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Appell's Hypergeometric Systems F^ with

Finite Irreducible Monodromy Groups

Mitsuo KATO

1 Introduction.

H. A. Schwarz [Swz] determined Gauss' hypergeometric differential equation

with finite irreducible monodromy group. The same problem for generalized hy

pergeometric differential equation of nFn-i is solved by F. Beukers and G. Heck-

man [BH], for AppelPs Fi and Lauricella's Fq by T. Sasaki [Ssk], for AppelPs

F4 by [Ktl], and for £(3,6) by K. Matsumoto, T. Sasaki, N. Takayama and

M. Yoshida [MSTY]. This paper solves the problem for Appell's F2.

1.1 Notations.

AppelPs hypergeometric function

m>^o(c,™)(c',n)(l,m)(l,n) « V '

where (a.n) = F(a + n)/F(a), satisfies the following system of differential equa

tions of rank four ([AK]):

j x(l - x)zxx - xyzxy + (c - (a + b -f \)x)zx - byzy - abz = 0

\ y(l - y)zyy - xyzxy + (c' - (a + b' + l)y)zy - Vxzx - ab'z = 0

which we denote by E2(aib}b'ic)c'). This is an extension of Gauss' hypergeo

metric differential equation

x(l - x)z" + (c - (a + b + l)x)z' - abz = 0

which we denote by E(at 6, c).

In this paper, we use the following notations:

A = l-c, \i — c — a — by v = b — a,

V = 1 - cx, // = c' - a - 6', i/ = 6' - a,

e(x) = exp(27rzx).

1.2 Main theorems.

The aim of this paper is to prove the following theorems.
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Theorem 1.1. The system E2(a)b}bf)c)d) has finite irreducible monodromy

group if and only if S or S' is one of the followings:

'>£3+n')> e==±1' (1>2)

e = ±1- (L3)

+

where l\ m, n, /', ra', n' are arbitrary integers such that l + m + n and V + m' + n1

are equal to a common even number. The monodromy group does not depend

on these integers l^m^n^l1^m' ,n'.

Theorem 1.2. Assume E2 has a finite irreducible monodromy group M2. Then

Mi is a semidirect product of a normal subgroup Nr (called the reflection sub

group of M2) and an abelian subgroup A:

IfS orS1 is (1.1), Nr is the group G(2,2,4) in Shephard-Todd table in [ST],

S-T table, for short (a D4-type Coxeter group) and A~Z3xZ3i/e= 1, and

A~ZZ ife = -l.

IfS orS' is (1.2), Nr is the group of No. 28 in S-T table (a FA-type Coxeter

group) and A~Z$xZ2.

IfS or S' is (1.3), Nr is the group of No. 30 in S-T table (a H4-type Coxeter

group) and A~Z5.

IfS or S' is (1.4), Nr is the group of No. 30 in S-T table and A~Zbx Z3.

IfS or S' is (1.5) or (1.6), Nr is the symmetry group of the regular complex

polytope 3(24)3(24)3(24)3, the group of No. 32 in S-T table, and A~Z2.

Concerning to finite irreducible unitary reflection groups of degree 4, we give a

sub-table of S-T table in Subsection 8.2.

Acknowledgements' The author would like to thank Professors J. Kaneko,

T. Sasaki and M. Yoshida for their valuable advices.
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2 A monodromy representation of E<i*

We recall some results from [Kt2]. Put

X = C2 - {(xt y) | xy{x - l)(y - l)(x + y - 1) = 0}, PQ = (po,Po) (2.1)

for sufficiently small positive number po- Then the fundamental group tt\ {X, Po)

with the base point Po is generated by the following five curves:

71 = {(«,y) \x = poe" 0 < * < 2tt, y = p0},

72 = {(x,i/)|a: = po, I/ = Pocft 0 < t < 2tt},

73 = {{xiy)\x = y = l/2-(l/2-po)eitO<t

74 = CdiagCx=\Cdiag% 75 = CdiagCy=\Cdiagi

where

Cdias = {a = » = 1/2 - (1/2 - po)e-tt 0 < t < tt},

Cx=1 = {x = l-poeu 0 < t < 2tt, 2/ = 1 -

Ci/=i = {2/ = i - Poc" 0 < t < 2?r, x = 1 -

Let V = V(Po) be the set of germs of holomorphic solutions of E2 at Po.

Then V is a four dimensional vector space. For / £ V and 7 G 7ri(-X",Po), the

analytic continuation fa* of / along 7 again belongs to V^Po). We write

if 7' is continued after 7. This defines a monodromy representation

Tr^X.Po)—>GL(V(P0)). '

We denote its image by

M2(a)6)6/,c,c/;Po)=M2(a,6)6/)c)c/)

(2.2)

and call the monodromy group of ^(a, 6,6', c, c'). If «S is obtained from param

eters a, 6, b\ c, c', we denote

If </>ii 1 < j < 4 form a basis of V^Po), GL(V(P0)) is identified with GL(4, C)

and we have a representation p^ of 7ri(X, Po):

We say that the monodromy group M2 (or E2) is irreducible if V(Po) does

not have a non-trivial invariant subspace under the action of M2. We know

([Kt2]) that M2(a)b,b'1cyc') is irreducible if and only if

a, c - a, d - a, c + c' - a, 6, c - 6, 6', d -b' $. Z. (2.3)
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Assume that neither c nor d is an integer. Then E2 has the following linearly

independent solutions ([AK], [Kmr]):

h = F2(a,b,b',c,c';x,y),

= x1-cy1-c'F2(2 + a-c-c', 1 + b - c, 1 + b' - c',2 - c,2 - c';x,y).

(2.4)

Assume moreover the irreducibility condition (2.3) and we fix the basis ipj\ 1 <

j < 4 of V(Pq) as follows:

V(c)T(d) J

■a-c)T{l

T(2-c)T(c')

r(c)r(2 - c1) /3)
_ T(2 + a - c- c')T{\ +b- c)r(l + b' - d)

~ r(2 - c)r(2 - c')

By use of this basis tpj, we identify M2 with

Prom [Kt2], we have

pfinv

Pv(7s)

n

0

0

/i

0

0

\o

= h +

e(]

0

1

0

0

e3

0

L —

0

0

e(l

1

1

W

0

c) 0

1

0 e(l

0

0

-O
0 e(

(731,732,

0

0

0

-

0

0

0

733

\

1

,734),

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)
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where

Put

sin7r(c'-6') \

sin7r(c/ — b1)

e((l-c/)/2)sin7r6/

Ve((l-c/)/2)sin7r67

(741,742,743,744), (2.10)

e((l-c)/2)sin7r6

sin 7r(c — b)

\e({l-c)/2)sinirb/

(751,752,753,754)

ez = 2ie((c + d — a-b — 6/)/2)/sin7rcsin7rc/,

e4 = 2ie((c + 6' - a — b)/2)/sinircsinirc',

e5 = 2ie((cf + b- a - b')/2)/sinircsimrc',

731 = -sin7rasin7r6sin7rl!/,

732 = sin ?r(c — a) sin ir(c — b) sin irb\

733 = sin7r(c/ - a)sin7r6sin7r(c/ - 6'),

734 = sin tt(c + c' - a)sin7r(c- b)sinir(cf - 6'),

741 = — sin 7ra sin tt6,

742 = sin 7r(c — a) sin ir(c — b),

743 = e((c' — l)/2)sin7r(c/ — a)sin7rb,

744 = e((c' — l)/2) sin 7r(c + d — a) sin 7r(c - 6),

751 = — sin TrasinTri/,

752 = fi((c— l)/2)sin7r(c — aJsinTrb',

753 = sin7r(c; — a)sin7r(c/ — b/)i

754 = e((c - l)/2) siii7r(c + d - a) sin7r(c/ - 6').

^3 = (731,732,733,734),

= (741,742,743,744), ^5 = (751,752,753,754).

Then, by direct calculations, we have

^3 M73) = e{c + d -a-b- bf)v3)

va M74) = e(c + b1 - a - 6)v4>

= e(d + b-a- b')vb.

Prom the symmetry

(a, 6,6;, c, d\ x,y) <—■> (a, 67,6, c;, c; 2/, z),

we have

(2.H)

(2.12)

(2.13)

(2.14)

(2.15)
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Lemma 2.1.

M2(-S) ~ M2(S). (2.16)

Proof. Let parameters a+,6+,6^_,c+)c^. generate S and a_,&_,6'_,c_,d_ gen

erate —S. Then since

a± = 1/2 t (A + /x + i/)/2,

6± = a± ± i/, 6'± = a± ± i/, c± = 1 T A, 4 = 1 =F A',

we have

a_ = 1 - a+, 6_ = 1 - 6+, //_ = 1 - 6^, c_ = 2 - c+, c'_ = 2 - c'+. (2.17)

Hence we have

From (2.7)-(2.12), we find that if the parameters (a, fc, b', c, c') change their signs

simultanuously then pv?(7j); 1 < j < 5 change to their complex conjugate. Thus

we have

M2(-a+,-6+, -&'+)-c+,-c'+) ^

This completes the proof. □

Theorem 2.2. Assume that E2 is irreducible and that c,d g Z. Assume more

over that a,6,6'\c,d are rational numbers and have a common denominator n.

Let k be an odd integer satisfying (fc,n) = 1. Then we have

M2{kaikbikb'ikc)kc')~M2{a)b)b')cicf).

Proof Put f = exp(7ri/n). Then all the components of p^j) belong to Q[f].

Hence any relation among ^(71) ~ Pupils) is expressed by fij(£) = 0 for some

polynomials fij{X) 6 Q[Jf]; 1 < i, j < 4. Since the minimal polynomials of £

and f* in Q[X) are the same, that is Xn + 1, /(£) = 0 if and only if f(£k) = 0

for f(X) G Q[X]. This means that pv?(7i) ~ p«^(7s) satisfy the same relation

if the parameters a.b.U.c.d change to ka.kb.kb'\kc,kd'. This completes the

proof. □

We denote by Nr = Nr{a>b>b'>c,d) the smallest normal subgroup of M2

containing P^{iz),P^>{ia) and ^(75). That is,

Nr = <P¥>(7iP7l7j72"<?7rP)|p,^r' € Zf j = 3,4,5) . (2.18)

Then we have

M2(a,6,6/,c,c/)= iVr(a,MVc,O ' <M7i

From (2.9), (2.10),'(2.11) and (2.14), we find that the eigenvalues of ^(73)

are 1,1, l,e(c + c' — a- b — 6'), those of £^,(74) are 1,1,1,6(0 + 6' — a — 6'), and

those of ^(75) are 1,1,1, e(c' + 6 - a — b). Hence if a, 6, &', c,c'eQ and none of

c + d — a — b — b', c + b' — a — V', c' + 6 — a — 6 is an integer then £^(73), p<^(74)

and ^(75) are reflections. So we call iVr(a, 6, &', c, c7) the reflection subgroup of
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Theorem 2.3. Assume that M2 is irreducible and that c,c' 0 Z. Then the

reflection subgroup Nr of M<i is also irreducible.

Proof. In this proof we denote p^j) by gj and identify u = (^1,^2,^3,^4)

with utp in V(Po).

Assume that Nr acts on V(Pq) reducibly, that is, there exists a non-trivial

subspace W of V(Pq) invariant under the action of Nr. We will derive a con

tradiction.

Recall that Vj is an eigenvector of gj for j = 3,4,5 (see (2.13), (2.14)).

(Case 1) Assume t>3 G W.

Prom (2.10) and (2.12), we have

^3(^4 - h) = -2'ie"7ri6/sin7r6/sin7r(c' - b')v^

which is in W by the invariance of W. From the irreducibility condition (2.3),

we have t>4 G W. By the same way, the fact that i>3(/4 - #5) G W implies that

v5e W.

By the invariance of W} we have, for j = 3,4,5,

*>i • {{9\92)93{9i92)~l - h) = esSjVsig^)'1 G W,

where

6J = 7ii + c(-c)7i2 + e(-c/)7j3 + e(-c - c')7j4-

(Case 1.1) Assume Sj ^ 0 for some j.

Then vz{g\g2)"1 ^ W. Since

1 * ^
det ^ = 4e7ri(6+6'+c+c/) (sin c sin c')2

x sin 7ra sin n(a — c) sin n{a — c') sin 7r(a — c — c1)

x sin7rfcsin7r(6- c)sin7r6/sin7r(6/ - c'),

W must be the whole space. This is a contradiction.

(Case 1.2) Assume Sj = 0 for j = 3,4,5.

In this case, (z2,Z3,z4) = (e(-c),e(~c/),e(-c - c;)) is the solution of

7?i + 7j2Z2 + 7i3Z3 + 7j4X4 =0 j = 3,4,5.

Therefore, we have £4 — X2X3 = 0. But, by direct computation, we have

sin ira sin nb sin irb' sin 7rc sin ire'
T*a ^^ 1

sin?r(a- c- c?)sin7r(a - c)sinn(a - c')sinir(b- c)sin^(i/ - c')

which cannot be zero by the assumption of this theorem. This is a contradiction.

(Case 2) Assume v$ & W.

First we know that u*, i>5 £ W. For, otherwise, if u4 G W, then

^4(^3 - U) = -eae^^0'-0-6) sinTrcsinTrc'^ G W
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which implies ^3 G W.

Let u = (ui,U2iU3iU4) be an element of W. Then

u(93 — U) = (wi + U2 + us 4-

is in W. Hence we must have

u>i + u2 + u3 + uA = 0. (2.20)

Now

u(#4 — 74) = (5e4t>4 G VK, where

5 = (m + n2) sin7r(c/ - 6') - (zz3 + u^e™' sin7rb'.

From (2.20),

6 = {ux + U2)ewib' sinTrc'

which must be zero. Hence we have

ui+u2 = 0. (2.21)

By the same way, from u(g5 - h) G W, we have

u1+u3 = 0. (2.22)

Equalities (2.20), (2.21) and (2.22) imply that

u= (1,-1,-1,1)

up to constant multiplication and that

W = ((1,-1,-1,1)).

If u= (1,-1,-1,1), then

u(929592l ~h) = c6(l - e(-c/))e-7ri6sin7TC^5^1 € W.

Hence v^g^1 € W. This implies, for example, that 751 : 752 = 1 : -1. This
means

e7"0 sin 7r(c - a) = - sin 7ra,

which is equivalent to

This is a contradiction.

In any case we have a contradiction. This completes the proof. D

We denote by Mfa^iC) the monodromy group of Gauss' hypergeometric

differential equation JS(a,6,c). It is well known that M(aib)c) is irreducible if

and only if none of a, 6, c — a, c — b is an integer.
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3 Restrictions of E2 to {x = 0} and {y = 0}.

Assume in this section that M2(a,6,6',c, c') is finite and irreducible.

It is known that E2{a, b} b1', c, d) has characteristic exponents 0,0,1 - c, 1 — c

along Lx := {(x)2/)|x = 0} and 0,0,1 - c', 1 - c' along Ly := {(x)2/)|y = 0}.

Concerning to these exponents we have the following lemma.

Lemma 3.1. 1 - c, 1 - d g Z.

Proo/. Assume c G Z. Then i?2 has a solution of the form gi(xiy)logx +

02(z>2/) where ^ are holomorphic along Lx and gi^O ([Kt2, Section 7]). This

contradicts the finiteness of M2. Similarly, we have d & Z. □

Lemma 3.2. Gauss' hypergeometric differential equations E(aib)c))

E(l + a- cf} 6, c), E(a, b'} d) and E{\ + a- c, 6', d) all have finite irreducible

monodromy groups.

Proof. Since neither c nor d is an integer by the previous lemma, £2(0,6, b'} c, c')

has solutions fj\ 1 < j < 4 (2.4). The restrictions of /1 and /2 to Ly form

a fundamental solutions of B(a,6,c). Hence M(a,6,c) must be finite. The

restrictions of hlyl~c' and f2/yl~c' to Ly form a fundamental solutions of
£(1 + a- c', 6, c). Hence M(l + a - c', 6, c) must be finite. By the same way,

M(a,b',d) and M(l + a-c,b'}d) are also finite.

By the irreducibility condition (2.3), M(a,6,c), M(l + a-d',6,c), M{a>V%d)

and M(1 + a - c, b', c') are all irreducible. □
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4 Proof of the "only if" part of Theorem 1.1.

It is well known that Gauss* hypergeometric differential equation E(a, 6, c) has

a finite irreducible monodromy group M(at 6, c) if and only if the triple

(A, /i, v) = (1 — c, c — a — 6, b — a)

belongs to Schwarz' list (S-list) (after acting the following operations finite times:

permutations of A, /x, y,

individual change their signs,

replacing by (A + /, /z + m, v + n) with Z, ra, n e Z and l + m + n even)

(see [Swz], [Iwn], [CW] and Section 8 of this paper).

By Lemma 3.2, we know that if M2(a, 6, b\ c, c') is finite irreducible then the

following four conditions hold.

(A,^,i/) belongs to S-list, (4.1)

(A', //, i/) belongs to S-list, (4.2)

(A, n-\\i>- A') belongs to S-list, (4.3)

(A7, // - A, v1 - A) belongs to S-list. (4.4)

We always have

A + /i + i/ = A/ + /i/ + i/(=l- 2a). (4.5)

Lemma 4.1. Assume that M2(a,6,6/,c, c') is finite irreducible. Then S or S1

is one of (1.1) - (1.6) o/Theorem 1.1.

Proo/. Let

A = p/5, ii = <?/*, i/ = r/ti, A' = p'/s', ^' = s'/t', i/' = r'/ii'

be irreducible fractions.

(Case 1) We first deal with the case when

M,tM', *V €{2,3,4,5}.

(Case 1.1) We deal with the case when s or s1 is 2.

We assume s' = 2. Then (4.3) implies t = u = 4. Then 5 = 3 by (4.1). Then

(4.4) implies that t' = u' = 3 and that g' = r; mod 3. Now the denominator of

the right hand side of (4.5) is 6 whence we have q = r mod 4 and moreover the

equality (4.5) implies that p = 2qf mod 3 and p' = q mod 2. Thus S takes the

form of (1.2).

Us = 2 then *S; takes the form of (1.2).

(Case 1.2) Assume that s, sf ^ 2 and 5 or s' is 4.

Assume, for example, that sf = 4. Then (4.3) implies that t and u are even.

If t = u = 2 then (4.3) implies s = 3. Then (4.4) implies *' = u' = 3 and

(4.2) cannot happen.

If t = u = 4 then (4.1) implies s = 3. Then (4.2) cannot happen as above.

If {t,u} = {2,4} then s = 2 or 3 by (4.1), but 5 cannot be 3 as above. On

the other hand, if s = 2 then £' = -u' = 4 by (4.4) whence (4.2) cannot happen.

This concludes that (Case 1.2) cannot happen.
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J (Case 1.3) Assume s = s7 = 3.

Then (4.3) and (4.4) imply that t = u = t' = v! = 3 and that q = r,q' = r',p£

' q\p' =£ q mod 3. Thus S takes the form of (1.1).

; (Case 1.4) Assume s = s' = 5.

Then (4.3) and (4.4) imply that t = u = t' = u7 = 5. Then (4.1),(4.2) and

(4.3) imply that we have the following two possibilities. That is, p, g,r = ±1,

p'.q'y = ±2 or p,g,r = ±2, p\q'y = ±1 mod 5. Moreover (4.3) and (4.4)

imply that q = r,q' = r' mod 5. Finary (4.3) and (4.4) imply that p = 2e,g =

r = 2e7, p; = 4e7, 5' = r7 = e, or p = 4e, q = r = e7, p1 = 2e\ q' = r' = 2e mod 5

and e, e; = ±1. Thus S takes the form of (1.3).

(Case 1.5) Assume 5 = 5, s' = 3.

Then (4.3) implies t = u = 3, q = r mod 3 and (4.4) implies tl = v! = 5. Then

(4.5) implies p = q' + r' mod 5 and p* = q + r mod 3. Now els for the values of

q' and r7, there are three cases, that is,

. (Case 1.5.1) ^' = ±1 mod 5,

(Case 1.5.2) q\ r1 = ±2 mod 5 and

(Case 1.5.3) q1 = ±1,/ = ±2 or q1 = ±2,r' = ±1 mod 5.

As for (Case 1.5.1) and (Case 1.5.2), we have q1 = r' mod 5 because p = q'+r1

, mod 5. Then S takes the form of (1.4).

We will next show that (Case 1.5.3) does not happen. If, for example,

ql = ±1, r' = ±2 mod 5 then p = 3 mod 5. Then S takes the form

I where Z, m, n, /', m7, n' G Z with / + m H- n = Z' + m' -f n'. The condition (4.1)

j implies that / H- m -f n is odd and (4.2) implies that /' -f m1 + n; is even. This

I is a contradiction. Hence (Case 1.5.3) does not happen.

i '..

■ (Case 2) We next deal with the case when some of s^t^UyVyt'yu' is not in

; {2,3,4,5}.
;

; We note first that 5, s' must be in {2,3,4,5}. For, otherwise, Us & {2,3,4,5},

j then (4.1) and (4.3) imply that \l,v,\i- \',v - A' = 1/2 mod Z. This implies

that A' is an integer. This is a contradiction.

(Case 2.1) Assume u $ {2,3,4,5}.

The condition (4.1) implies that \%p = 1/2 mod Z. Then (4.3) implies that

A7 =£ 1/2 mod Z and (4.4) implies that t' = v! = 4. Then (4.2) implies s' = 3.

Since the denominator of /i - A7 is 6, (4.3) implies that v - A' = 1/2 mod Z.

This implies that u = 6.

(Case 2.1.1) Assume v = 1/6 mod Z.

Then A7 = 2/3 mod Z because 1/ - A7 = 1/2 mod Z. Then (4.5) implies that

// + v' = 1/2 mod Z. Hence there are two possibilities, that is, fi\ v1 = 1/4

mod Z and ^7,i/ = —1/4 mod Z. In both cases, S7 takes the form of (1.5) of

Theorem 1.1.

(Case 2.1.2) Assume v = -1/6 mod Z.

Same as the above case (Case 2.1.1), S' takes the form of (1.5) of Theorem 1.1.

(Case 2.2) Assume t £ {2,3,4,5}.

By the same reasoning as in (Case 2.1), we know that S7 takes the form of (1.6)

of Theorem 1.1.
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In case of if or v! $ {2,3,4,5}, S takes the form of (1.5) or (1.6) of Theo

rem 1.1.

This completes the proof. □

Lemma 4.2. Let, for j = 1,2, Sj = (Aj,/ij,i/,-; AJ,/iJ,i/J) 6e obtained from the

parameters (aj,6j,6^,Cj,c^) satisfying the irredudbility condition (2.3). Assume

w/iere Z,ra,n,Z'\m\n' are integers such thatl +m + n and I' + m' + n' are equall

to a common even number. Then we have

M2(Sl) ~ M2(S2).

Proof Since

aj = 1/2 - (A, + ft + 1/^/2,

bj = a^- + i/j-, b'j = ^ + i/^, Cj = 1 - A,-, c^ = 1 - A^«,

ai = a2) 6i = fc2,... Cj = c2 mod Z. This proves the lemma. □

Proof of the "only if" part of Theorem 1.1.

Lemma 4.1 and 4.2 proves the "only if" part of Theorem 1.1.
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5 The system E2 with quadric property.

T. Sasaki and M. Yoshida ([SY]) proved that E2(a,b)b\cid) has the quadric

property (that is, four linearly independent solutions are quadratically related)

if and only if

c = 26, d = 26',

6 + 6' - a = 1/2.

The condition (5.1) is equivalent to

(5.1)

(5.2)

(5.3)

Under the condition (5.1), the equality (5.2) is equivalent to one of the following

four conditions:

c'-a-6-6' = 1/2, c + 6'-a-6 = 1/2, d + b - a - 6' = 1/2,

A + A' = fi + v + \j! + iA
(5.4)

Remark 5.1. E2 has the characteristic exponents 0,0,0,c + c; — a — 6 — 6' along

{x + y = 1}, 0,0,0, c + 6' - a - 6 aZon# {z = 1}, 0,0,0, c7 + 6 - a - b1 along

We note that if 5 or 5' is one of (1.1)-(1.4) of Theorem 1.1 then E2 has the

quadric property (5.1) and (5.2) if we put / = m = n = V = m' = nl = 0.

Let

(5.5)

be the 4 : 1 mapping of P2 to P2 ramified along three lines {u = 0}, {v = 0}

and the line at infinity L^.

We denote by S4(a,/3,7,7;) the system of differential equations of rank

four satisfied by Appell's hypergeometric function F^{a^^^l\uyv) and by

M4(a,jS,7,7/) the monodromy group of #4(0:,/3,7,7'). For these notations, see

[Ktl].

Put as (2.1),

= C2 - {(x,y) I xy(x - l)(j/ - l)(x + y - 1) = 0}, Po = (po,Po)

and

And put

Y = C2 - {(u.v]

Then

V' "V

)\uv((u-v)

-{(x,y)\x + y

?-2(u + v) +

ip : X' —¥ Y

= 2}.

1) = 0}, Qo = ip

(5.6)

(Po). (5.7)

(5.8)

is a 4-sheeted covering with i>{X') = Y.

Since X' is Zariski open in X, the following lemma holds.
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Lemma 5.1. Let l: X' —> X be the inclusion. Then

t,:n1(XfiPo)^7r1{XiPo) (5.9)

is onto.

We denote by V(Q0) the set of germs of solutions of £4(a,/?,7,7') at Qo>

where

f/3 £16+i^ 6'+ (510)
In [SY], the following lemma has been proved.

Lemma 5.2 (Sasaki-Yoshida). Assume (5.1) and (5.10) then we have

r(V(Qo)) = (2 - x - y)« V(PQ). (5.11)

Put Qo = (go,.9o). We define ^ G tti(Y, Qo), j = 1,2,3 in the following way.

71 = {{uyv)\u = qoeu 0<t<2n, v = qo},

72 = {{u,v)\u = go, v = qoeu 0 < t < 2?r},

73 = {(ti,t/) | ti = v = 1/4 - (1/4 - go)ctt 0 < t < 2tt}.

Since V : X' —> Y is a (4-sheeted) covering,

^ rTTi^.Po) -^7n(y,Qo) (5.12)

is injection. It is clear that

l)l) e ^(iri^.Po)); 3 = 1,2 and 7^2 = 7271- (5.13)

Lemma 5.3. ip*(iri(X\P0)) is a normal subgroup of k\(Y,Qq) with index 4.

And we have

/lP0)) • (71,7a). (5.14)

Proo/. Since 71,72,7172 induce the covering transformations of (5.8) defined by

(z, y) >—> (x/(x - 1), -y/(x - 1)), (5.15)

- 1)), (5.16)

+ 2/.-l)) (5.17)

respectively, the covering transformation group acts transitively on any fiber of

V> and is isomorphic to (71,72). This proves the lemma. □

We fix a basis Cp6\ 1 < j < 4 of V(QQ) such that

tpj = (2 - x - 2/)->*(^); 1 < j < 4 (5.18)

hold (see (2.5) and (5.11)). We identify M4(o:,/3,^/,7,7/) with p^(?ri(r,Qo)),

where a,(5,^',7,7' are as in (5.10). Thus we have

M4(a, ft/?', 7,7') =P^(iri(y,Qo)). (5.19)
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We have the following commutative diagrams.

*i(X',P0) -*=-> Tn^Qo)

I p-\

id
GL(4,C) —^-> GL(4,C)

(5.20)

(5.21)

GL(4,C) —^-> GL(4,C)

Lemma 5.4. .As subsets ofGL(4,C), we have

(5.22)

(5.23)

Proof. Since yj are holomorphic along {x + y = 2}, we have, from (5.18),

From (5.21), we have

Hence (5.22) holds. From (5.14), we have

',ft)) • (71,72))

D

Lemma 5.5. Assume (5.1), (5.2) and (5.10). Then there exists a subgroup M

of GL{2, C) such that

M~M(Q,^7)^M(a,^7'). (5-24)

and that the subgroup (M ® M) ■ (^(73)) ofGL(4, C) is isomorphic to M4:

Mi(a, P, P',1,7') ^{M®M) -^(73)). (5.25)

H^e Ziave moreover

(M 0 M) H (p#(73)> = {J4}, (P^(73)> ^ Z2. (5.26)

Proo/. From (5.1),(5.2) and (5.10), we know that M^{ay /3, /3', 7,7') is irreducible

and that

□

7/-a-/3-l=0.

Hence the lemma follows from Proposition 4.1 of [Ktl].
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6 Proof of the "if" part of Theorem 1.1.

If S or «S' is one of (1.1)-(1.6) then (2.3) holds whence E2 is irreducible. We

will prove the finiteness of M2. Prom (2.15) and (2.16), we may assume that S

is one of (1.1)-(1.6) with the sign " + ".

6.1 S is one of (1.1)-(1.4).

Assume that S is one of (1.1)-(1.4) of Theorem 1.1.

Since Mi does not depend on the integers l,myn,V\rn\n1 (Lemma 4.2), we

put

l = m = n = l' =m' = nf = 0.

Then Ei has the quadric property (5.1) and (5.2). Recall aj/3,/3',7,7' are

defined by (5.10). Then we find that (a,/3,7) belongs to S-list. Hence M(a,/3,7)

is finite. Then Lemma 5.4 and 5.5 imply that Mi is finite.

6.2 S is (1.5) or (1.6).

Assume that S is (1.5) or (1.6) of Theorem 1.1.

We denote the generators p^ijj) of M2 = p^-k^X.Pq)) by gf

9j = M7j)l 1 < J < 5.

By considering the eigenvalues of ^-, we have

<?? = !> </2 = l> 93=9l = 9l = l. (6.1)

Put

n = £5, r2 = #f\ r3 = &f\ r4 = ^(^i^)^^^)"1^1, (6.2)

and

fl=(n,r2,r3,r4) (6.3)

a subgroup of Nr. These r,; 1 < j < 4 are chosen so that the following equalities

hold (cf. [ST, p.300]):

vizi — z2ri) r^zs = 23r3,

z2 = z2 = z2 = 1

where

z\ = (nr2)2, zi = (r2r3)2, 23 = (r3r4)2.

Prom (6.2), we have

S3, 04, 05 e jR. (6.4)
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and by direct computations, we have

9\ =

9293921 =

929592 1 =

From (6.2), (6.4) and (6.5), we have

929*92

Prom (2.18), we have

(6.5)

(6.6)

(6.7)

= 0.1.2, q = 0,1; j = 3,4,5}

in this case. Consequently we have

(6.8)

There exists a matrix U so that the following equalities hold:

UnU"1 =

UrsU'1 =

A o o
0100

0 0 u>2 0

0 0 0 1,

<\ o o oy

0 a;2 0 0

0 .1 0

0 0 1

'u u>2 u2 0 \

—i\u)2ww2 0

w2 cj2 w 0

0 0 0

-i

U) —U

\

—Ul

0

-u2

U)

0
2

Ul

0

iv/3

0

= e(l/3).

The matrix U above is determined in the following way. Put

0 -

0

(6.9)

Then (6.9) implies, for example,

U2 is an eigenvector of r3 corresponding to the eigenvalue a;2,

us is an eigenvector of r\ corresponding to the eigenvalue a;2,

U4 is an eigenvector of ri,r2 and r3 corresponding to the eigenvalue 1,

u\ — us is an eigenvector of r2 corresponding to the eigenvalue 1,

U2 - uz is an eigenvector of T2 corresponding to the eigenvalue 1,

U2 — U4 is an eigenvector of r± corresponding to the eigenvalue 1,

u\ + u± is an eigenvector of r1,7*3 and r^ corresponding to the eigenvalue 1.

These determine Uj\ 1 < j < 4 and we have

U = (6.10)
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The equalities (6.9) imply (see [ST, 10.5]) that R (= Nr) is the group of

No. 32 in S-T table, that is, the symmetry group of order 155520 of the regular

complex polytope 3(24)3(24)3(24)3 ([ST, p. 300]).

Prom (2.19) and (6.5), we have

M2 = iVr.(^(72)). (6.11)

This proves the finiteness of M^.
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7 Proof of Theorem 1.2.

We will determine the reflection subgroup Nr and the abelian subgroup A in

Theorem 1.2, when S or Sf is one of (1.1)-(1.6) of Theorem 1.1. In any case,

Nr is irreducible reflection group (Theorem 2.3), whence it is one of the groups

in S-T table ([ST, Table VII]) (see also Subsection 8.2). Prom (2.15) and (2.16),

we may assume that S is one of (1.1)—(1.6) with the sign " -f ". Recall again

the identifications (2.6) and (5.19).

7.1 S is one of (1.1)-(1.4).

In this subsection, we assume that S is one of (1.1)—(1.4) of Theorem 1.1 with

I = m = n = I' = m! = ri = 0. (7.1)

Hence E2 has the quadric property (5.1) and (5.2). M4 denotes the monodromy

group of E^{a,(i^,i) with (5.10).

Lemma 7.1. If X = 2m/n (resp. A' = 2m/n) with odd n then p${i\) (resp.

();((/) (cf (5.23);.

Proof. Assume, for example, that A = 2m/n with odd n. From (5.1) and (5.10),

we have 1 - 7 = m/n. J54 has linearly independent solutions of the form

where fj(u,v) are holomorphic along {u = 0} ([AP], [Ktl]). Hence we have

n = I4. Choose p, q e Z such that 2p + nq = 1. Then

which is in p^(^*(7Ti(X/,P0))) by (5.12) whence in p^*(^)(7ri(Z/,P0)) by the

commutative diagram (5.20). □

Lemma 7.2. We have

e(a)IA£Pip{in(X,Po)) (7.2)

(cf (5.22);.

Proof #2(a, 6,6', c, c') has characteristic exponents a, a, a, b + 6; along L^ with

fc + 6' - a = 1/2 (see (5.2)). Hence, by considering a loop surrounding Loo,

we know that e(2a)J4 G M2. So if e(ka)U G M2 for some odd integer fc, we

conclude e{q)I^ G M2.

We note that -©2(0, &, b7, c, c') has characteristic exponents 6,6, a, 1 + a - d

along {rr = 00}, 6;,6;,a, 1 + a — c along {y = 00}. By considering a loop

surrounding {x = 00} or {2/ = 00}, we get the following facts (e = ±1).

If S is (1.1), b - a = ej3 and 1 - d = 2e/3. Hence e(3a)/4 G M2.

If «S is (1.2), V - a = e/3 and 1 - c = 2e/3. Hence c(3a)/4 G M2.

If 5 is (1.3), b - a = 2e/5 and 1 - d = 4e/5. Hence e(5a)/4 G M2.

If 5 is (1.4), b - a = e/3 and 1 - d = 2e/3. Hence e(3a)/4 G M2.

This completes the proof. □
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Lemma 7.3. Let M be the subgroup of GL(2}C) in Lemma 5.5.

If S is one of (1.1), (1.3) and (1.4) then we have

(p^(73)). (7.3)

If S is (1.2) then we have

M2 • (pefa)) ~(M®M). (00(73)) (7.4)

/n £Ae rig/iJ /land side of (7.3) and (7.4), we /lave

(M®M)n^(73)) = {/4}, {^(73))-Z2. (7.5)

/n the left hand side of (7.4), we have

^(72)2eM2. (7.6)

Proof. Lemma 5.4, 5.5, 7.1 and 7.2 imply (7.3) and (7.4). (7.5) is nothing but

(5.26). (7.6) follows from (5.12), (5.20) and (5.22). □

Remark 7.1. Later (see (7.28),), we will see that

M2 H (^(72)) = {h}

in (7.4).

Lemma 7.4. M2 with S being (1.2) of Theorem 1.1 are all isomorphic.

Proof. It suffices to prove that M2 with S being (1.2) with e = 1 is isomorphic

to that with e = — 1. We have the following correspondence:

S (,,,,)
(2/3,1/4,1/4; 1/2,1/3,1/3) <-> (-1/12,1/6,1/4,1/3,1/2)

(-2/3,1/4,1/4; 1/2, -1/3, -1/3) <-> (7/12,5/6,1/4,5/3,1/2)

By Theorem 2.2 (n =12, k = 5), the corresponding two monodromy groups

are mutually isomorphic. □

Lemma 7.5. M2 with S being (1.3) of Theorem 1.1 are all isomorphic.

Proof. It suffices to prove that M2 with 5 being (1.3) with e = 1 is isomorphic

to that with e = — 1. We have the following correspondence:

S «_> (a,b,b>,c,c>)

(2/5,2/5,2/5; 4/5,1/5,1/5) <—> (-1/10,3/10,1/10,3/5,1/5)

(-2/5,2/5,2/5; 4/5, -1/5, -1/5) ♦-> (3/10,7/10,1/10,7/5,1/5)

By Theorem 2.2 (n = 10, k = 7), the corresponding two monodromy groups

are mutually isomorphic. D

Lemma 7.6. Mi with S being (1.4) of Theorem 1.1 are all isomorphic.
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Proof. It suffices to prove that M2 with <S being (1.4) with e is 1,2,3 and 4 are

all isomorphic. We have the following correspondence:

(2/5,1/3,1/3:2/3,1/5,1/5)

(4/5,1/3,1/3; 2/3,2/5,2/5)

(6/5,1/3,1/3; 2/3,3/5,3/5)

(8/5,1/3,1/3:2/3,4/5,4/5)

(a,b,b',c,c')

(-1/30,3/10,1/6,3/5,1/3)

(-7/30,1/10,1/6,1/5,1/3)

(-13/30,-1/10,1/6,-1/5,1/3)

(-19/30, -3/10,1/6, -3/5,1/3)

By Theorem 2.2 (n = 30, k = 7,13,19), the corresponding four monodromy

groups are mutually isomorphic. □

Concerning several monodromy groups M(a,/3,7), we have the following

lemma by direct computations.

Lemma 7.7. Let \G\ denote the order of a group G. We have

|M(-1/12,5/12,2/3)| = 72,

|M(l/4,3/4,4/3)| = 24,

|M(-l/24,11/24,2/3)| = . 288,

|M(-l/20,9/20,4/5)| = 600,

|M(-l/60,29/60,4/5) | = 1800.

Proof of Theorem 1.2 for S being one of (1.1)-(1.4).

From (2.19), we have

Prom Lemma 7.4-7.6, it suffices to verify for the following cases:

S = (2/3,1/3,1/3; 2/3,1/3,1/3), (7.7)

S = (-2/3,1/3,1/3; 2/3, -1/3, -1/3), (7.8)

S = (2/3,1/4,1/4; 1/2,1/3,1/3), . (7.9)

S = (2/5,2/5,2/5; 4/5,1/5,1/5), (7.10)

S = (2/5,1/3,1/3; 2/3,1/5,1/5). (7.11)

Recall M denote a subgroup of GL(2, C) in Lemma 7.3.

The case of (7.7). .

In this case, M ~ M(-l/12,5/12,2/3). From Lemma 7.3 and 7.7, we have

\M2\ = 72 • 12 • 2. Since (/tv(7i),P*('ft)) ^ Z3 x Z3, |iVr| = 26 • 3*, where k = 1
or 2 or 3. Hence Nr = G(2,2,4) in S-T table with |JVr| = 26 • 3. This again

implies that

M2 = Nr - A, A = (/v(7i),/fy(72))) NrnA = {1}, A ~ Z3 x Z3.

The case of (7.8).

In this case, M ~ M(l/4,3/4,4/3). From Lemma 7.3 and 7.7, we have \M2\ =

24 • 12 • 2. By the same reason as above, Nr = G(2,2,4) with | JVr| = 26 • 3. This

implies that

M2 = Nr • A, A = or (^(72)), Nr n A = {1}, A ~ Z3.
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The case of (7.9).

In this case, M ~ M(-l/24,11/24,2/3). From Lemma 7.3 and 7.7, we have

\M2\ = 288 • 24 • 2*, where k = 0 or 1. Since ^(71)^(72)) ^ Z3 x Z2,
|iVr| = 2l • 3fc, where I = 7 or 8 or 9 and k = 2 or 3. Hence iVr is the group of

No. 28 in S-T table with |iVr| = 27 • 32. This again implies that

M2=Nr.A, A=(pv,(7l),pv,(72)), NrC\A={l}i A~Z3xZ2

and

M2n(/v(72)) = {l} (7.12)

at (7.4) in Lemma 7.3.

The case of (7.10).

In this case, M ~ M(-l/20,9/20,4/5). From Lemma 7.3 and 7.7, we have

\M2\ = 600 -60-2. Since ^(71)^(72)) ^ Z5 x Z5, \Nr\ = 26 ■ 32 • 5*,

where k = 1 or 2 or 3. Hence ATr is the group of No. 30 in S-T table with

|JVr| = 26 • 32 • 52. This again implies that

M2 = Nr • A, A = (/v(7i)) or (p^(72)>, NrnA = {1}, A ~ Z5.

The case of (7.11).

In this case, M ~ M(-l/60,29/60,4/5). From Lemma 7.3 and 7.7, we have

\M2\ = 1800 -60-2. Since ^(71),M72)) ^ Z5 x Z3, |iVr| = 26 • 3k • 5l} where

fc, I = 2 or 3. Hence Nr is the group of No. 30 in S-T table with |JVr| = 26 -32 -52.

This again implies that

This completes the proof of Theorem 1.2 for S being one of (1.1)—(1.4).

7.2 S is (1.5) or (1.6).

In Subsection 6.2, we have proved that

M2 = Nr-A, A={ptp(<y2))i

where Nr is the symmetry group of regular complex polytope 3(24)3(24)3(24)3

(of order 155520).

Now we will prove

NrnA = {l}. (7.13)

The 240 vertices of the polytope 3(24)3(24)3(24)3 are given by

±w(0,0,0, v7^), ±^(0,0,v/::3,0), ±cj(0, V^jOjO), ±u){yf^, 0,0,0),

dbct'f 1, LO\, (x)2,0) itcc'( 1, —Ct^i 0, —Ct'2) inkM 1,0, —ci^i uj2 ) ztct'fO, 1 —tJi, —^2) 1

where a>,u;i,a;2 are roots of x3 = 1 (see [Shp, p. 95]). The generators UrjU~l\

1 < j < 4 (see (6.9)) of UNrU~l induce pemutations of these points. But it

can be verified, by direct computations, that C//oy?(72)27~1 does not induce a

permutation of these points. This prove (7.13).

From (6.1), we have

This completes the proof of Theorem 1.2 for S being (1.5) or (1.6).
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8 Appendix.

8.1 Schwarz' list.

Gauss* hypergeometric differential equation E(aibic) has a finite irreducible

monodromy group M(a, 6, c) if and only if the triple (A, /i, v) = (1 — c, c — a —

b}b — a) is one in the Schwarz1 list after acting the following operations finite

times:

permutations of A, /x, v,

changing their signs individually,

replacing by (A + Z, \i + m, v + n) with /, m, n € Z and l + m + n even

(see [Swz], [Iwn], [CW]).

Schwarz' list

1 I r
2 2 '

1 1 1

2 3 4

2 1 1

3 4 4

1 1 1

2 3 5

2 1 1

5 3 3

2 11

3 5 5

12 1

2 5 5

2 2 2

5 5 5

3 11
5 3 5

2 1 1

3 5

1 1

5 5

3

4

5

1 2 1

2 5 3

3 2 1

5 5 3

r G Q — Z, dihedral case

tetrahedral case

octahedral case

icosahedral case
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8.2 Table of finite irreducible unitary reflection groups of

degree 4.

We extract the following table of all of the finite irreducible unitary reflection

groups in 17(4, C) from [ST, Table VII].

No.

1

2

28

29

30

31

32

Symbol

G(pq,p,4)

,[3,4,3]

[3,3,5]

order

5!

q(pq)H\

1152

7680

14400

64-6!

216 • 6!

order of the center

1

q-GCD(p,4) pq>l

2

4

2

4

6

75 ,

I

i!

i

i



REFERENCES

[AK] P. Appell and J. Kampe de Feriet, Fonctions Hypergeometriques et Hy-

perspheriques, Gauthier Villars, Paris, 1926.

[BH] F. Beukers and G. Heckman, Monodromy for the hypergeometric function

nFn_i, Invent, math. 95 (1989) 325-354.

[CW] P. Cohen and J. Wolfart, Algebraic Appell-Lauricella Functions, Analysis

12 (1992) 359-376.

[Iwn] M. Iwano, Schwarz Theory, Math. Seminar Notes, Tokyo Metropolitan

Univ., 1989.

[Ktl] M. Kato, AppelPs F4 with Finite Irreducible Monodromy Group, Kyushu

J. of Math. Vol. 51 (1997) 125-147.

j [Kt2] M. Kato, Connection Formulas for Appell's System i^ and some Appli-

\ cations, preprint.

i [Kmr] T. Kimura, Hypergeometric Functions of Two Variables, Tokyo Univ.

1 (1973).
j [MSTY] K. Matsumoto, T.Sasaki, N. Takayama and M. Yoshida, Monodromy of

j the Hypergeometric Differential Equation of Type (3,6) II The Unitary Reflec-

\ tion Group of Order 29 • 37 • 5 -7, Annacli della Scuqla Normale Superiore di Pisa
Scienze Fisiche e Matematiche - Serie IV. Vol. XX. Fasc. 4 (1993) 617-631.

[Shp] G. C. Shephard, Regular complex polytopes, Proc. London Math. Soc.

(3) 2 (1952) 82-97.

[Ssk] T. Sasaki, On the finiteness of the monodromy group of the system of

hypergeometric differential equations {Fd)} J. Fac. Sci. Univ. of Tokyo 24 (1977)

565-573.

[SY] T. Sasaki and M. Yoshida, Linear Differential Equations in Two Variables

of Rank Four. I, Math. Ann. 282 (1988) 69-93.

[Swz] H. A. Schwarz, Uber diejenigen Falle, in welchen die Gau/3ishe hyperge-

ometrische Reihe eine algebraische Function ihres vierten Elements darstellt, J.

Reine Angew. Math. 75 (1873) 292-335.

[ST] G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canad.

J. Math. 6 (1954) 274-304.

Mitsuo KATO

Department of Mathematics

College of Education

University of the Ryukyus

Nishihara-cho, Okinawa 903-0213

JAPAN

(e-mail: mkato@edu.u-ryukyu.ac.jp)

76

nalis
長方形


