BERRZZZAN Y R b Y
ERRE/ Fou -z D805 AEAD

Schwarz map

=:=E5.
HARE : DN 4

~FHH: 2009-02-27

*F—7—NK (Ja):

F*—7— K (En): hypergeometric function, monodromy
group, Schwarz map

VERRZE : TNE%, 54, Kato, Mitsuo

X=ILT7 KL R:

Firi&:

http://hdl.handle.net/20.500.12000/8947




Hypergeometric function ,F,_; with imprimitive
finite irreducible monodromy group

Mitsuo KATO and Masatoshi NOUMI

1 Introduction.

A generalized hypergeometric function

& ke
nFn—l(a'O)alaa'Z,"'7an—l;b11b2) ...,bn_l;Z) = Z ——nl;?i(L,' "
n=0 11j=1 (bj’ n)n

)

where (a,n) =I'(a + n)/T'(a), satisfies a Fuchsian differential equation
‘nEn—-l(GO) a1,02,...,0np—1; bla b2: ooy bn—l)

of rank n with singularities at 2 = 0, 1 and co. F. Beukers and G. Heckman
[B-H] determined ,E,_; with finite irreducible monodromy groups. In [Kt], for
3E, with finite irreducible primitive monodromy groups, Schwarz maps of P!
to P2 defined by linearly independent three solutions are studied. The images
of Schwarz maps and their single valued inverse maps are determined.

As stated in Theorem 5.8 in [B-H], under some condition, ,E,_; with irre-
ducible imprimitive monodromy group is essentially given by

-a —a+1 -a+p—-1 o a+1l at+g—11 n—1
‘nEn—l(-—, y y T 1y T ;")"')_)a
p p p a g q n n
(1.1)
where (p,g) =1land n=p+q.
In this paper, for (1.1) with a = —1/(mn), m > 2, we will determine its
Schwarz map and obtain its single valued inverse map. (If @ = —1/n, then the

monodromy group of (1.1) is not irreducible.)
For this purpose, we use the generalized binomial function (see Section 2)

¢(O" _p/n) :B), (12)

because if we put z = (—p)PgIn~"z™, then (1.2) is (as a multi-valued function
of z) a solution of (1.1).
If & = —1/n, then (1.2) is also a solution of the algebraic equation

y*+zyP —1=0. (1.3)

This fact was first discovered by Lambert (see [Brn, p.307]), and studied by
many mathematicians (for example, [Blr]). We also remark that the generalized

binomial function is a typical example of quasi-hypergeometric function studied
in [A-T).
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In Section 2, for the sake of self-containedness, we give elementary proofs
for several known results concerning to (1.2) and (1.3).

In Section 3, we consider the case of @ = —1/n. In this case, (1.1) is
reducible and if moreover p < n—1, then (1.2) satisfies a differential equation of
rank n — 1 with the projective monodromy group isomorphic to the symmetric
group S, (Corollary 3.6). In Section 4, we put @ = —1/(nm) m > 2. Take
n solutions of (1.3) and choose m-th roots f( fm )(z) 0 <j<n-1of these
solutions. Then these are (as functions of z) linearly independent solutions of
(1.1). The monodromy group induces all permutations on these solutions and

multiplications of m-th roots of 1 to each f}l/ m)(:1:) (up to multiplications of

common constant numbers to all f}ll ™) ). Thus (1.1) has imprimitive finite
irreducible projective monodromy group of order m™~!n! (Corollary 4.5). The
Schwarz map of (1.1) is defined by

2 [F/m) , garm) L ga/myy

The defining functions of its image in P™~! and its single valued inverse map
are expressed, consulting (1.3), by use of elementary symmetric functions of
n-variables (Theorem 4.4).

Finally, in Section 5, we state several topics for n = 3 case. We give a
proof of Cardano’s formula for a cubic equation, using properties of generalized
binomial functions. We also give a uniformization of 3E; by theta functions,
that is, if we put z = J(7), the elliptic modular function, then the solutions
of (1.1) with & = —1/12,p = 1,q = 2 are single valued functions of 7 and are
expressed by theta functions.
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2 Generalized binomial function.

The statements in this section are found in (Brn}, [Blr], etc, but the proofs here
are elementary.
For any complex numbers « and s, put

co(a, 8) =1,
ck(o,s) =ala+ks+1,k—1)/k (k>1), (2.1)
and put
P(o, 5,3) = i cx(a, 8)z*. (2.2)
k=0

We call 9(a, s, ) a generalized binomial function because ¥(e,0,z) = (1-z)~°.
We will prove some properties of ¥(a, s, z).

Lemma 2.1.
¥(e, 8,z) = P(—a, -5 — 1, —z). (2.3)
Proof.
(=D*cx(~a, -5 -1)
= (-1)*(-a)(~a - (s + 1)k + 1,k - 1)/k!

=alatsk+k-1)(a+sk+k-2) - (a+sk+1)
= ¢cx(a, 8).

We note that ¥(a, —1,z) = (1 + 2)* and 9(0,s,z) = 1.

Proposition 2.2. Ifa,s,s+1 # 0, then the radious of convergence of ¥(a, s, z)
is |s°/(s + 1)°*1|. Where 2* denotes the principal value.

Proof. Put

Fla+ (s+1)k)
1+ k) (a+1+ sk)

Ck(oy,s) =(a+1+sk,k—1)/k! = T

Then the radious of convergence of ¥(, s, ) is the reciprocal of the upper limit
of |k|*/*.

First assume that s is not a negative real number. Then, from the Stirling’s
formula: ’

[(z) ~ V2rz*~12e~2 as z — oo and |arg z| < ™ — 4,6 > 0,

we have

|5m(01 s)ll/m ~ |(a+(8+1)m)s+1| N a+(s+ l)m a+ (s+1)m s
, (1+m)|(a+1+ sm)?| 1+m et 1tsm
~ |(3+1)3+1/ss|'
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This proves the proposition for s which is not a negative real number.
Assume —1 < s < 0. For large m € N, choose n,, € N and d,, with
0 < 6, < 1 such that

Re(a) + sm = —ny — 0.
Then

|Em (e, 8)| = |(a + 14 sm,m — 1)|/m!
=|(a+1+sm) - --(a+1+4+sm+n,—1)|
X |(@+1+4sm+ng) - (a+(s+1)m —1)|/m!
= |(—a = sm — N, )|+ (@ + sSM 4+ N, +1,m — 1 = 1y )| /ml!
_ IT(—a — sm)| - |T(a+ (s + 1)m)| -
(1 + m)T(—a = sm — nm)T(a + sm + nm + 1)|

. Hence we have

(—a—sm)~*(a+ (s + 1)m)**!
l 14+m

—a—sm\ ™ (a+ (s+1)m\*T
1+m 1+m

=|(=8)7*(s + )T = (s +1)*F/s°).

. ~ yYm _
lim sup |em (e, 5)| Jim

= lim
m— o0

This proves the proposition for s with —1 < s < 0. From Lemma 2.1, the
proposition holds for any negative real number s which is not —1.
This completes the proof. O

Proposition 2.3. We have the following two equalities.

ce(a,8) —ck(a—1,8) = ck—1(a + s, 8), (2.4)

¢(a+ﬂa3;m) =¢(a,s,x)¢(ﬁ,s,m). (25)
Proof. Proof of (2.4).

ck(e, 8) — (o —1,8)
_ala+ks+1,k—1)-(a—1)(a+ks,k—1)
B k!
_(a+s)(a+s+(k—1)s+1,k—2)
h (k- 1)!

= Clc—l(a +s,8).

: Proof of (2.5). It is sufficient to prove
| cela+B,s)= Y alas)(B,9), (2.6)
i i+j=k

which is proved by induction for k. Consider

d(B) = ce(a+B,8) = Y cile,8)ci(B,9)

it+j=k

?5}

80




as a polynomial of B (a being a parameter) of degree at most k. From (2.4), we
have

di(B) —di(B — 1) = de-1(B + 9),

which vanishes by induction. Hence di(8) must be constant C. Since ¢;(0, s) =
0 for j > 0, we hace C' = di(0) = 0. This completes the proof of (2.6) whence
of (2.5). , a

Corollary 2.4. For any rational number 8 € Q, we have
¥(ap,s,z) = (e, 5,2)°,
where the right hand side is the branch which takes the value 1 at z = 0.

Proposition 2.5. Let e, = e?™/%, For positive integers p,q with (p,q) =1,
n = p+ g, the equation (1.3) : y™ + zy®? — 1 = 0 has solutions

e(=1/n,—p/n,elz), 0<j<n-1, (2.7)
in a neighborhood of x =0,
9277y (1p.afp.~(g s /7)), 0<j<p-1, (28)
&(-2)" (-1/a,p/0,~(f(-0)/) "), 0<i<a-1,  (29)
in a neighborhood of x = oo.
Proof. From (2.4), we have
Y(a, 8,z) — P(a—1,s,z) = z¢p(a + s, 8, z). (2.10)
Put s = —p/n and o = 0 then we have
1—-1y(-1,s,z) = 2¢(—p/n, s, z),
which is equivalent to
P(=1/n,s,2)" + z(-1/n,s,z)? — 1 =0. (2.11)

If we replace z by e??z, we know that (2.7) are solutions of (1.3).
Put s = ¢/p and a =1 in (2.10). Then we have

1/)(1/p,s,:c)p -1= a:z/)(l/p,s,:c)”,

which is equivalent to
(=) mp(1/p,5,2)]" + (=2) /" [(~2)/"p(1/p,5,2)]" =1 =0.

Put z; = (—z)7P/", and wright z instead of z, then we know that functions
in (2.8) are solutions of (1.3).
Now put s =p/q and o = —s in (2.10), then we have

¢(—1/Q) s,m)n - "/)(—l/q, s,w)p +z=0.

Then, by the same way as above, we know that functions in (2.9) are solutions
of (1.3). This completes the proof. O

3
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Corollary 2.6. If oy denotes the elementary symmetric polynomial of degree k
of {eh¥(—1/n,—p/n,ePiz), 0 < j <n—11}, then we have

or=0 1<k<n-—-2,k#n-p, (2.12)
On—p = (—1)""Pz, (2.13)
on = (-1)""L (2.14)

For any s = m/n with positive integer n, put

pje, s,z) = @ Z Cjtin(e, s)z'™, (2.15)
=0
then we have
n-1
¢(a,8,$) = Z‘Pj(aas’m)' (216)
j=0

Proposition 2.7. Let s = —p/n and n =p+ q, then we have

wi(a,s,z) = cj(a, s)z?

—atp ] atv _
XnFaot (T 42, 0SpSol S =45 08V ST gy
T T
n ) 1) n 1) n ) ) n ) nn M
Proof. If k =nl (I > 1), then we have
1 1
ck(o, s) = Fa(a -pl+1Lnl-1)= ]-Ja(a —pl+1,pl — 1)(a, gl)

= (_I)Pl (=a, pl) (e, ql) - (_l)plpplqtﬂ Hf;}l(—% + %’l) HZ;B(% + %’l)_
(1,nd) ™ Izo(z + 200

Ifk=nl+7 (1 <j<n-1),then we have

ck(a, 8) .

_1 P ; .
—k!a(a n(nl+3)+1,nl+y 1)

—————1 P - pj . qj
G T LAy R Lpl(e— Th 4 L= (et Thal)
_et§-jt1i-) (—o+ &, pl)(a+%,ql)

(-1 (4 +1,nl)

Pt o3+ 1+ 5 0[Eo(g+E+40)
- .
nnl HK:O(J%I + ;\'{71)

This implies (2.17). (]

gt

.= cj(a) 3)(_1);:1

Corollary 2.8. Let s = —p/n,n = p+q and €, = e*™/™. Then (e, s, k1) is,
as a multi-valued function of z = (—p)Pqin""z", a solution of the differential
equation (1.1). Ifcj(e,8) #0 for 0< j <n-—1, theny(a, s,ekz) 0<k<n-1
are linearly independent.
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Proof. From (2.17), we know that ¢;(c, s, z) is a solution of (1.1) (see the lemma
below). From (2.15) and (2.16), we have

¥(a, s, 8 z) Zen i, s, z), (2.18)
which is thus a solution of (1.1). If ¢;j(a,s) # 0 then p;(e,s,z2) # 0 and
Y(a, s,ekz) 0 < k <n -1 are linearly independent from (2.18). (]

The following lemma is well known.
Lemma 2.9. Let by = 1, then differential equation
nEn-1(a0,a1,0a2,...,an-1; b1,b2, ..., bp_1)

has solutions

2170 Fu_i(ag+1—bj,.yan_y +1—by;

Bo+1—=bjyeb FL=bjybpoy +1—bj2); 0<j<n—1
atz=0 and
z7% Fo_1(aj+1-bg,...,a5 + 1 — by_y;

a; +1-ag,...,a; -|-/1\—a,~,...,aj +1-ap-1;1/2); 0<j<n-1
at z =00 _
Proof. nE,_; is defined by

[9(0 + by — 1) + by — 1)+ (9 + bp_y — 1)

_Z('l9-|-a,0)(19+a1) ...(rﬂ_l_an_l)]u =0, (219)

where ¥ = 20/0z (see [Bly]). It is easily verified that functions in Lemma satisfy
(2.19). O

Remark 2.1. If s = p/q with n =p + g, then we can prove, for 0 < j<q-—1,

vila,s,z) =27 Zc,-.,.;q(a, s)z'?

1=0
; j a+l 3 a+n—-1 j
=c_,-(a,s)a:’nF_( +ET+E,"',T+E;
a+l j a+p J 143 g-—1 ¢g+1 g+j, n" g
— =, +_s )Ty ) 1yt ) pqx)'
P q P 4 g q ' q g ' pPq
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3 Global properties of solutions of
y"+ayP—1=0.

Put r = |s°/(s + 1)**!|, then (e, s,z) is holomorphic in A, := {z]|z| < r}
(Proposition 2.2).

Lemma 3.1. Assume s € R.

(1) If a € R, then ¢(e, s,z) > 0 for real T in A,.

(2) ¥(—1,s,z) does not take negative value in A, that is |argy(—-1,s,z)| <
.

Proof. If o,z € R, then ¥(a, s,z) € R. Since ¥(a, s,z) # 0 and ¥(a,s,0) =1,
we have ¥(a, s,z) > 0.

Assume (-1, s,z0) < 0 for some zg € A,. Put 8 =argzo. Then there exist
to < r and positive number by such that

larg (=1, s,et)| < 7, for 0 <t < to and (1,3, e%) = —by.
From (2.10), we know y = 9(~1, 5, z) satisfies
' y+azy— —-1=0.
Since $(—1, s, €%to)~* = e£™*b7°, we have (put z = e¥ty)
—bg + eioto eim’sbo-s —1=0.

Thus we have e'(®7) = (by+1)/(by *to) > 0, which implies § = (£s+2n)r, n €
Z. Since y = ¢(—1,s,z) defines an open map, ¥%(—1, s, e**t) maps some open
interval (to—4d, to+0) onto some open interval(—bg—&’, —bg+4’). This contradicts
to the choice of tg. (]

We assume (p,q) =1 and n = p + ¢g. From Proposition 2.5,
fi(z) = €(=1/n,~p/n,elz), 0<j<n-—1, (3.1)

are solutions of the equation (1.3): y™ + zy? — 1 =0.
The equation (1.3) has multiple roots at z with

(-1)PpPg*n~"a" = 1
and at £ = oo. Let

Tj=e (2%2) (pPg Y™, 0<j<n-1, (3.2)

where e(z) = e2™i®,

Lemma 3.2. Atz = z;, the equation (1.3) has double root
e((1+25)/2n)(p/9)"'" (3.3)

and n-2 simple roots.

Proof. The double root of the equation (1.3) is uniquely determined by (1.3)

and ny™~! + pxyP~! = 0. O
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We know that f;(z) are holomorphic in A := {z||z| < rnp} and continuous
in the closure A of A, where 1., = (p/n)~P/"(g/n)~9/™. They have analytic
continuations along any curve not through zx, 0 <k <n -1

Put

D; = fi(Q), (3.4)
then we have D; = e(j/n)Dg and put D, = D.
Lemma 3.3.

(—1:2j)wsargys (H;lzj)w fory € Dj, (3:5)

D;N Djy1 = {fj(z5) = fi+1(z;)} = {e((1 + 25)/2n)(p/2)"/"} (3.6)
and DN Dy =0 if j — k # 1.

Proof. The inequalities (3.5) follow from Corollary 2.4 and (2) of Lemma 3.1.
These inequalities imply that D; N Dx = 0 if j — k # £1. Since any element of
D; N Djy4, is one of (3.3), we have

D;N Djy1 = {e((1 +24)/2n)(p/q)"/"}
from (3.5). From Lemma 3.2, (3.6) follows. O

Corollary 3.4. Let v be a loop starting and ending at the origin and once
surrounding zo. Let v; = e(—pj/n)ve. Then, by the analytic continuation
along v;j, fj(z) and fij+1(z) are interchanged and other fx(x) are unchanged.

Proof. Assume -y (hence any «;) acts trivially on {fo, ..., fa-1}, then f;(z) are
entire functions. This contradicts Proposition 2.2. O

Definition 8.1. Let E be a Fuchsian linear differential equation of rank n on
Pl. Let Z = P! — {singular points of E}. Fiz a base point zy € Z, and let V be
the set of germs of holomorphic solutions of E at zp. For any v € m1(Z, 2») and
f €V, the analytic continuation v, f of f along v is again in V.. We consider v,
an element of GL(V') and call the set M(E) of all . the monodromy group
of E and M(E)/(its center) the projective monodromy group of E.

We say that M(E).is (or E is) reducible if there erists a non trivial subspace
Vi of V which is invarient under the action of M(E) and say M(E) is (or E
is) irreducible if M(E) is not reducible.

We say that M(E) is (or E is) imprimitive if V has a direct sum de-
composition V = V4 + Vo + -+ + Vi such that any element of M(E) induces a
permutation of {Vi, Va, ..., Vi }.

Choose a fundamental system fj(z), 1 < j < n of solutions of E and fiz
initial values of them at z,. Then, by taking enalytic continuations of f;j(z), we
have a multi-valued map

2€Z v [f1(2): fa(2) : - fa(2)) € P""l,.

which we call a Schwarz map of E.
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Remark 3.1. In the above definition, we have two remarks.

If the characteristic exponents of E are real and do not differ by integers at
each singular point then the Schwarz map above can be extended to a map from
P! to P 1,

If the Schwarz map has a single valued inverse map wg, then the projective
monodromy group of E is isomorphic to the covering transformation group of

TE.

The map of A, to P*~! defined by [fo(z) : fi(z) : -+ : fa—1(2)] is ex-
tended to a multi-valued map of C — {zo," -+ ,Zn-1} to P*~! by the analytic
continuation. Take the closure of its image in P*~! which we denote by X, ,.

Proposition 3.5. X, , is equal to the set of common zeros of ok, 1 < k <
n—1, k # q, where o are the elementary symmetric function of degree k. Put

ppqq (aq(yO) v )yﬂ—l))n (3'7)

Tnp([Wo i v1 i 1 Yna]) = (-1) n* (0n(¥0, -+ 1 Yn_1))?’

. then we have

Tap((fo() : fi@) -t faoa(2)]) = 2:= (-1)PPPg*n""z".  (3.8)

Tnp 88 an nl : 1 map of Xnp to P! ramifying at z = 0,1,00. The ramification
indices at these points are n,2,pq respectively. The covering transformation
group is isomorphic to symmetric group S,, of order n!.

Proof. Denote Xn,p be the set of common zeros of o, 0 <k <n-2, k #q.
From Bezout’s theorem, mnp|¢  isann!: 1 map of Xy, to P. From Corollary

2.6, we have Xn, C Xnp, that is X, , is an irreducible component of X, ,.
From Corollary 2.6, (3.8) holds and from Corollary 3.4, we know that S;, acts
on each fiber of 7np|x, ,. Consequently we must have X, , = X p.

By definition of z, the ramification index is n at z = 0. From Corollary 3.4,
the index at z = 1 is 2. From Proposition 2.5, we know that the ramification
index at z = oo is pg. This completes the proof. O

The statement (2) of the following corollary is proved in [B-H, Proposition 2.6].

Corollary 3.6. (1) Ifp < n -1, then Y(—1/n,—p/n,ekz), 0 < k< n—1 are
solutions of a differential equation ,—1E,_2, the projective monodromy group of
which is isomorphic to the symmetric group S, of order n!. Anyn — 1 of the
above solutions are linearly independent.
(2) The projective monodromy group of
1 2 n-—1

1 -1 -1
n—lEn—2 <_7 YTy Ty )'p_—a 1 aq—) (39)
nn n o p q

is isomorphic to S,.

Proof. Proof of (1). Assume p < n — 1 or equivalently ¢ > 1. Put a = -1/n
and s = —p/n. Let ¢* be the integer such that

1<¢g"<n-1 and gq¢*=1modn.
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Then p* := n — ¢* also satisfies pp* = 1 mod n. For k = p or ¢, put dy =
(kk*—1)/n. Note ¢* > 1and dy > 0 because ¢ > 1. We easily have cg- (2, s) = 0,
consequently g+ (, 8,z) = 0 (see Proposition 2.7). Since

(—a+dy)/p=(a+q-dg)/qg=p"/n,

we have
‘pO(axs)m)
F (—_a —a+p-1a a-i-/qtdq a+g-1
= n-1Ln-2 ) ) » T ) ) ) )
p p q q q
n—1 P 1
'_n""'v )%)" )H;Z)a

where z = (—1)PpPgIn""z™ as before. By the same way, we know that
{pjl0<j<mn-1,j+#q*} form a system of fundamental solutions of

—

—a —a+p-1 a a+q—d, a+qg-—1
n—lEn.—2(—‘s"':—,","', PR )
p p q q q (310)
n—1 ;57 1
)

The equalities (2.18) imply that ¥(—1/n,—p/n,ekz), 0 < k < n — 1 are solu-
tions of (3.10) and moreover any n — 1 of them are linearly independent. Since
the projective monodromy group of (3.10) is isomorphic to the covering trans-
formation group of 7, , which is isomorphic to S, from Proposition 3.5. This
completes the proof of (1).

Proof of (2). In (3.9), p and g are symmetric so that we can remain the
assumption of p <n — 1. Put r = (—a+dp)/p = (e + g — dg)/qg = p*/n then,
from Lemma 2.9, the equation (3.10) has the special solution

1 s n—-1 d 1
z rn—an-2(r)r+_)"' ,r+q_)"' alr'*'——_—; 1+_P’ ,1+_)
n n n p p
-1 1+4d -d 1 g-1 g—d, -1
2 1T p’1+q q""1+"’)q aq ! ;I/Z).
p p q q 4q q

Thus the projective monodromy groups of (3.9) and (3.10) are mutually isomor-
phic. This proves (2).
This completes the proof. O
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4 Schwarz map of a family of imprimitive ,E,_;.
Assume (p,q) =1 and put
2mifk

n=p+gq, s=-p/n, z=(-p)P¢'n""z", &k =e(l/k)=e

For an integer m > 2, put & = —1/(mn) and put
™ (@) = (e s, é92), 0< j < n =1, (4.1)

which is a m-th root of f;(z). When we consider f}l/ ™) (z) as a multi-valued
function of z, we denote it by f}l/ ™ (2).

Lemma 4.1. f}l/ m)(z), 0 £ j £n -1 are linearly independent solutions of
differential equation (1.1).

Proof. Since c;j(a,s) # 0, for 0 < j < n—1, Corollary 2.8 proves the lemma. O
Similar to (3.4) we put
(1/m) _ ((1/m), R
D; = f; " (4).
Then we have D§-1/ ™ = e(j/ (mn))D§Y™ and can prove the following lemma
and its corollary from Lemma 3.3 and Corollary 3.4.

Lemma 4.2.

D™ A DM = (£ (25) = £Um™) (g}
= {e((1 + 2§)/(2mn))(p/q)/™}, 0< j <n—2,
DY/ ne(1/m)DS™ = (£ (@n1) = e(1/m) £ ™ (20-1)}
= {e((2n — 1)/(2mn))(p/q)/"}.

Corollary 4.3. (1) Let y; be the loop defined in Corollary 3.4. Then by the
analytic continuations along v;, 0 < j < n — 2, f;l/ ™) (z) and f}illm)(a:) are
interchanged and other f,gl/ m)(:z:) are unchanged, by that along v,_1, f(l__/lm )(a:)

and e(1/m) fél/ ™) (z) are interchanged and other f,gl/ m)(m) are unchanged.
(2) We have

;™ (e(p/n)a) = e(=1/(mn)) S (@), for 0<j<n-2,
£ (e(p/n)z) = e((n — 1)/(mn)) ™ ().

From Lemma 4.1 (see also Remark 3.1), a Schwarz map of (1.1) is given by
2€P i [ (@): {2 1 () (42)

We denote its image by X,%m) which is an irreducible curve in P2,
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Theorem 4.4. Let o = —1/(mn), m > 2, s = —p/n, then we have

XM ={lyo:vn::Yn] € PP ok(@Wd v, ¥,) =0,

(4.3) .
where o is the elementary symmetric function of degree k. Put
(l/m)([ . . _ nppq (Uq(yo 7y1 )t )er—l))
T (o 91t yna]) = (=1) o (44)
P " n* (Un(yo yyl U )y;n—l))q
then 754™ is an m™=n! : 1 map of X. X8™ to P and satisfies
7r$3.£m)([fél/'")(2) ) P () = 2 (45)

The branch points of Wﬁlz/,m) ere z = 0,1, 00 with ramification indices n,2, mpg

respectively.

Proof. We denote the right hand side of (4.3) by X,&‘,{,m) for a moment. Since
(£ @) = £,

we have from Proposition 3.5, X{™ ¢ X{4™. By definition, $4™ is an
m" : 1 map of X{4™ to P! and from (3.8) it satisfies (4.5). On the other
hand, 7r(1/ ™) restricted to Xnp (1/ ™ has m™~n! points in general fiber because the
covering transformation group of X, ,(,,,ém) includes S, from (1) of Corollary 4.3
and multiplication of e(1/m) to coordinate y,_; from (2) of the same corollary.
Hence we have X,%m) = f(,(tl,,ﬁm). The ramification index at z = oo is mpg from

Proposition 2.5.
This completes the proof. a

Corollary 4.5. Let a = —1/(mn), m > 2, then the differential equation (1.1)
has imprimitive finite irreducible projective monodromy group of order m™1n!.

Proof. The order of the projective monodromy group of (1.1) is equal to the
degree of w,(;l,,/,m) which is m®~!n! from the above theorem. Let I'g and I'; be
loops once surronding z = 0 and z = 1 respectively. From Corollary 4.3, both

[y and I'; induce permutations on the set {( f}l/ ™0 < j < n—1} of one

dimensional subspaces ( f}l/ ™) ) of V. Hence the monodromy group of (1.1) is
imprimitive.

Since none of —"‘— - -°'—:'1'—'° — L, is an integer for any integers k and I,
(1.1) is irreducible from (the proof of) Proposition 3.3 of [B-H]. S

Corollary 4.6. For any positive integer m and integer q with 1 < g<n -1,
the algebraic set

{o:v1: :¥n1] € PP ow(ygh, o1+ Un1) =0, 1< k<n—1, k#q}
18 irreducible.

Proof. The statement is true for m = 1 from Proposition 3.5 and for m > 2
from Theorem 4.4. : O
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5 y(a,—1/3,z).

Lemma 5.1.

Y(-1/2,-1/2,7) = 2T EL, (5.1
Proof. From (2.16) and (2.17), we have
_ 1 1.1‘_1 2 1 .§._12
'l,b(—]./2, _1/2):1:) = 2F1 ('2")_§$ 5; Zm ) - §$2F1 (1:0’ 2’ 4$ )'
Since o Fi(a, b;b;z) = (1 — z)~¢, (5.1) is proved.
If k£ > 1, then we have
ck(-1,1) = —(k, k — 1) /k!
=k(k+1) - (2k - 2)/k! = —(2k — 2)!/(k!(k — 1)})
=-1-3.--(2k—3)2%"1 k! = —(1/2,k — 1)2%~2/k!
= (-1/2,k)4%/(2k!)
Hence we have (5.2). o

Lemma 5.2.

¥(-1/3,-1/3,z)
1 s N2 1\ 1 1 4 N\ 1\
- (1+§7 ) *3 ~3" 2(1+27 ) T3 (5.3)
! 1/3 172 1/3
3 1 4 N\ 1 1 4. 1

where cube roots take positive values if = is a positive small number.

Proof. From (2.16) and (2.17), we have

¥(~1/3,-1/3,2)

1121 4 4 1 21242 4 4
b33 315 57) ~ 39265555 7)
_ 112 4 4 1 124 4,
_zFl(_§’§’3 27z) 3m2Fl(6’3’3’ 27° )’

which is equal to, from Remark 2.1,
wo(—1/3,1/1;—23/27) — 1/3zp0(1/3,1/1; —23/27)
=(-1/3,1;-23/27) — 1/3z¥(1/3,1; —z3/27)
= [w(-1,1;,-2%/27)]"/® - 1/32 [$(-1,1;-%/27)]

1/3 -1/3
_ [1 + /T +4:c3/27] / 1 [1 + /T +4x3/27] !
= . —= - .

3

-1/3

from (5.2). This proves the lemma. (]
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Theorem 5.3 (Cardano). The equation
X34+3pX -2¢=0

has roots
. 1/3
€3 (q + vp3 + q2) + €™ ( vpd + q2) , 0<m<2, (5.4)
where e3 = e2™/3 and cube roots must be chosen such that
1/3 1/3
(q + Vp? + q2) (q -V + q"') =-p. (5.5)
Proof. Theorem follows from Lemma 5.2 and Proposition 2.5. 0O

Lemma 5.4. Let s = —p/n. Then for any o, we have
n-—1 )
[ %(es,éz)=1. (5.6)
0

Proof. From (2.18), we have

n—1
¥(a,s,ez) = Z 5 or(a, s, ).
k=0
First we note
-1 %0 -
©0(0,s,z) =1, 797‘—(0, s,z) =0 and k(0,s,z) =0 for k > 1.

Put f(a) = H;.:(} ¥(a, s,€z). Then f(0) =1 and

da - Z (asez)Hzpase’ z_:a—zpas,eﬁm)' i

n—1n-1 n-1

- Opi|
l§ g Jk an la—O (; ) (z=: )
=0.
Since f(a + B) = f(a)f(B), we have f(a) = f(0) exp(a df(0)/dc). This proves
(5.6) o

Let o = —1/(3m) and put y; = fj(l/m) (e, —3,2) for j =0,1,2 (as for f(l/m)
see (4.1)). Then, from (4.3), (4.4) and (4.5), we have

3
(v8™ +vi™ +93™)" _
54(yoy1y2)?™

WAy =0, 7™ (lwo: v w)) = (5.7)

Let
J(r) =127%¢72 (1 + T44¢® + 196884¢"* + 21493760¢° + ---), g = ™"

be the elliptic modular function defined on the upper half plane. We have the
following theorem.
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Theorem 5.5. Let a = —1/12, s = —1/3, z = J(7). Recall z = —4z%/27 and
define T as a single valued function of T so that > 0 for 7 = (—1+ V/3i)/2+ ti
with t > 0. Then we have
9 = C05(0,m), FMY = CB(0,7), £V = e(1/8)CO5(0,7),  (58)
where C = 21/3¢(1/24)g~Y/*2Hy !, Hy = 5o, (1 — ¢%).
Proof. Let Cy = {[yo : ¥1 : ¥2] € P?|yd + y} + y§ = 0}, then
1r:(,}1/4) :Cy — P!

satisfy, from (5.7),

8 8 813
Yo + Y1 + Y3)
w51 (o : 11 2 ve)) = (ot oy +35) §4(y0;1y2)§

It is well known (see, for example [Akh]) that
S ([92(0,7) : 90(0,7) : €(1/8)93(0, 7)]) = J(). (5.9)
This and the equality (5.6) imply that both
(M8 g8 fUD) and  [92(0,7) : 90(0,7) : €(1/8)83(0, )]

-1
belong to the same fiber w{t/) (J(7)). Hence for some fourth roots ¢, ¢’ of
3,1

1 and some function C’ = C’(7), we have
{fSHD, gD, gDy = (C'95(0,7), C"e80(0, ), C'e'e(1/8)93(0, ) }.

If we put 7 = (=1 + v/3i)/2 + ti and let ¢ to +o0, then z = J(7) < 0 goes to
—o0. Since, from (5.3), '
1/4

£19 = dyar2 (V=) + 1) - G (V=2 - 1)),

we have (5.8) for some C = C(7). Since 92(0,7)90(0, 7)93(0,7) = 2¢*/*H}
([Akh]), C takes the value in the statement of the theorem. O
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