -a_{3} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & a_{3}\left(a_{6}-1\right) & 0 & 0 & 0 & 0
\end{array}\right), \\
& P_{2}=\left(\begin{array}{cccccc}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & a_{5}-1 & 0 & 0 & 0 \\
0 & 0 & 2-a_{245} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -a_{3} & 0 & 0 & 0 \\
0 & 0 & a_{3}\left(1-a_{5}\right) & 0 & 0 & 0
\end{array}\right),
\end{aligned}
$$

$$
\begin{aligned}
& P_{3}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -a_{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2-a_{346} & 0 & 0 \\
0 & 0 & 0 & a_{6}-1 & 0 & 0 \\
0 & 0 & 0 & a_{2}\left(1-a_{6}\right) & 0 & 0
\end{array}\right), \\
& P_{4}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -a_{2} & 0 \\
0 & 0 & 0 & 0 & a_{5}-1 & 0 \\
0 & 0 & 0 & 0 & 2-a_{345} & 0 \\
0 & 0 & 0 & 0 & a_{2}\left(a_{5}-1\right) & 0
\end{array}\right), \\
& Q_{1}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
a_{2}\left(a_{5}-1\right) & -\left(2-a_{345}\right) & a_{5}-1 & -a_{2} & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \\
& Q_{2}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
a_{2}\left(a_{6}-1\right) & a_{6}-1 & -\left(2-a_{346}\right) & 0 & -a_{2} & -1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \\
& Q_{3}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
a_{3}\left(a_{5}-1\right) & -a_{3} & 0 & -\left(2-a_{245}\right) & a_{5}-1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \\
& Q_{4}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
a_{3}\left(a_{6}-1\right) & 0 & -a_{3} & a_{6}-1 & -\left(2-a_{246}\right) & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),
\end{aligned}
$$

$$
\begin{aligned}
& P_{12}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & a_{6}-1 & 1-a_{5} & 0 & 0 & -1 \\
0 & 1-a_{6} & a_{5}-1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & a_{3}\left(1-a_{6}\right) & a_{3}\left(a_{5}-1\right) & 0 & 0 & a_{3}
\end{array}\right), \\
& P_{13}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -a_{3} & 0 & a_{2} & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & a_{3} & 0 & -a_{2} & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & a_{3}\left(1-a_{6}\right) & 0 & -a_{2}\left(1-a_{6}\right) & 0 & 1-a_{6}
\end{array}\right), \\
& P_{24}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -a_{3} & 0 & a_{2} & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & a_{3} & 0 & -a_{2} & -1 \\
0 & 0 & -a_{3}\left(1-a_{5}\right) & 0 & a_{2}\left(1-a_{5}\right) & 1-a_{5}
\end{array}\right), \\
& P_{34}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & a_{6}-1 & 1-a_{5} & 1 \\
0 & 0 & 0 & 1-a_{6} & a_{5}-1 & -1 \\
0 & 0 & 0 & a_{2}\left(a_{6}-1\right) & a_{2}\left(1-a_{5}\right) & a_{2}
\end{array}\right), \\
& R_{1}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & a_{3}\left(a_{6}-1\right) & a_{3}\left(1-a_{5}\right) & a_{2}\left(1-a_{6}\right) & a_{2}\left(a_{5}-1\right) & -a_{123}
\end{array}\right), \\
& R_{2}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1-a_{234}
\end{array}\right) .
\end{aligned}
$$

Proof. Since $\bar{u}=\Lambda \vec{u}$ (see Section 1 for the terminologies), the Pfaffian form (1.2) given in [MSY, pp.52-55] changes to

$$
\bar{u}=(d \Lambda+\Lambda \omega) \Lambda^{-1} \tilde{u}
$$

A direct computation proves the theorem.
Remark. The (5,5)-element ω_{5}^{5} of ω given at [MSY, p.55] is wrong; it shoud be corrected as

$$
\begin{aligned}
\omega_{5}^{5}= & -\alpha_{123} d \log D_{1}-\alpha_{234} d \log D_{2}+\alpha_{2} d \log \left(x^{4}-x^{3}\right)+\alpha_{3} d \log \left(x^{1}-x^{2}\right) \\
& +\left(1-\alpha_{5}\right) d \log \left(x^{4}-x^{2}\right)+\left(1-\alpha_{6}\right) d \log \left(x^{1}-x^{3}\right) .
\end{aligned}
$$

The characteristic exponents along the singular locus of $E(3,6)^{\prime}$ in C^{4} are given in [MSY]. Those along the plane at infinity L_{∞} can be easily obtained by use of the Pfaffian form in the above theorem.

Corollary . Assume $a_{23}+a_{56}$ is not an integer. Then the characteristic exponents of $E(3,6)^{\prime}$ along L_{∞} are

$$
a_{23}, a_{23}, a_{23}, 2-a_{56}, 2-a_{56}, 2-a_{56}
$$

Acknowledgements. The author would like to thank Professors K. Matsumoto, T. Sasaki and M. Yoshida for their valuable advices.

REFERENCES

[Kt] M. Kato, A Pfaffian system of Appell's F_{4}, Bulletin of College of Edu. Univ. of the Ryukyus, No. 33 (1988) 331-334.
[MSY] K. Matsumoto, T.Sasaki and M. Yoshida, The monodromy of the period map of a 4-parameter family of K3 surfaces and the hypergeometric function of type (3,6), International J. of Math., Vol. 3 (1992) 1-164.

Mitsuo KATO
Department of Mathematics
College of Education
University of the Ryukyus
Nishihara-cho, Okinawa 903-0213
JAPAN
(e-mail: mkato@edu.u-ryukyu.ac.jp)

