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Hypergeometric function nFn_i with imprimitive

finite irreducible monodromy group

Mitsuo KATO and Masatoshi NOUMI

1 Introduction.

A generalized hypergeometric function

ni71n_i(ao,ai,a2,...,an_i;6i,62,.-.,tn_i;2:) = J~] 3Jj° °\ zn,

where {a^n) = F(a + n)/F(a), satisfies a Fuchsian differential equation

of rank n with singularities at z = 0, 1 and oo. F. Beukers and G. Heckman

[B-H] determined nEn-\ with finite irreducible monodromy groups. In [Kt], for

3#2 with finite irreducible primitive monodromy groups, Schwarz maps of P1

to P2 defined by linearly independent three solutions are studied. The images

of Schwarz maps and their single valued inverse maps are determined.

As stated in Theorem 5.8 in [B-H], under some condition, n-En-i with irre

ducible imprimitive monodromy group is essentially given by

~Q + * -a+p—1 a a + 1 a + q - 1 1 n-l

(1.1)

where (p, q) = 1 and n = p + q.

In this paper, for (1.1) with a = -l/(ran), m > 2, we will determine its

Schwarz map and obtain its single valued inverse map. (If a = — 1/n, then the

monodromy group of (1.1) is not irreducible.)

For this purpose, we use the generalized binomial function (see Section 2)

^(a,-p/n,x), (1.2)

because if we put z = (—p)pqqn"nxn1 then (1.2) is (as a multi-valued function

of z) a solution of (1.1).

If a = —1/n, then (1.2) is also a solution of the algebraic equation

yn + xyp -1 = 0. (1.3)

This fact wets first discovered by Lambert (see [Brn, p.307]), and studied by

many mathematicians t(for example, [Blr]). We also remark that the generalized

binomial function is a typical example of quasi-hypergeometric function studied

in [A-I].
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In Section 2, for the sake of self-containedness, we give elementary proofs

for several known results concerning to (1.2) and (1.3).

In Section 3, we consider the case of a = — 1/n. In this case, (1.1) is

reducible and if moreover p < n— 1, then (1.2) satisfies a differential equation of

rank n — 1 with the projective monodromy group isomorphic to the symmetric

group Sn (Corollary 3.6). In Section 4, we put a = -l/(nm) m > 2. Take

n solutions of (1.3) and choose m-th roots fj1/m\x), 0 < j < n - 1 of these
solutions. Then these are (as functions of z) linearly independent solutions of

(1.1). The monodromy group induces all permutations on these solutions and

multiplications of m-th roots of 1 to each f^m\x) (up to multiplications of

common constant numbers to all /j1^). Thus (1.1) has imprimitive finite
irreducible projective monodromy group of order mn~lnl (Corollary 4.5). The

Schwarz map of (1.1) is defined by

The defining functions of its image in Pn~l and its single valued inverse map

are expressed, consulting (1.3), by use of elementary symmetric functions of

n-variables (Theorem 4.4).

Finally, in Section 5, we state several topics for n = 3 case. We give a

proof of Cardano's formula for a cubic equation, using properties of generalized

binomial functions. We also give a uniformization of 3E2 by theta functions,

tha;t is, if we put z = J{r)} the elliptic modular function, then the solutions

of (1.1) with a = —1/12,p = l}q = 2 are single valued functions of r and are

expressed by theta functions.
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2 Generalized binomial function.

The statements in this section are found in [Brn], [Blr], etc, but the proofs here

are elementary.

For any complex numbers a and 5, put

Ma!l) = a(a + *S + lifc-l)/*! (* > 1) {2A)
and put

oo

~ ,s)xh. (2.2)

We call i/j(a} s, x) a generalized binomial function because ^(a, 0, x) = (l-x)~a.

We will prove some properties of V>(a, s, x).

Lemma 2.1.

i/j{a, s, x) = ^(-a, -5 - 1, -x). (2.3)

Proof.

X-l)kck(-a,-s-l)

= (-l)fc(-a)(-a - {s + l)k + 1, k - l)/k\

= a(a + sk + k - l)(a + sfc + k - 2) • • • (a + s/c + 1)

We note that ^(a, -1, x) = (1 + x)a and -0(0, s, x) = 1.

Proposition 2.2. //a, s, s+1 ^ 0, tften the radious of convergence ofi/jfa, s, x)

is \s3/(s. + l)s+1|. Where zz denotes the principal value.

Proof Put

Then the radious of convergence of ^(a, 5, x) is the reciprocal of the upper limit

of M1/*.

First assume that 5 is not a negative real number. Then, from the Stirling's

formula:

F(z) ~ \/27rzz~l/2e~z as z -> oo and |arg z\ < n - 6} S > 0,

we have

a + (g+l)m fa + (s + l)m\s

1 + m ^" + 1 + *^;
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This proves the proposition for s which is not a negative real number.

Assume -1 < 5 < 0. For large m £ N, choose nm G N and Sm with

0 < Sm < 1 such that

Re(a) + sm = -nm - Jm.

Then

sm,m -

= |(a + 1 + sm) • • • (a +1 + sm + nm -

x |(a +1 + sm + nm) • • • (a + (5 + l)

= |(-a - sm - nm, nm)| • |(o + sm + nm + 1, m - 1 - nm)|/m!

|r(-a - am)I • \T{a

|r(i

Hence we have

limsup|cm(a,
m—>oo

+ m)F(-a - sm- nm)r(a +

s)!1^- lim
m-»oo

— lim
m—>oo

(-a - sm)~a

]

^ —ol — sm^

\ 1 +771 /

S1

(a

71 + 7!

-m

l

+ l)m)

(« + l]
1 + m

i

s+l

J

S+l

This proves the proposition for s with -1 < s < 0. Prom Lemma 2.1, the

proposition holds for any negative real number s which is not — 1.

This completes the proof. □

Proposition 2.3. We have the follovring two equalities.

3, s, x) = <0(a, s, a:)^(j0, s, x).

Proo/. Proof of (2.4).

+ fcs 4-1,fc - 1) - (a - l)(a + ks,k- 1)

fc!

(2.4)

(2.5)

Proof of (2.5). It is sufficient to prove

(2.6)

which is proved by induction for fc. Consider
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as a polynomial of /? (a being a parameter) of degree at most k. From (2.4), we

have

which vanishes by induction. Hence dk((3) must be constant C. Since Cj(0, s) =

0 for j > 0, we hace C = dk(0) = 0. This completes the proof of (2.6) whence

of (2.5). . □

Corollary 2.4. For any rational number (3 G Q, we have

where the right hand side is the branch which takes the value 1 at x = 0.

Proposition 2.5. Let ek = e2™/k. For positive integers p,q with (p,q) = I,

n = p + q, the equation (1.3) : yn + xyp — 1 = 0 has solutions

4V(-Vn, -p/n, tfx), 0 < j < n - 1, (2.7)

in a neighborhood of x = 0,

/p^ie^x-^r), 0<j<p-l, (2.8)

(~ V9.P/9, -(4(-x)1/9rn) > 0 < J < 9 - 1, (2.9)

in a neighborhood of x = oo.

Proof From (2.4), we have

i/j(a, 5, x) - ip(a - 1, s, z) = zV>(a + s, 5, z). (2.10)

Put s = —p/n and a = 0 then we have

1 - V(-l> 5, z) = xil>(-p/n, 5, z),

which is equivalent to

ipi-l/n, s, z)n H- a^(-l/n, s, x)p - 1 = 0. (2.11)

If we replace a: by eg*a:, we know that (2.7) are solutions of (1.3).

Put 5 = q/p and a = 1 in (2.10). Then we have

which is equivalent to

[(-x)1'n1>(l/P>s,x)}n + (-»)-"/» [(-x)l'n4>(l/p,s,x)]P -1 = 0.

Put x\ = (—x)~p/n, and wright x instead of £i, then we know that functions

in (2.8) are solutions of (1.3).

Now put 5 = p/q and a = —s in (2.10), then we have

V(-l/<7,5, z)n - V(-l/9,5, x)p + x = 0.

Then, by the same way as above, we know that functions in (2.9) are solutions

of (1.3). This completes the proof. □
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Corollary 2.6. Ifak denotes the elementary symmetric polynomial of degree k

of {eJnip(-l/n} -p/n, e^'x), 0 < j < n - 1 }, then we have

Vk = 0} l<k<n-2ik^n-pi (2.12)

an_p = (-l)n-px, (2.13)

an = (-l)n-1. (2.14)

For any s = m/n with positive integer n, put

oo

<Pj(ais,x) = xj ^Cj+mia,*)^71, (2.15)

1=0

then we have

n-l

Proposition 2.7. Lei s = -p/n and n = p + q, then we have

n ' ' n n ' n

Proof. If k = nl (I > 1), then we have

t \- 1 ( /^i / -n- * r

If fc = nl + j (1 < j < n - 1), then we have

ck{a,s)

= Io(o-£(nZ + i) + l,ni+i-l)

^ + 1 w_i)(a+?2 oZ)
n ' n

a(a+ ^ - j + 1, j - 1) ,(-a

^

This implies (2.17). □

Corollary 2.8. Let s = -p/n, n = p + q and en = e27"/n. Then V>(a, s, e£x) 25,

as a multi-valued function of z = (—p)p^9n~nxn, a solution of the differential

equation (I.I). Ifcj(ais)^0for0<j<n-l,thenilj(a)s)€^x) 0 < fc <n-l

ore linearly independent

82



Proof. Prom (2.17), we know that ^(a, 5, x) is a solution of (1.1) (see the lemma

below). Prom (2.15) and (2.16), we have

n-l

iKa, 5, eknx) = £ e£\>i(a,',*), (2.18)

which is thus a solution of (1.1). If Cj{a,s) ^ 0 then <^(a,s,z) ^ 0 and

V>(a, 5, e£z) 0 < k < n - 1 are linearly independent from (2.18). □

The following lemma is well known.

Lemma 2.9. Let 6o = 1, then differential equation

has solutions

zl~bjnFn-i{aQ + 1 - bj,..., an_i + 1 - by,

bo + l- bj} ..,6,- +T= bh...,ftn-i + 1 - fy; *); 0 < j < n - 1

at z = 0 and

Z-^nFn-lfo + 1 " 6o, .... ty + 1 - 6n-i;

a^ + 1 -aOj...,ai:fT^aJ-,...,aj + 1 -an_i;l/z); 0< j < n- 1

at z = oo.

Proo/ nEn-\ is defined by

[tf(tf + bv - 1)(* + 62 - 1) • • • (0 + hn-i - 1)

-z(0 + ao)(tf + ax) • • • (tf + an-i)]ix = 0, ( ' ]

where tf = 2:9/9z (see [Bly]). It is easily verified that functions in Lemma satisfy

(2.19). □

Remark 2.1. If s = p/q with n = p + q, then we can prove, for 0 < j < q — I,

oo

a,s,x) = xj ^cj+^(a,5)xZ9
1=0

, J a + l , j a+ n-l j

ajj. jf a + p j 1 + j 9-1 g + 1 q + j nn q
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3 Global properties of solutions of

yn + xyp - 1 = 0.

Put r = \s3/(s + 1)3+1|, then ^(a.s.x) is holomorphic in Ar := {x\\x\ < r}
(Proposition 2.2).

Lemma 3.1. Assume s G R.

(1) If ae R, then ip(at 5, z) > 0 for real x in Ar.

(2) i/)(—l)S,x) does no£ tafce negative value, in Ar, that is |an/^(-l,s,x)| <

7T.

Proof If a, a G R, then ^(o:, s, z) G R. Since ^(a, s, a) ^ 0 and V(a> s, 0) = 1,

we have ^(a, s, x) > 0.

Assume ^(-1,5, xo) < 0 for some zo ^ Ar. Put 5 =argxo. Then there exist

to < r and positive number bo such that

l,5,ei^)| < ?r, for 0 < t < t0 and ^(-M

Prom (2.10), we know y = ^(—l^z) satisfies

y + rcy"5 - 1 = 0.

Since V(-M,e^0)~s = e±7ris6^"5, we have (put x = ei9tQ)

Thus we have e^*™) = (60 + l)/(^st0) > 0, which implies 6 = (±5+2n)?r, n G
Z. Since y = ^(-1,5,0;) defines an open map, ^{-l.s.e^t) maps some open

interval {to—6, to+5) onto some open interval(—bo—6', —bo+5'). This contradicts

to the choice of £o- □

We assume (p, q) = 1 and n = p + q. Prom Proposition 2.5,

fj(x) := ^(-l/n, -p/n, e^'rc), 0 < j < n - 1, (3.1)

are solutions of the equation (1.3): yn + xyp — 1 = 0.

The equation (1.3) has multiple roots at x with

and at x = oo. Let

where e(x) = e2lTix.

Lemma 3.2. At x = Xj, the equation (1.3) has double root

and n-2 simple roots.

Proof. The double root of the equation (1.3) is uniquely determined by (1.3)

and nyn~l + pxyv~l =0. □
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We know that fj(x) are holomorphic in A := {x\ \x\ < rUtP} and continuous

in the closure A of A, where rn<p = (p/n)~p/n(q/n)-q/n. They have analytic

continuations along any curve not through Xk> 0 < k <n — 1.

Put

(3.4)

then we have Dj = e(j/n)Do and put Dn = Dq.

Lemma 3.3.

1) < argy < (l+ll)^ foryeDh (3.5)
\ n /

) gy (
n / \ n

Dj n Di+1 = {fjfa) = fj+i(xj)} = {e((l + 2j)/2n)(p/^)1/n} (3.6)

and ^ CiDk=$ifj-k^ ±1.

Proo/. The inequalities (3.5) follow from Corollary 2.4 and (2) of Lemma 3.1.

These inequalities imply that Dj n Dk = 0 if j - k ^ ±1. Since any element of

Dj n Dj+i is one of (3.3), we have

Dj H Dj+l = {e((l

from (3.5). Prom Lemma 3.2, (3.6) follows. □

Corollary 3.4. Let 70 be a loop starting and ending at the origin and once

surrounding xq. Let jj = e(—pj/rijjQ. Then, by the analytic continuation

along jj, fj{x) and fj+i(x) are interchanged and other fk(z) are unchanged.

Proof Assume 70 (hence any 7^) acts trivially on {/o, ...,/n_i}, then fj(x) are

entire functions. This contradicts Proposition 2.2. D

Definition 3.1. Let E be a Fuchsian linear differential equation of rank n on

P1. Let Z = P1 - {singular points of E}. Fix a base point Zb € Z, and let V be

the set of germs of holomorphic solutions of E at z^. For any 7 G 7Ti(Z,Z6) and

f G Vy the analytic continuation 7*/ of f along 7 is again in V. We consider 7*

an element of GL(V) and call the set M(E) of all 7* the monodromy group

of E and M{E)/(its center) the protective monodromy group of E.

We say that M(E)As (or E is) reducible if there exists a non trivial subspace

V\ of V which is invariant under the action of M(E) and say M(E) is (or E

is) irreducible if M(E) is not reducible.

We say that M(E) is (or E is) imprimitive if V has a direct sum de

composition V = V\ + Vi H Wk such that any element of M(E) induces a

permutation of {Vi, T^2> •••> Vfc}-
Choose a fundamental system fj(z)> 1 < j < n of solutions of E and fix

initial values of them at z\>. Then, by taking analytic continuations of fj(z), we

have a multi-valued map

zeZ^ [h{z) : /„(*) : •• • : /„(*)] € P""1,

which we call a Schwarz map of E.

85 ij:



Remark 3.1. In the above definition, we have two remarks.

If the characteristic exponents of E are real and do not differ by integers at

each singular point then the Schwarz map above can be extended to a map from

P1 to P""1.

If the Schwarz map has a single valued inverse map tte> then the projective

monodromy group of E is isomorphic to the covering transformation group of

1TE-

The map of Ar to P71"1 defined by [fo(x) : /i(x) : ••• : /n-i(z)] is ex

tended to a multi-valued map of C — {zo, • • • ,£n-i} to P71"1 by the analytic

continuation. Take the closure of its image in P71"1 which we denote by Xn%p.

Proposition 3.5. XUiP is equal to the set of common zeros o/ajfc, 1 < k <

n — 1, k ^ q, where cr^ are the elementary symmetric function of degree k. Put

then we have

7rn,pU/ova'; • Ji\x) • • Jn-iWJJ — z .— ^—ij prq n x . w-o;

7TniP 25 an n! : 1 map of Xn>p to P1 ramifying at z = 0, l,oo. T/ie ramification

indices at these points are n}2,pq respectively. The covering transformation

group is isomorphic to symmetric group Sn of order n\.

Proof. Denote XUtP be the set of common zeros of a^, 0 < k < n — 2, k ^ q.

Prom Bezout's theorem, 7rniP|^n is an n! : 1 map of XntP to P1. Prom Corollary

2.6, we have Xn%p C XUtP) that is Xn%p is an irreducible component of Xn%p.

From Corollary 2.6, (3.8) holds and from Corollary 3.4, we know that Sn acts

on each fiber of vrniP|xniP. Consequently we must have XnjP = XntP.

By definition of z} the ramification index is n at z = 0. Prom Corollary 3.4,

the index at z = 1 is 2. Prom Proposition 2.5, we know that the ramification

index at z = oo is pq. This completes the proof. □

The statement (2) of the following corollary is proved in [B-H, Proposition 2.6].

Corollary 3.6. (1) If p < n - 1, then V>(-l/n, -p/n,e£z), 0 < k < n - 1 are

solutions of a differential equation n_ii?n_2j the projective monodromy group of

which is isomorphic to the symmetric group Sn of order n\. Any n — 1 of the

above solutions are linearly independent.

(2) The projective monodromy group of

12 n-1.1 HI Q-l\ (39)

is isomorphic to Sn.

Proof. Proof of (1). Assume p < n — 1 or equivalently q > 1. Put a = —1/n

and s = -p/n. Let q* be the integer such that

1 < q* < n — 1 and qq* = 1 mod n.
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Then p* := n - q* also satisfies pp* = 1 mod n. For k = p or q, put dk =

(kk*-l)/n. Note g* > 1 and d9 > 0 because q > 1. We easily have cg* (a, 5) = 0,

consequently <^9*(a:, s,x) = 0 (see Proposition 2.7). Since

>=(a + q-dq)/q=p*/ny

we have

(a, a, a:)

_ (-a -a + p-la a + q-dq a + q-1

n-1-1 ?1 L,\
n ' 'n1 'n' /'

where z = {—\)lpppqqn nxn as before. By the same way, we know that

{<Pj I 0 < j < n — 1, j 7^ q*} form a system of fundamental solutions of

/-a -a + p-1 a a+T^rf9 a + g-1

V p p q q q (3.10)
n -

n

The equalities (2.18) imply that ^(-1/n, -p/n.e^x), 0 < fc < n - 1 are solu

tions of (3.10) and moreover any n — 1 of them are linearly independent. Since

the projective monodromy group of (3.10) is isomorphic to the covering trans

formation group of 7TnjP which is isomorphic to Sn from Proposition 3.5. This

completes the proof of (1).

Proof of (2). In (3.9), p and q are symmetric so that we can remain the

assumption of p < n - 1. Put r = (-a + dp)/p = (a -h q - dq)/q — p*/n then,

from Lemma 2.9, the equation (3.10) has the special solution

-r T, ( Q n — 1 dv 1
z rn-iFn_2 (r,r+-,... ,r + —,-•• ,r+ ; 1 + -^,- • • , 1 + -,

up p

1 q-1 q-dq-\

1+ - — "' ~ 1

1

p-

p

n""2V

1

)

1

n' '

l + dp ^

' P '

r

Q

n

q

Thus the projective monodromy groups of (3.9) and (3.10) are mutually isomor

phic. This proves (2).

This completes the proof. □
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4 Schwarz map of a family of imprimitive nEn-i.

Assume (p, q) = 1 and put

n = p + q, s = -p/n, z = (-p)pqqn~nxn} ek = e(l/fc) = e2?ri/A:.

For an integer m > 2, put a = —l/(mn) and put

/j1/m)(z) = ekntf(«. *.#*). 0 < j < n ^ 1, (4.1)

which is a ra-th root of /j(x). When we consider /j1/m)(x) as a multi-valued

function of z, we denote it by /j1/m)(*).

Lemma 4.1. /j ' (2), 0 < j < n - 1 are linearly independent solutions of
differential equation (1.1).

Proo/. Since Cj(a, s) 7^ 0, for 0 < j < n-1, Corollary 2.8 proves the lemma. □

Similar to (3.4) we put

Then we have D^l/m) = e(j/(mn))D^l/m) and can prove the following lemma
and its corollary from Lemma 3.3 and Corollary 3.4.

Lemma 4.2.

= {e((l + 2j)/(2mn))(p/g)1/"}) 0 < j < n - 2,

Corollary 4.3. (1) Le< 7j be the loop defined in Corollary 3.4. Then by the

analytic continuations along Jj, 0 < j < n-2, /j1/m)(x) and fj+™\x) are

interchanged and other fil/m\x) are unchanged, by that along in-\, fn-?\x)

and e(l/m)/0(1/m)(x) are interchanged and other fl.1/m\x) are unchanged.
(2) We have

fj1/m\e(p/n)x) = e(-l/(mn))/gm)(i), for 0 < j < n - 2,

/^(efo/n)*) = e((n - l)/(mn))/0(1/m>(a:).

Prom Lemma 4.1 (see also Remark 3.1), a Schwarz map of (1.1) is given by

* 6 P1 -♦ [/(1/m)(,) : f[llm\z) :■■■: /S^Wl- (4-2)

We denote its image by X^/m) which is an irreducible curve in P""1.
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Theorem 4.4. Let a = — l/(mn), m > 2, 5 = —p/n, then we have

*£P/m) = {(2/0 : yi : • • • : 2/n-i] € P"1 | ^(y^y?1. ■ • • >C-i) = 0,

1 < k <n- 1, fc^g},

w/iere o^ 25 £/ie elementary symmetric function of degree k. Put

*<v™>(fo,.,*.....„ i)-( /^Mtf.^-.y:.,))" (44)
n'p ([yo-yi- -yn-lU-( 1} B« (^(sjr.vr.-.ic-i))'1 ( '

tfien *i^m) is an mn-1n\ : 1 map of xLl,(,m) to P1 and satisfies

Tfte branch points of nn,p are z = 0, l,oo wi£/i ramification indices n

respectively.

Proof. We denote the right hand side of (4.3) by Xntp for a moment. Since

(/j1/m)(*))m = /,(*),

we have, from Proposition 3.5, xfy^ C xk]j>m). By definition, 7ri^m) is an

mn-ln\ : 1 map of X^m) to P1 and from (3.8) it satisfies (4.5). On the other

hand, TTn,p restricted to Xntp has mn~ln\ points in general fiber because the

covering transformation group of Xn,p includes Sn from (1) of Corollary 4.3

and multiplication of e{\/m) to coordinate yn-i from (2) of the same corollary.

Hence we have Xn.p = Xn,p - The ramification index at z = oo is mpq from

Proposition 2.5.

This completes the proof. □

Corollary 4.5. Let a = —l/(mn), m > 2, then the differential equation (1.1)

has imprimitive finite irreducible projective monodromy group of order mn~ln\.

Proof The order of the projective monodromy group of (1.1) is equal to the

degree of iTn,p which is mn~ln\ from the above theorem. Let To and Fi be

loops once surronding z = 0 and z = 1 respectively. Prom Corollary 4.3, both

To and Pi induce permutations on the set {(/j )|0 < j < n — 1} of one

dimensional subspaces (fj ) of V. Hence the monodromy group of (1.1) is

imprimitive.

Since none of "~ajfk - ^, 9^s- - ^, is an integer for any integers k and Z,

(1.1) is irreducible from (the proof of) Proposition 3.3 of [B-H]. □

Corollary 4.6. For any positive integer m and integer q with 1 < q < n — 1,

the algebraic set

{[yo : Vi : • • • : 2/n-i] € Pn~l \ afc(C, !/i\' •' . l/n-i) = 0, 1 < fc < n - 1, * ^ «}

25 irreducible.

Proof. The statement is true for m = 1 from Proposition 3.5 and for m > 2

from Theorem 4.4. □
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Lemma 5.1.

^(-1/2,-1/2,*) =
-X + y/x2 + 4

1 + VI - 4x

(5.1)

(5.2)

Proof. From (2.16) and (2.17), we have

Since 2-F1 (a, b\ b\ x) = (1 - z)~a, (5.1) is proved.

If k > 1, then we have

= k{k+ !)■■■ {2k - 2)/*! = -{2k - 2)\/{k\{k - 1)!)

= -1 • 3 • • • (2* - 3)2fc-Vfc! = -(1/2, Jb - l)22fc-2/A;!

= (-l/2,fc)4fe/(2A;!)

Hence we have (5.2).

Lemma 5.2.

^(-1/3,-1/3, s)

□

4
1/2 jN1/3 1 (l

/2 A1/3

1/2

/2

,

1/3

(5.3)

tu/iere cube roots take positive values if x is a positive small number.

Proof. From (2.16) and (2.17), we have

iK-1/3, -1/3, x)

l 1121 43\ 1 /2 1242 43

s^d'^z'^'w* )~3X3 ^r^rrs'^w*
12 4 l 2 4 4

which is equal to, from Remark 2.1,

W>(-l/3,1/1; -x3/27) - 1/3x^0(1/3,1/1; -x3/27)

= V(-l/3,1; -x3/27) - 1/31 tf (1/3,1; -x3/27)

-1/3

from (5.2). This proves the lemma. □
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Theorem 5.3 (Cardano). The equation

Xs + 3pX -2q = 0

has roots

, 0<m<2,

w/iere €3 = e27™/3 and cube roots must be chosen such that

l/3/ , \l/3 , xl/3

[q + vp3 + q2) [q - vp3 + q2) = -p.

Proof. Theorem follows from Lemma 5.2 and Proposition 2.5.

Lemma 5.4. Let s = -p/n. Then for any a, we have

n-l

(5.4)

(5.5)

□

(5.6)

n-l

Proof Prom (2.18), we have

ip(a}5, eJnx) = > eJn (pk{at s,x).

A:=0

First we note

y?o(0,s,aO = 1, -^(0,5,x) = 0 and ^(0,s,x) = 0 for A; > 1.

Put f{a) = Yl^Zl il)(a, 5, e{x). Then /(0) = 1 and

da

n-l

fy,

«„

n-ln-l n-l

Q=0

£
da

n-l

A:=0

n-l

a=0

= 0.

Since /(a + /?) = /(a)/(/3), we have /(a) = /(0) exp(a df{0)/da). This proves

(5.6) D

Let a = -l/(3m) and put w = /j1/m) (a,-^,z) for j = 0,1,2 (as for /j1/m),
see (4.1)). Then, from (4.3), (4.4) and (4.5), we have

= »■

Let

J(t) = + 196884g4 + 21493760g6 + •••), q = e™

be the elliptic modular function defined on the upper half plane. We have the

following theorem.
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Theorem 5.5. Let a = -1/12, s = -1/3, z = J{t). Recall z = -4x3/27 and

define x as a single valued function of r so that x > 0 for r = (—1 + v3i)/2 + ti

with t > 0. T/ien we

Ctf2(0,r), /x(1/4) = Ctfo(0,T), /2(1/4) = e(l/8)C*3(0,t), (5.8)

when: C = 2-l/3e(l/24)q-^2H^, Ho = Ilwi(l " Q2")-

Proof. Let <74 = {[y0 : yi : 2/2] 6 P2 |y4 + y\ + v\ = 0}, then

»(V«> : c4 -^ P1

satisfy, from (5.7),

It is well known (see, for example [Akh]) that

4!/4) ([^(0,r) : 0O(O,T) : e(l/8)tf3(0,r)]) = J(t). (5.9)

This and the equality (5.6) imply that both

[/od/4) .

belong to the same fiber (713/ ) (J(r))> Hence for some fourth roots e,t1 of

1 and some function C" = C'{r), we have

{/($1/4),/i(1/4),/2(1/4)} = {C'tf2(0,T),C'etf0(0, r),CVe(l/8)7?3(O,r)}.

If we put r = (-1 + y/3i)/2 + ti and let £ to +00, then z = J(r) < 0 goes to

—00. Since, from (5.3),

(T^) + i)1/3 - 4 (VT^-z-iff4,

we have (5.8) for some C = C{r). Since (i?2(0,r)'i9o(0,r)i93(0,r) =

([Akh]), C takes the value in the statement of the theorem. □
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