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Appell’s Hypergeometric Systems Fy with
Finite Irreducible Monodromy Groups

Mitsuo KATO

1 Introduction.

H. A. Schwarz [Swz] determined Gauss’ hypergeometric differential equation
with finite irreducible monodromy group. The same problem for generalized hy-
pergeometric differential equation of , F,_ is solved by F. Beukers and G. Heck-
man [BH], for Appell’s Fy and Lauricella’s Fp by T. Sasaki [Ssk], for Appell’s
F4 by [Kt1], and for E(3,6) by K. Matsumoto, T. Sasaki, N. Takayama and
M. Yoshida [MSTY]. This paper solves the problem for Appell’s F.

1.1 Notations.
Appell’s hypergeometric function

(@,m+n)(b,m)(¥,n) m
em) @, n)Lm)Ln) 2"

=)
F2(a') b) b’) ¢, C/;m)y) = Z

m,n=0

where (a,n) = I'(a +n)/T'(a), satisfies the following system of differential equa-
tions of rank four ([AK]):

(1 = T)2z5 — TY2gy + (¢ — (@ + b+ 1)z)2; — byzy —abz =0
Y(1 = y)zyy — TYzzy + (' — (a+ V' + 1)y)2zy — V'z2; —ab'z=0

which we denote by Es(a,b,’,c,c’). This is an extension of Gauss’ hypergeo-
metric differential equation

z(1-z)2"+(c—(a+b+1)z)z' —abz=0

which we denote by E(a, b, c).
In this paper, we use the following notations:

A=1l—-¢, p=c—a-b v=>b-a,
N=1-¢, W= -a-V,V=b-aq,
S=\pv; N, V), 8=,V A ),
e(z) = exp(2miz).

1.2 Main theorems.

The aim of this paper is to prove the following theorems.
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Theorem 1.1. The system Es(a,b,b,c,c') has finite irreducible monodromy
group if and only if S or S’ is one of the followings:

i<%+l,%+m,%+n;§+l’,-§-+m’,§+n'),e=:l:1, (1.1)
:I:(—235+l,%+m,%+n;%+l’,§+m',§+n'>,e=:|:1, (1.2)
i(%f+l,§+m,§+n;§+l’,§+m',§+n’>,e_:ﬂ, (1.3)
ﬂ;(%+1,%+m,%+n;§+l’,§+m',§+n'>,15e<4, (1.4)
:I:(%—e-+l,i-+m,-‘11+n;%+l',§+m’,-§-+n’),e=:|:1, (1.5)
i(%+l,%+m,i+n;%+l’,§+m’,%+n'),e=:t1, (1.6)

where I,m,n,l',m/,n’ are arbitrary integers such that l+m+n andl' +m' +n’
are equal to a common even number. The monodromy group does not depend
on these integers l,m,n,l',m’,n'.

Theorem 1.2. Assume E; has a finite irreducible monodromy group Ma. Then
M, is a semidirect product of a normal subgroup N, (called the reflection sub-
group of My ) and an abelian subgroup A:

My=N, A, N.nA={1}.

IfS or 8 is (1.1), N, is the group G(2,2,4) in Shephard-Todd table in [ST],
S-T table, for short (a D4-type Cozeter group) and A~ Z3 x Z3 if e =1, and
A~ Z; 'I.f e=-1.

If§ or 8" is (1.2), N, is the group of No. 28 in S-T table (a Fy-type Cozeter
group) and A ~ Z3 x Zs.

IfS or 8’ is (1.3), N, is the group of No. 30 in S-T table (a Hy-type Cozeter
group) and A ~ Zs.

IfS or &' is (1.4), N, is the group of No. 30 in S-T table and A ~ Zs x Z3.

If S or & is (1.5) or (1.6), N, is the symmetry group of the regular complez
polytope 3(24)3(24)3(24)3, the group of No. 32 in S-T table, and A ~ Z,.

Concerning to finite irredycible unitary reflection groups of degree 4, we give a
sub-table of S-T table in Subsection 8.2.

Acknowledgements.! The author would like to thank Professors J. Kaneko,
T. Sasaki and M. Yoshida for their valuable advices.
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2 A monodromy representation of Es.
We recall some results from [Kt2]. Put
X =C?—{(z,9)|zy(z - 1)y - 1)(@+y—1) =0}, Po=(po,po) (2.1)

for sufficiently small positive number pg. Then the fundamental group m; (X, Pp)
with the base point Py is generated by the following five curves:

nm = {(z,y)|z=poe” 0<t<2m, y=po},

Y2 = {(z,y)|z=po, y=poe® 0<t< 2r},

n = {(@y)lz=y=1/2-(1/2 - p)e* 0 < t < 2r},

Y4 = Cdiagc:n:lcd_iig, Y5 = CdiagCy:]C‘;-'ig,

where

Ciiag ={z=y=1/2-(1/2-po)e ™ 0 <t <m},
Comi={z=1-pee 0<t<2m y=1-po},
Cy=1={y=1-pe* 0 <t < 2m, z=1-pg}.

Let V = V(P,) be the set of germs of holomorphic solutions of E; at Py.
Then V is a four dimensional vector space. For f € V and v € m (X, P), the
analytic continuation f+, of f along v again belongs to V(P,). We write

F)e = (fr)me = fre
if o' is continued after . This defines a monodromy representation
m1(X, Py) — GL(V(R)). ‘ (2.2)
We denote its image by
My(a,b,V,¢c,c'; Py) = Ma(a,b,b',c,c')

and call the monodromy group of Ey(a,b,¥’,c,c’). If S is obtained from param-
eters a,b, b, ¢, ¢/, we denote

Mg(S) = Mz(a, b, b,, c, Cl).

If j; 1 < j < 4 form a basis of V(Py), GL(V(Po)) is identified with GL(4, C)
and we have a representation p,, of m (X, Pp):

m(X, Py) 25 GL(4, C).
We say that the monodromy group Ms (br Ey) is irreducible if V(Pp) does
not have a non-trivial invariant subspace under the action of M;. We know

([Kt2]) that Ma(a,b,b,c,c’) is irreducible if and only if

a,c—a,c —a,c+c —a,bc-bb, -V &Z. - (2.3)
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Assume that neither ¢ nor ¢’ is an integer. Then E» has the following linearly
independent solutions ([AK], [Kmr]):

fi = Fa(a,b,b,¢c,c';z,y),
fo=z'"F(1l+a-cl+b—cb,2—-cc;z,v),

fa= " F(l+a-d,b1+b —c,c2-c;z,v),

fa=z' Y FBQ2+a-c—c,1+b—c1+b —¢,2-¢,2~ d;z,y).

(2.4)

Assume moreover the irreducibility condition (2.3) and we fix the basis ¢;; 1 <
Jj < 4 of V(BR) as follows:

_ D(a)T(®)T(v)
Y1 = W f1,
_ Fl+a-c)l(1+b-c)I(¥)

#2 T - oT(c) h 05
_Tl+a- )BT+ -C) I '
¥ = T(QL(2 - ) 3
_T@R+a-c-)TA+b-c)T'(1+b ) f
$a= T2-ol2-7¢) ¢
By use of this basis ¢;, we identify My with p,(m (X, Pp)):
My = py(mi(X, Po)). (2.6)
From [Kt2], we have .
1 0 0 0
0 e(l-¢) 0O 0
= 2.
re)=10 "o 1 o | (2.7)
\0 0 0 el-c¢
1 0 0 0
01 0 0
= 2.
p¢(72) 0 0 e(l _ c/) 0 ) ( 8)
0 0 0 e(l-¢)
1
1
Pe(13) =Is +e3 ) (731, 732, 733, 734), (2.9)
1
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sinw(c’ — ')

sinw(d’ = ¥')
e((1-¢')/2)sinnd
e((1 - c')/2) sinwd’

Po(va) = Is+e4 (Y41, 7425 V43, Ya4),

sinm(c —b)
e((1 — ¢)/2)sinwb :
=1
Po(1s) = Is +es sin(c — b) (51,752,753, ¥54)

\e((l —¢)/2)sinmb

where
es =2ie((c+c —a—b-1b")/2)/sinmcsinwc,
eq =2ie((c+b' —a—b)/2)/sinmesinmc,
es = 2ie((c +b—a—1b')/2)/sinmesinwc,
~31 = —sinwasin whsin b/,
Y32 = sinm(c — a) sinw(c — b) sinwd’,
733 = sinw(c’ — a) sinwbsinw(c’ — b'),
v34 = sinm(c+ ¢ — a)sinw(c — b) sinw(c’ — b’),
Y41 = — sinwasin b,
Ya2 = sinm(c — a) sinw(c — b),
Y43 = e((¢' = 1)/2) sinw(c’ — a) sin 7b,
Yaa = e((c' = 1)/2)sinm(c + ¢’ — a) sinw(c —b),
751 = —sinwasinwd’,
752 = e((c — 1)/2) sinw(c — a) sinwd/,
753 = sinw(c' — a)sinw(c' - V'),
754 = e((c — 1)/2) sinw(c + ¢’ — a) sinw(c’ - b').
Put

v3 = (Y31, 732,733, 734),
vg = (741,742,743, 744), Vs = (Y51, V52,753, V54)-

Then, by direct calculations, we have

V3 pp(13) = elc+c —a—b—b)vs,
V4 pp(7a) = e(c + b — a — b)vy,
vs po(7s) = e(c' + b —a — b')vs.

From the symmetry
(a,b,V',¢,¢';z,y) «— (a,b',b,¢, ¢y, 2),
we have

Mz(S) jad MQ(S/).
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Lemma 2.1.
Mo (—8) =~ Ma(S). (2.16)

Proof. Let parameters a4,by, b, cy,c/, generate S and a_,b_,b",c_,c_ gen-
erate —S. Then since

ax =1/2F (A+p+v)/2,
by =artv, by =ar £V, ca =1FA L =1F N,

we have

a-=1l-ay, b_=1-by, b =1-b,,c_.=2—-cy,c_=2-¢. (217
+ + + +

Hence we have
M2(a—) b-—a b/—) Cc—, C’_) = MZ(_O‘+) _b+) _b{q-» —C+, —Cf'_).

From (2.7)-(2.12), we find that if the parameters (a, b, b, ¢, ¢’) change their signs
simultanuously then p,(7;); 1 < j < 5 change to their complex conjugate. Thus
we have

My(—ay, =by, =by, —c4, —¢}) = Ma(ay, by, by, ey, €4 ).
This completes the proof. O

Theorem 2.2. Assume that Ey is irreducible and that ¢, ¢’ € Z. Assume more-
over that a,b,b’,c, ¢’ are rational numbers and have a common denominator n.
Let k be an odd integer satisfying (k,n) = 1. Then we have

M, (ka, kb, kb', ke, kc') ~ Ma(a,b,b',c,c').

Proof. Put § = exp(mi/n). Then all the components of p,(7;) belong to Q[¢].
Hence any relation among p,(71) ~ pp(7s) is expressed by fi;(€) = 0 for some
polynomials f;;(X) € Q[X]; 1 < 4,5 < 4. Since the minimal polynomials of &
and ¢* in Q[X) are the same, that is X™ + 1, f(£) = 0 if and only if f(£*) =0
for f(X) € Q[X]. This means that p,(11) ~ py(7s) satisfy the same relation
if the parameters a,b,b’,c,¢’ change to ka, kb, k', ke, k¢'. This completes the
proof. O

We denote by N, = N.(a,b,t',c,c’) the smallest normal subgroup of M,
containing p,(73), pp(74) and py(7s). That is,

Ny = (po(BVV 72 ‘riP)lpa,r € Z, § = 3,4,5). (2.18)

Then we have
Ma(a,b,t,c,c') = Np(a,b,b',¢,¢') - (pp(1), o (712))- (2.19)

From (2.9), (2.10),:(2.11) and (2.14), we find that the eigenvalues of p,(73)
are 1,1,1,e(c+c’ —a—b—b'), those of p,(v4) are 1,1,1,e(c+b' —a - V'), and
those of p,(7vs) are 1,1,1,e(c' +b—a—b). Hence if a,b,V’,c,¢’ € Q and none of
c+cd—a—-b-b,c+b —a-b,c +b—a—bisan integer then p,(73), pp(74)
and p,(7s) are reflections. So we call Ny.(a,b, ¥, ¢,c’) the reflection subgroup of
My(a,b,b,c, ).
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Theorem 2.3. Assume that M, is irreducible and that c,c’ ¢ Z. Then the
reflection subgroup N, of Ms is also irreducible.

Proof. In this proof we denote p,(v;) by g; and identify u = (u1,uz,us3,uq)
with up in V/(FPp).

Assume that N, acts on V(FP) reducibly, that is, there exists a non-trivial
subspace W of V(P) invariant under the action of N,. We will derive a con-
tradiction. :

Recall that v; is an eigenvector of g; for j = 3,4,5 (see (2.13), (2.14)).

(Case 1) Assume vz € W.
From (2.10) and (2.12), we have

v3(ga — Is) = —2ie"™* sin b’ sinw(c’ — b') va,

which is in W by the invariance of W. From the irreducibility condition (2.3),
we have v, € W. By the same way, the fact that v3(Iy — g5) € W implies that
vs € W.

By the invariance of W, we have, for j = 3,4,5,

vj - ((9192)93(9192) ™" — L) = esbjvs(g192) "' € W,

where
8 = Y1 + e(—=c)vjie + e(—c')vjz + e(—c — ¢ )vja.

(Case 1.1) Assume §; # 0 for some j.
Then v3(g192)~! € W. Since

]

v (bbb et e’) i
det 1)4 = 4™ (b+b'+ete) (5in ¢ sin ¢f)?
5 .

v3(9192) ™}
x sinwasinm(a — ¢)sinw(a — ¢')sinw(a —c— )
x sinwbsinw(b — ¢) sin b’ sinw (b’ — '),
W must be the whole space. This is a contradiction.

(Case 1.2) Assume §; =0 for j = 3,4, 5.
In this case, (z2,x3,24) = (e(—c), e(—c’),e(—c — ¢’)) is the solution of

i1+ v2%2 + 5323 + vjaTa =0 j=3,4,5.
Therefore, we have 4 — zoz3 = 0. But, by direct computation, we have

sinwasin wbsin b sin mesin wc!
sinm(a — ¢ — ¢)sinw(a — ¢)sinw(a — ¢/)sinmw(b— ¢)sinw (¥ — ¢')

Ty — T2T3 =

which cannot be zero by the assumption of this theorem. This is a contradiction.

(Case 2) Assume vz & W.
First we know that v4, vs € W. For, otherwise, if v4 € W, then -

3 / . .
va(gs — I3) = —eze™ ¢t —2=Oginresinmc’ v € W
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which implies vz € W.
Let u = (u1,ug, u3, uq) be an element of W. Then

u(gs — Is) = (u1 + ug + u3 + uq)es v3

is in W. Hence we must have

Uy +ug + us + uqg = 0. ) (2.20)
Now
u(gs — Iy) = dequqs € W, where
§ = (w1 +ug)sina(c’ — b') — (us + ug)e™™ sinnb’.
From (2.20),

8 = (uy + ug)e™ sinmc’

which must be zero. Hence we have

up +ug =0. (2.21)
By the same way, from u(gs — I;) € W, we have

uy +uz =0. (2.22)
Equalities (2.20), (2.21) and (2.22) imply that

u=(1,-1,-1,1)
up to constant multiplication and that
W =((1,-1,-1,1)).
Ifu=(1,-1,-1,1), then

b

u(g29595 * — Is) = es(1 — e(—c'))e ™ sinmcuvsgy € W.

Hence vsg; * € W. This implies, for example, that Y51 ¢ Y52 = 1 : —1. This
means

e™°sinm(c — a) = —sinwa,
which is equivalent to
e™c=%) sinme = 0.

This is a contradiction.
In any case we have a contradiction. This completes the proof. O

We denote by M(a,b,c) the monodromy group of Gauss’ hypergeometric
differential equation E(a,b,c). It is well known that M(a,b, c) is irreducible if
and only if none of a,b,¢c — a,c — b is an integer.
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3 Restrictions of F, to {z =0} and {y = 0}.

Assume in this section that My(a,b, ¥, ¢, ') is finite and irreducible.

It is known that Ex(a,b,b’,c,c’) has characteristic exponents 0,0,1—¢,1—c¢
along L, := {(z,y)|z = 0} and 0,0,1 — ¢/,1 — ¢’ along L, := {(z,y)|ly = 0}.
Concerning to these exponents we have the following lemma.

Lemma 3.1. 1—¢,1-¢ ¢ Z.

Proof. Assume ¢ € Z. Then E; has a solution of the form g;(z,y)logz +
g2(z,y) where g; are holomorphic along L and g1 # 0 ([Kt2, Section 7]). This
contradicts the finiteness of M. Similarly, we have ¢’ € Z. O

Lemma 3.2. Gauss’ hypergeometric differential equations E(a,b,c),
E(1+4+a-c,b,c), E(a,b/,c') and E(1 +a— ¢, b',c') all have finite irreducible
monodromy groups.

Proof. Since neither c nor ¢ is an integer by the previous lemma, Es(a, b, ¥, ¢, )
has solutions fj; 1 < j < 4 (2.4). The restrictions of fi and f, to Ly form
a fundamental solutions of E(a,b,c). Hence M(a,b,c) must be finite. The
restrictions of f3/y'~¥ and fp/y'~¢ to L, form a fundamental solutions of
E(1+a-¢,b,c). Hence M(1+ a — c,b,c) must be finite. By the same way,
M(a,b',c') and M(1+ a —c,b/,c’) are also finite.

By the irreducibility condition (2.3), M(a,b,c), M(1+a—c¢,b,c), M(a,b’,c’)
and M(1+a—c,b,c') are all irreducible. O
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4 Proof of the “only if” part of Theorem 1.1.

It is well known that Gauss’ hypergeometric differential equation E(a,b,c) has
a finite irreducible monodromy group M(a,b, c) if and only if the triple

Ap,v)=(1—c¢,c—a—bb—a)

belongs to Schwarz’ list (S-list) (after acting the following operations finite times:
permutations of A, p, v,
individual change their signs,
replacing by (A + 1,4+ m,v + n) with I, m,n € Z and | + m + n even)
(see [Swz], [Iwn], [CW] and Section 8 of this paper).
By Lemma 3.2, we know that if My(a, b, ¥, c,¢’) is finite irreducible then the
following four conditions hold.

(A, p,v) belongs to S-list, (4.1)

(X, ¢, V') belongs to S-list, (4.2)

(A= A,v—X) belongs to S-list, (4.3)

(M, 1 = A\, v — X) belongs to S-list. (4.4)
We always have

Adp+tv=XN+py +V (=1-2a). (4.5)

Lemma 4.1. Assume that M(a,b,b',c,c’) is finite irreducible. Then S or S’
is one of (1.1) — (1.6) of Theorem 1.1.

Proof. Let

/\=p/s,u=q/t, u=r/'u,, /\/=pl/sl, I—"=ql/t’3 V/=T"/U,

be irreducible fractions.

(Case 1) We first deal with the case when

s,t,u, st u' € {2,3,4,5}.

(Case 1.1) We deal with the case when s or s’ is 2.
We assume s’ = 2. Then (4.3) implies t = u = 4. Then s = 3 by (4.1). Then
(4.4) implies that ¢ = u' = 3 and that ¢’ = 7’ mod 3. Now the denominator of
the right hand side of (4.5) is 6 whence we have ¢ = 7 mod 4 and moreover the
equality (4.5) implies that p = 2¢’ mod 3 and p’ = ¢ mod 2. Thus S takes the
form of (1.2).

If s = 2 then S’ takes the form of (1.2).

(Case 1.2) Assume that s,s’ # 2 and s or &’ is 4.
Assume, for example, that s’ = 4. Then (4.3) implies that ¢ and u are even.

If t = u = 2 then (4.3) implies s = 3. Then (4.4) implies t' = v’ = 3 and
(4.2) cannot happen.

If t = u = 4 then (4.1) implies s = 3. Then (4.2) cannot happen as above.

If {t,u} = {2,4} then s = 2 or 3 by (4.1), but s cannot be 3 as above. On
the other hand, if s = 2 then ¢/ = v’ = 4 by (4.4) whence (4.2) cannot happen.
This concludes that (Case 1.2) cannot happen.
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(Case 1.3) Assume s = s’ = 3.
Then (4.3) and (4.4) imply that t =u=¢t'=v' =3 and that g=r,¢' =7',p #
q',p' # g mod 3. Thus S takes the form of (1.1).

(Case 1.4) Assume s = s’ =5.
Then (4.3) and (4.4) imply that t = v = ¢’ = v’/ = 5. Then (4.1),(4.2) and
(4.3) imply that we have the following two possibilities. That is, p,q,7 = %1,
p',q¢,r" = +2 or p,q,r = £2, p',¢',v" = £1 mod 5. Moreover (4.3) and (4.4)
imply that ¢ = 7,¢’ = r’ mod 5. Finary (4.3) and (4.4) imply that p = 2¢,q =
r=2¢,p=4é,¢d =r"=¢corp=4de,q=r=¢,p =2, =r' =2¢mod 5
and €,¢’ = £1. Thus S takes the form of (1.3).

(Case 1.5) Assume s =5,5" = 3.
Then (4.3) implies t = u = 3, ¢ = r mod 3 and (4.4) implies ¢’ = »' = 5. Then
(4.5) implies p = ¢’ + 7’ mod 5 and p’ = g + r mod 3. Now as for the values of
¢’ and ', there are three cases, that is,
. (Case 1.5.1) ¢, = £1 mod 5,
(Case 1.5.2) ¢/,7' = £2 mod 5 and ‘
(Case 1.5.3) ¢' = £1,7 =42 or ¢’ = £2,7' = 1 mod 5.

As for (Case 1.5.1) and (Case 1.5.2), we have ¢’ = 7/ mod 5 because p = ¢’ +7'
mod 5. Then S takes the form of (1.4).

We will next show that (Case 1.5.3) does not happen. If, for example,
¢’ = +1,7’ = +2 mod 5 then p = 3 mod 5. Then S takes the form

3 € € 2e 1 2
=241 = £ R e 14 ' = +1
S <5 ,3+m,3+n,3+ ,5+m,5+n),€ )
where I,m,n,l',m',n’ € Z with l + m +n ="+ m’ + n’. The condition (4.1)
implies that ! + m + n is odd and (4.2) implies that I’ + m’ + n' is even. This
is a contradiction. Hence (Case 1.5.3) does not happen.

(Case 2) We next deal with the case when some of s,t,u,jé’ ,t,4’ is not in
- {2,3,4,5}.

We note first that s, s’ must bein {2,3,4,5}. For, otherwise, if s ¢ {2, 3,4, 5},
then (4.1) and (4.3) imply that y,v,u — X, v — X = 1/2 mod Z. This implies
that ) is an integer. This is a contradiction.

(Case 2.1) Assume u ¢ {2,3,4,5}.

The condition (4.1) implies that A\,x = 1/2 mod Z. Then (4.3) implies that
N #1/2 mod Z and (4.4) implies that ¢’ = u' = 4. Then (4.2) implies s’ = 3.
Since the denominator of p — A’ is 6, (4.3) implies that » — A’ = 1/2 mod Z.
This implies that u = 6.

(Case 2.1.1) Assume v =1/6 mod Z.

Then X = 2/3 mod Z because v — )\’ = 1/2 mod Z. Then (4.5) implies that
# +v' =1/2 mod Z. Hence there are two possibilities, that is, p’,v/ = 1/4
mod Z and p',v' = —1/4 mod Z. In both cases, S’ takes the form of (1.5) of
Theorem 1.1.

(Case 2.1.2) Assume v = —1/6 mod Z.

Same as the above case (Case 2.1.1), S’ takes the form of (1.5) of Theorem 1.1.

(Case 2.2) Assume t ¢ {2,3,4,5}. ,

By the same reasoning as in (Case 2.1), we know that S’ takes the form of (1.6)
of Theorem 1.1.
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In case of t or v’ ¢ {2,3,4,5}, S takes the form of (1.5) or (1.6) of Theo-
rem 1.1.
This completes the proof. O

Lemma 4.2. Let, for j = 1,2, S; = (Aj, pj, V55 N, 15, V) be obtained from the
parameters (a;, bj, b}, c;, ¢;) satisfying the irreducibility condition (2.3). Assume

8‘2 = Sl + (l,m,n; l,’ml’n’))

where l,m,n,l',m’,n’ are integers such that [+ m+n and l'+m'+n' are equall
to a common even number. Then we have

Mg(Sl) ~ Mg(Sz).
Proof. Since

a; =1/2 = (A + p5 +v5)/2,
bj =a; +vj, b;.=a,-+u;-, c;=1-2Xj, C_; ='1_)\;,

a1 =ag,by =be,...c} =c, mod Z. This proves the lemma. O

Proof of the “only if” part of Theorem 1.1.
Lemma 4.1 and 4.2 proves the “only if” part of Theorem 1.1.
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5 The system E, with quadric property.

T. Sasaki and M. Yoshida ([SY]) proved that E3(a,b,V,c,c’) has the quadric
property (that is, four linearly independent solutions are quadratically related)
if and only if .
c=2b, ' =2V, (5.1)
b+b —a=1/2. : (5.2)

The condition (5.1) is equivalent to
p=v, g =v. (5.3)

Under the condition (5.1), the equality (5.2) is equivalent to one of the following

four conditions:
c+cd—a-b-b=1/2,c+b -a-b=1/2, +b—a-b =1/2, (5.4
A+ N=p+v+p +0. '

Remark 5.1. E; has the characteristic exponents 0,0,0,c+c’ —a—b—1b' along
{z+y=1},0,0,0,c+b —a-1>balong {z =1}, 0,0,0,c' +b—a— b along
{y=1}.

We note that if S or 8’ is one of (1.1)~(1.4) of Theorem 1.1 then Ej has the
quadric property (5.1) and (5.2) if weput l=m=n=10'=m'=n'=0.
Let .

¥ (z,y) — (4,0), u= <—‘”—y)2 v= (%)2 (5.5)

2—z— —-zT-y

be the 4 : 1 mapping of P2 to P? ramified along three lines {u = 0}, {v = 0}
and the line at infinity L.

. We denote by Fy4(e,B,7,7') the system of differential equations of rank
four satisfied by Appell’s hypergeometric function Fy(a,B,7,7';u,v) and by
My(a, B,7,7') the monodromy group of E4(c, 3,7,7'). For these notations, see
[Kt1].

Put as (2.1),

X =C - {(z,9)|zy(z - )(y - 1)z +y - 1) = 0}, Po = (po, po)
and
X' =X - {(z,y)lz+y =2} (5.6)
And put
Y =C? — {(u,9) |w((u—v)® - 2(u+9) +1) =0}, Q=%(P). (5.7)
Then
P: X —Y | (5.8)
is a 4-sheeted covering with ¥(X') =Y. |

Since X' is Zariski open in X, the following lemma holds.
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Lemma 5.1. Letv: X' — X be the inclusion. Then
L s (X', Py) — mi(X, Po) (5.9)
18 onto.

We denote by V(Qo) the set of germs of solutions of Eq(e, 8,7,7') at Qo,
where

1 1
——a;rl,7=b+—, Y =bt+5 (5.10)

a
a=g 8= 2

In [SY], the following lemma has been proved.

Lemma 5.2 (Sasaki-Yoshida). Assume (5.1) and (5.10) then we have
P*(V(Qo)) = 2 —z - y)* V(R). (5.11)
Put Qo = (g0,90). We define 4; € m (Y, Qo), j = 1,2, 3 in the following way.
= {(x,v) |u=goe” 0 <t < 2m, v=qo},
¥2 = {(u,v) |u = go, v = goe® 0 < t < 27},
3= {(u,v) |Jlu=v=1/4—(1/4 — go)e* 0 < t < 27}.
Since 9 : X’ — Y is a (4-sheeted) covering,
Yt m (X', Po) — m1(Y, Qo) (5.12)
is injection. It is clear that
¥; € Yu(m(X', Bo)); 5 =1,2 and Tu¥e = Ao (5.13)

Lemma 5.3. 9.(m (X', Po)) is a normal subgroup of m1(Y, Qo) with indez 4.
And we have

m1(Y, Qo) = Yu(mi (X', Po)) - (71, 72)- (5.14)

Proof. Since 41,42, %172 induce the covering transformations of (5.8) defined by
(z,9) — (z/(z - 1), —y/(z - 1)), (5.15)

(2,9) — (-2/(y - 1),y/(y - 1)), (5.16)

(z,9) — (z/(z+y—1),y/(z +y.— 1)) (5.17)

respectively, the covering transformation group acts transitively on any fiber of
% and is isomorphic to (4;,42). This proves the lemma. O

-We fix a basis ¢;; 1 < j < 4 of V(Qo) such that
pi=02-z—-y) TP (P;); 1< <4 (5.18)

hold (see (2.5) and (5.11)). We identify My(c, B,0',7,7") with pg(m1 (Y, Qo)),
where o, 8, 3',7,7 are as in (5.10). Thus we have

My(a,8,8',7,7') = pa(m1(Y, Qo). (5.19)
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We have the following commutative diagrams.
m(X', ) —2= m(Y, Qo)
pw'(a)l pal (5.20)
GL(4,C) —*— GL(4,C)

m (X', Po) —t> m (X, R)
Pwl Pwl (5:21)
GL(4,C) —2— GL(4,C)
Lemma 5.4. As subsets of GL(4; C), we have
py(3) (M1 (X', Po)) = po(mi (X, Fo)) - (e(a)]a), (5.22)
P3(m1(Y, Qo)) = py () (M1 (X', Po)) - {pg(F1), P (F2))- (5.23)
Proof. Since ; are holomorphic along {z + y = 2}, we have, from (5.18),
Pye() (X', Po)) = po(m1 (X', Po)) - {e(a)s).
From (5.21), we have :
Pe(m (X', Py)) = pp(m1(X, Po)).
Hence (5.22) holds. From (5.14), we have
pa(m1(Y, Qo)) = pa(¥u(m (X', Po)) - (1, 72))

= pg(Yu(m1(X', Po))) - ({71, 72))
= pye (@) (M (X", Fo)) - (p3(M), p5(T2))-

O

Lemma 5.5. Assume (5.1), (5.2) and (5.10). Then there ezists a subgroup M
of GL(2, C) such that

M ~ M(a,8,7) ~ M(e, 8,7"), (5.24)
and that the subgroup (M ® M) - (ps(73)) of GL(4,C) is isomorphic to My:
Ma(e, 8,8',7,7') = (M ® M) - (p;(3))- (5.25)

We have moreover

(M @ M) N (pp(¥3)) = {Ia}, (pp(¥3)) = Za. (5.26)

Proof. From (5.1),(5.2) and (5.10), we know that My(c, 8, B',,7') is irreducible
and that

Y+9 -a-B-1=0.

Hence the lemma follows from Proposition 4.1 of [Kt1]. 0O
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6 Proof of the “if” part of Theorem 1.1.

If S or &’ is one of (1.1)—(1.6) then (2.3) holds whence F; is irreducible. We
will prove the finiteness of M,. From (2.15) and (2.16), we may assume that S
is one of (1.1)-(1.6) with the sign “ +”.

6.1 S is one of (1.1)—(1.4).

Assume that S is one of (1.1)—(1.4) of Theorem 1.1.
Since M, does not depend on the integers I, m,n,l’,m’,n’ (Lemma 4.2), we
put

l=m=n=U=m'=n"=0.

Then E; has the quadric property (5.1) and (5.2). Recall a,f,8',7,7 are
defined by (5.10). Then we find that (, 8,v) belongs to S-list. Hence M (e, 8,7)
is finite. Then Lemma 5.4 and 5.5 imply that M, is finite.

6.2 Sis (1.5) or (1.6).

Assume that S is (1.5) or (1.6) of Theorem 1.1.
We denote the generators p,(7v;) of Ma = p,(m1(X, Py)) by g;:

95 = Pp(73); 157 <6,

By considering the eigenvalues of g;, we have

gi=195=198=gi=g=1 (6.1)
Put
™1 =05, T2= 03,73 =05 ', T4 = 94(9192)9(9192) V95 ", (6.2)
and
R = (ri,72,73,74) (6.3)

a subgroup of N,. Theser;; 1 < j < 4 are chosen so that the following equalities
hold (cf. [ST, p.300]):

r?=r§=r§=7‘2=1,

T1T3 = T3T1, T1T4 = T4T1, T2T4 = T4T3,
T121 = 21T, T222 = 23T2, T323 = 23T3,

zf = z§ = zg =1,
whére
z1 = (r112)?, 22 = (r273)?, 23 = (rsra)?.
From (6.2), we have

93, 94, 95 € R. : (6.4)
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and by direct computations, we have

g1 = ra(rar1)2rariririeieierieie?, (6.5)
929395 " = riririri(rora)?(rire)?ry, (6.6)
929597 * = (rar4)?r1r2ri(rary)?. (6.7)
From (6.2), (6.4) and (6.5), we have
920497 € R.
From (2.18), we have
N: = (9793959, %91 Flp,7 = 0,1,2,¢4=0,1; j = 3,4,5)
in this case. Consequently we have
| 'N,=R. (6.8)
There exists a matrix U so that the following equalities hold:
1 0 0 O w w? wr 0
UrU~! = g . uf’z g , UrgU‘1=:/—% Z: ! “f g ,
\0 0 0 1 0 0 0 iV3
T (%7 o
UrsU™ =14 o .1 o U’"‘*U"l:T% o o Wi 0|
0 0 01 ~w? W 0w
w=¢e(1/3)
(6.9)

The matrix U above is determined in the following way. Put

U
U2
Uus
Ug

U

Then (6.9) implies, for example,

ug is an eigenvector of r3 corresponding to the eigenvalue w?,

ug is an eigenvector of 7; corresponding to the eigenvalue w?,

uy4 is an eigenvector of r1,72 and r3 corresponding to the eigenvalue 1,

u1 — u3 is an eigenvector of ro corresponding to the eigenvalue 1,

ug — ug is an eigenvector of 7o corresponding to the eigenvalue 1,

Uz — uq4 is an eigenvector of r4 corresponding to the eigenvalue 1,

U3 + u4 is an eigenvector of r1,73 and 4 corresponding to the eigenvalue 1.

These determine u;; 1 < j < 4 and we have.

(6.10)

1-iV3 1 (1+v3)2(V3+i) i(1+v3)?
2 7y 2
i i(1+v3)? (1+v3)?
_ 2 2
U=l _au (VD0 204V HAEVE (V8-
2

(1+x/§2)(1+=‘) _(4v3)(1+i)
2
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r—,f—'——*—‘”—‘"‘v—’ T

The equalities (6.9) imply (see [ST, 10.5]) that R (= N,) is the group of
No. 32 in S-T table, that is, the symmetry group of order 155520 of the regular
complex polytope 3(24)3(24)3(24)3 ([ST, p. 300]).

From (2.19) and (6.5), we have

My = N, - (py(1))- (6.11)

This proves the finiteness of Ms.
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7 Proof of Theorem 1.2.

We will determine the reflection subgroup N, and the abelian subgroup A in
Theorem 1.2, when S or &’ is one of (1.1)—(1.6) of Theorem 1.1. In any case,
N, is irreducible reflection group (Theorem 2.3), whence it is one of the groups
in S-T table ([ST, Table VII]) (see also Subsection 8.2). From (2.15) and (2.16),
we may assume that S is one of (1.1)—(1.6) with the sign + ”. Recall again
the identifications (2.6) and (5.19).

7.1 S is one of (1.1)—(1.4).

In this subsection, we assume that S is one of (1.1)-(1.4) of Theorem 1.1 with
l=m=n=0I'=m'=n'=0. (7.1)

Hence Es has the quadric property (5.1) and (5.2). My denotes the monodromy
group of E4(a, B,7,v") with (5.10).

Lemma 7.1. If A = 2m/n (resp. X' = 2m/n) with odd n then pg(%1) (resp.
Pe(72)) € Py~ (5)(m (X', Po)) (cf. (5.23)).

Proof. Assume, for example, that A = 2m/n with odd n. From (5.1) and (5.10),
we have 1 — vy =m/n. E4 has linearly independent solutions of the form

fl(u)v)) f2(u)'v), ul"7f3(u,v), ul_'yf‘l(u)v)a

where f;(u,v) are holomorphic along {u = 0} ([AP], [Kt1]). Hence we have
pg(M)™ = I4. Choose p,q € Z such that 2p + ng = 1. Then

Pe(T1) = pp(1)?PH™ = pg (32)P

which is in pg(1.(m (X', Pp))) by (5.12) whence in py. (g (m (X', o)) by the
commutative diagram (5.20). O

Lemma 7.2. We have
e(a)ly € pp(m (X, Po)) (7.2)

(cf. (5.22)).

Proof. E3(a,b,,c,c’) has characteristic exponents a, a,a,b+ b’ along Lo, with
b+ b —a = 1/2 (see (5.2)). Hence, by considering a loop surrounding Lo,
we know that e(2a)ly € M,. So if e(ka)ly € M; for some odd integer k, we
conclude e(a)ly € M,.
, We note that Ez(a,b,b',c,c’) has characteristic exponents b,b,a,1 +a — ¢’
along {z = oo}, V/,V',a,1+ a — ¢ along {y = oo}. By considering a loop

surrounding {z = oo} or {y = oo}, we get the following facts (e = +1).

IfSis (1.1), b—a=¢/3 and 1 — ¢’ = 2¢/3. Hence e(3a)ly € M.

If Sis (1.2), b’ —a=¢/3 and 1 — ¢ = 2¢/3. Hence e(3a)ly € M.

If S is (1.3), b— a =2¢/5 and 1 — ¢’ = 4¢/5. Hence e(5a)l4 € M,.

If Sis (1.4), b—a=¢/3 and 1 — ¢/ = 2¢/3. Hence e(3a)ly € M,.
This completes the proof. O
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Lemma 7.3. Let M be the subgroup of GL(2,C) in Lemma 5.5.
If S is one of (1.1), (1.3) and (1.4) then we have

.

My =~ (M ® M) - (p3(73))- (7.3)
If S is (1.2) then we have

M; - (pp(32)) = (M ® M) - (pp(73)) - (7.4)

In the right hand side of (7.3) and (7.4), we have
(M ® M) N{pp(13)) = {Is}, (p5(73)) = Za. (7.5)

In the left hand side of (7.4), we have

pe(12)? € My. (7.6)
Proof. Lemma 5.4, 5.5, 7.1 and 7.2 imply (7.3) and (7.4). (7.5) is nothing but
(5.26). (7.6) follows from (5.12), (5.20) and (5.22). O

Remark 7.1. Later (see (7.28)), we will see that

M, N (pgp(72)) = {1a}
in (7.4). A
Lemma 7.4. My with S being (1.2) of Theorem 1.1 are all isomorphic.

Proof. 1t suffices to prove that M, with S being (1.2) with € = 1 is isomorphic
to that with e = —1. We have the following correspondence:

S — (a,b,b,c,c)
(2/3,1/4,1/4; 1/2,1/3,1/3)  «— (-1/12,1/6,1/4,1/3,1/2)
(—2/3,1/4,1/4; 1/2,-1/3,-1/3) «— (7/12,5/6,1/4,5/3,1/2)

By Theorem 2.2 (n = 12, k = 5), the corresponding two monodromy groups
are mutually isomorphic. O

Lemma 7.5. M, with S being (1.3) of Theorem 1.1 are all isomorphic.

Proof. It suffices to prove that M, with S being (1.3) with ¢ = 1 is isomorphic
to that with e = —1. We have the following correspondence:

S — (a,b,,c,c')
(2/5,2/5,2/5; 4/5,1/5,1/5)  «— (—1/10,3/10,1/10,3/5,1/5)
(-2/5,2/5,2/5; 4/5,~1/5,—1/5) «— (3/10,7/10,1/10,7/5,1/5)

By Theorem 2.2 (n = 10, k = 7), the corresponding two monodromy groups
are mutually isomorphic. O

Lemma 7.6. My with S being (1.4) of Theorem 1.1 are all isomorphic.
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Proof. 1t suffices to prove that My with S being (1.4) with € is 1,2,3 and 4 are
all isomorphic. We have the following correspondence:

S — (a,b,b,¢,c")
(2/5,1/3,1/3; 2/3,1/5,1/5) «—  (—1/30,3/10,1/6,3/5,1/3)
(4/5,1/3,1/3; 2/3,2/5,2/5) «—  (—7/30,1/10,1/6,1/5,1/3)
(6/5,1/3,1/3; 2/3,3/5,3/5) +— (-13/30,-1/10,1/6,-1/5,1/3)
(8/5,1/3,1/3; 2/3,4/5,4/5) «— (—19/30,—3/10,1/6,—3/5,1/3)

By Theorem 2.2 (n = 30, k = 7,13,19), the corresponding four monodromy
groups are mutually isomorphic. O

Concerning several monodromy groups M(e, 3,v), we have the following
lemma by direct computations.

Lemma 7.7. Let |G| denote the order of a group G. We have

|M(-1/12,5/12,2/3)] = 72,
|M(1/4,3/4,4/3)| = 24,
|M(—1/24,11/24,2/3)] = . 288,
|M(-1/20,9/20,4/5)] = 600,
|M(-1/60,29/60,4/5)] = 1800.

Proof of Theorem 1.2 for S being one of (1.1)—(1.4).
From (2.19), we have

M, =N, . (P¢(71)»Pw('72))'

From Lemma 7.4-7.6, it suffices to verify for the following cases:

S =(2/3,1/3,1/3; 2/3,1/3,1/3), (1.7)
S =(-2/3,1/3,1/3; 2/3,-1/3,-1/3), (7.8)
S =(2/3,1/4,1/4; 1/2,1/3,1/3), . (7.9)
S = (2/5,2/5,2/5; 4/5,1/5,1/5), (7.10)
S = (2/5,1/3,1/3; 2/3,1/5,1/5). (7.11)

Recall M denote a subgroup of GL(2,C) in Lemma 7.3.

The case of (7.7). .
In this case, M ~ M(-1/12,5/12,2/3). From Lemma 7.3 and 7.7, we have
[Ma| = 7212 2. Since (pyp(m), pp(V2)) = Z3 X Z3, |N,| = 26 . 3%, where k = 1
or 2 or 3. Hence N, = G(2,2,4) in S-T table with |N,| = 28 . 3. This again
implies that

Mz =Ny - A, A=(pp(n) Pp(12)), NoNA={1}, A~Z3x1Zs.

The case of (7.8).

In this case, M ~ M(1/4,3/4,4/3). From Lemma 7.3 and 7.7, we have |M;| =
24.12-2. By the same reason as above, N, = G(2,2,4) with |N,| = 26.3. This
implies that '

Mz =Ny, - A, A= (py(m)) or (pp(12)), NrNA={1}, A~ Zs.
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The case of (7.9).
In this case, M ~ M(-1/24,11/24,2/3). From Lemma 7.3 and 7.7, we have
|My| = 288 - 24 - 28, where k = 0 or 1. Since (p,(71), Pp(12)) = Z3 x Za,
|N,| = 2! 3%, where l = 7 or 8 or 9 and k = 2 or 3. Hence N, is the group of
No. 28 in S-T table with |N,| = 27 - 32. This again implies that
M; =N, A, A= {po(m),pp(12))y NeNA={1}, Ax~xZ3xZ,

[y

and

M2 0 (pp(¥2)) = {1} (7.12)
at (7.4) in Lemma 7.3.
The case of (7.10).
In this case, M ~ M(-1/20,9/20,4/5). From Lemma 7.3 and 7.7, we have
|Ma| = 600 - 60 - 2. Since (py(M),pp(12)) =~ Zs x Zs, |N,| = 2% .3% .5k,
where £k = 1 or 2 or 3. Hence N, is the group of No.30 in S-T table with
|Ny| = 28.32.52. This again implies that
M2 = NT‘ : A) A= (p(P('Yl)) or (pw(’Y?))) N‘l‘ NA= {1}) A~ Z5'

The case of (7.11).
In this case, M ~ M(-1/60,29/60,4/5). From Lemma 7.3 and 7.7, we have
|M3| = 1800 - 60 - 2. Since (py(71), pp(72)) = Zs x Z3, |Ny| = 26 - 3% . 5!, where
k,l =2 or 3. Hence N, is the group of No. 30 in S-T table with |N,| = 26.32.52,
This again implies that
My=N,-A, A= (Ptp(')'l),ﬂzp('h)), N.NA= {1}) A5 x Z3.

This completes the proof of Theorem 1.2 for S being one of (1.1)—(1.4).

7.2 Sis (1.5) or (1.6).
In Subsection 6.2, we have proved that
My =N A, A={(py(72)),

where N, is the symmetry group of regular complex polytope 3(24)3(24)3(24)3
(of order 155520).
Now we will prove

N.NA={1}. (7.13)
The 240 vertices of the polytope 3(24)3(24)3(24)3 are given by
+w(0,0,0,v=3), +w(0,0,v=3,0), £w(0,v=3,0,0), +w(v=3,0,0,0),
Fw(l,w,wq,0), *w(l, —wi,0, —ws), *w(1,0, —w;,ws), +w(0,1, —wq, —ws),

where w, wy,ws are roots of z° =1 (see [Shp, p. 95]). The generators Ur;U~?
1 < j < 4 (see (6.9)) of UN.U™! induce pemutations of these points. But 1t
can be verified, by direct computations, that Up,(y2)U~! does not induce a
permutation of these points. This prove (7.13).

From (6.1), we have

A~ Z2.
This completes the proof of Theorem 1.2 for S being (1.5) or (1.6).
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8 Appendix.
8.1 Schwarz’ list.

Gauss’ hypergeometric differential equation E(a,b,c) has a finite irreducible
monodromy group M(a, b, c) if and only if the triple (A, p,v) = (1 —¢,c—a —
b,b — a) is one in the Schwarz’ list after acting the following operations finite
times: :

permutations of A, y, v,

changing their signs individually,

replacing by (A+ !, p+ m,v +n) with [,m,n € Z and | + m + n even
(see [Swz], [Iwn], [CW]).

Schwarz’ list

>
©
AN

r € Q — Z, dihedral case

tetrahedral case

octahedral case

icosahedral case

Lo D= Tl COIND CICO TN DIl COIRD CTRD D)= COIND D= COIRD DO D=
U TN T LOJ= LI IR TN = GOl QO ]t COl= GO QO DO
COJ= Lol Tl Nt T CUUND T Cfi QO Otf= i B QO Lol 3

74


nalis
長方形


8.2 Table of finite irreducible unitary reflection groups of
degree 4.

We extract the following table of all of the finite irreducible unitary reflection
groups in U(4, C) from [ST, Table VII].

No. Symbol order order of the center

1 5! 1

2 Glpg,p,4) a(pg)®4t ¢ -GCD(p,4) pg>1
28 [3,4,3 1152 2

29 7680 4

30 3,3,5] 14400 2

31 64 - 6! 4

32 ’ 216 - 6! 6
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