琉球大学学術リポジトリ

有限モノドロミー群をもつ超幾何微分方程式の
Schwarz map

メタデータ	言語：
	出版者：加藤満生
公開日：2009－02－27	
	キーワード（Ja）：
	キーワード（En）：hypergeometric function，monodromy group，Schwarz map 作成者：加藤，満生，Kato，Mitsuo メールアドレス： 所属：
http：／／hdl．handle．net／20．500．12000／8947	

Hypergeometric function ${ }_{n} F_{n-1}$ with imprimitive finite irreducible monodromy group

Mitsuo KATO and Masatoshi NOUMI

1 Introduction.

A generalized hypergeometric function

$$
{ }_{n} F_{n-1}\left(a_{0}, a_{1}, a_{2}, \ldots, a_{n-1} ; b_{1}, b_{2}, \ldots, b_{n-1} ; z\right)=\sum_{n=0}^{\infty} \frac{\prod_{j=0}^{n-1}\left(a_{j}, n\right)}{\prod_{j=1}^{n-1}\left(b_{j}, n\right) n!} z^{n}
$$

where $(a, n)=\Gamma(a+n) / \Gamma(a)$, satisfies a Fuchsian differential equation

$$
{ }_{n} E_{n-1}\left(a_{0}, a_{1}, a_{2}, \ldots, a_{n-1} ; b_{1}, b_{2}, \ldots, b_{n-1}\right)
$$

of rank n with singularities at $z=0,1$ and ∞. F. Beukers and G. Heckman $[\mathrm{B}-\mathrm{H}]$ determined ${ }_{n} E_{n-1}$ with finite irreducible monodromy groups. In $[\mathrm{Kt}]$, for ${ }_{3} E_{2}$ with finite irreducible primitive monodromy groups, Schwarz maps of \mathbf{P}^{1} to \mathbf{P}^{2} defined by linearly independent three solutions are studied. The images of Schwarz maps and their single valued inverse maps are determined.

As stated in Theorem 5.8 in [B-H], under some condition, ${ }_{n} E_{n-1}$ with irreducible imprimitive monodromy group is essentially given by
${ }_{n} E_{n-1}\left(\frac{-\alpha}{p}, \frac{-\alpha+1}{p}, \cdots, \frac{-\alpha+p-1}{p}, \frac{\alpha}{q}, \frac{\alpha+1}{q}, \cdots, \frac{\alpha+q-1}{q} ; \frac{1}{n}, \cdots, \frac{n-1}{n}\right)$,
where $(p, q)=1$ and $n=p+q$.
In this paper, for (1.1) with $\alpha=-1 /(m n), m \geq 2$, we will determine its Schwarz map and obtain its single valued inverse map. (If $\alpha=-1 / n$, then the monodromy group of (1.1) is not irreducible.)

For this purpose, we use the generalized binomial function (see Section 2)

$$
\begin{equation*}
\psi(\alpha,-p / n, x) \tag{1.2}
\end{equation*}
$$

because if we put $z=(-p)^{p} q^{q} n^{-n} x^{n}$, then (1.2) is (as a multi-valued function of z) a solution of (1.1).

If $\alpha=-1 / n$, then (1.2) is also a solution of the algebraic equation

$$
\begin{equation*}
y^{n}+x y^{p}-1=0 \tag{1.3}
\end{equation*}
$$

This fact was first discovered by Lambert (see [Brn, p.307]), and studied by many mathematicians (for example, [Blr]). We also remark that the generalized binomial function is a typical example of quasi-hypergeometric function studied in [A-I].

In Section 2, for the sake of self-containedness, we give elementary proofs for several known results concerning to (1.2) and (1.3).

In Section 3, we consider the case of $\alpha=-1 / n$. In this case, (1.1) is reducible and if moreover $p<n-1$, then (1.2) satisfies a differential equation of rank $n-1$ with the projective monodromy group isomorphic to the symmetric group S_{n} (Corollary 3.6). In Section 4, we put $\alpha=-1 /(n m) m \geq 2$. Take n solutions of (1.3) and choose m-th roots $f_{j}^{(1 / m)}(x), 0 \leq j \leq n-1$ of these solutions. Then these are (as functions of z) linearly independent solutions of (1.1). The monodromy group induces all permutations on these solutions and multiplications of m-th roots of 1 to each $f_{j}^{(1 / m)}(x)$ (up to multiplications of common constant numbers to all $f_{j}^{(1 / m)}$). Thus (1.1) has imprimitive finite irreducible projective monodromy group of order $m^{n-1} n!$ (Corollary 4.5). The Schwarz map of (1.1) is defined by

$$
z \longmapsto\left[f_{0}^{(1 / m)}: f_{1}^{(1 / m)}: \cdots: f_{n-1}^{(1 / m)}\right] .
$$

The defining functions of its image in \mathbf{P}^{n-1} and its single valued inverse map are expressed, consulting (1.3), by use of elementary symmetric functions of n-variables (Theorem 4.4).

Finally, in Section 5, we state several topics for $n=3$ case. We give a proof of Cardano's formula for a cubic equation, using properties of generalized binomial functions. We also give a uniformization of ${ }_{3} E_{2}$ by theta functions, that is, if we put $z=J(\tau)$, the elliptic modular function, then the solutions of (1.1) with $\alpha=-1 / 12, p=1, q=2$ are single valued functions of τ and are expressed by theta functions.

2 Generalized binomial function.

The statements in this section are found in [Brn], [Blr], etc, but the proofs here are elementary.

For any complex numbers α and s, put

$$
\begin{align*}
& c_{0}(\alpha, s)=1 \\
& c_{k}(\alpha, s)=\alpha(\alpha+k s+1, k-1) / k!\quad(k \geq 1) \tag{2.1}
\end{align*}
$$

and put

$$
\begin{equation*}
\psi(\alpha, s, x)=\sum_{k=0}^{\infty} c_{k}(\alpha, s) x^{k} \tag{2.2}
\end{equation*}
$$

We call $\psi(\alpha, s, x)$ a generalized binomial function because $\psi(\alpha, 0, x)=(1-x)^{-\alpha}$.
We will prove some properties of $\psi(\alpha, s, x)$.

Lemma 2.1.

$$
\begin{equation*}
\psi(\alpha, s, x)=\psi(-\alpha,-s-1,-x) \tag{2.3}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
& (-1)^{k} c_{k}(-\alpha,-s-1) \\
& =(-1)^{k}(-\alpha)(-\alpha-(s+1) k+1, k-1) / k! \\
& =\alpha(\alpha+s k+k-1)(\alpha+s k+k-2) \cdots(\alpha+s k+1) \\
& =c_{k}(\alpha, s)
\end{aligned}
$$

We note that $\psi(\alpha,-1, x)=(1+x)^{\alpha}$ and $\psi(0, s, x)=1$.
Proposition 2.2. If $\alpha, s, s+1 \neq 0$, then the radious of convergence of $\psi(\alpha, s, x)$ is $\left|s^{s} /(s+1)^{s+1}\right|$. Where z^{z} denotes the principal value.

Proof. Put

$$
\tilde{c}_{k}(\alpha, s)=(\alpha+1+s k, k-1) / k!=\frac{\Gamma(\alpha+(s+1) k)}{\Gamma(1+k) \Gamma(\alpha+1+s k)} .
$$

Then the radious of convergence of $\psi(\alpha, s, x)$ is the reciprocal of the upper limit of $\left|\tilde{c}_{k}\right|^{1 / k}$.

First assume that s is not a negative real number. Then, from the Stirling's formula:

$$
\Gamma(z) \sim \sqrt{2 \pi} z^{z-1 / 2} e^{-z} \text { as } z \rightarrow \infty \text { and }|\arg z|<\pi-\delta, \delta>0,
$$

we have

$$
\begin{aligned}
\left|\tilde{c}_{m}(\alpha, s)\right|^{1 / m} & \sim \frac{\left|(\alpha+(s+1) m)^{s+1}\right|}{(1+m)\left|(\alpha+1+s m)^{s}\right|} \sim\left|\frac{\alpha+(s+1) m}{1+m}\left(\frac{\alpha+(s+1) m}{\alpha+1+s m}\right)^{s}\right| \\
& \sim\left|(s+1)^{s+1} / s^{s}\right|
\end{aligned}
$$

This proves the proposition for s which is not a negative real number.
Assume $-1<s<0$. For large $m \in \mathbf{N}$, choose $n_{m} \in \mathbf{N}$ and δ_{m} with $0 \leq \delta_{m}<1$ such that

$$
\operatorname{Re}(\alpha)+s m=-n_{m}-\delta_{m}
$$

Then

$$
\begin{aligned}
\left|\tilde{c}_{m}(\alpha, s)\right|= & |(\alpha+1+s m, m-1)| / m! \\
= & \left|(\alpha+1+s m) \cdots\left(\alpha+1+s m+n_{m}-1\right)\right| \\
& \times\left|\left(\alpha+1+s m+n_{m}\right) \cdots(\alpha+(s+1) m-1)\right| / m! \\
= & \left|\left(-\alpha-s m-n_{m}, n_{m}\right)\right| \cdot\left|\left(\alpha+s m+n_{m}+1, m-1-n_{m}\right)\right| / m! \\
= & \frac{|\Gamma(-\alpha-s m)| \cdot|\Gamma(\alpha+(s+1) m)|}{\left|\Gamma(1+m) \Gamma\left(-\alpha-s m-n_{m}\right) \Gamma\left(\alpha+s m+n_{m}+1\right)\right|}
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
\limsup _{m \rightarrow \infty}\left|\tilde{c}_{m}(\alpha, s)\right|^{1 / m} & =\lim _{m \rightarrow \infty}\left|\frac{(-\alpha-s m)^{-s}(\alpha+(s+1) m)^{s+1}}{1+m}\right| \\
& =\lim _{m \rightarrow \infty}\left|\left(\frac{-\alpha-s m}{1+m}\right)^{-s}\left(\frac{\alpha+(s+1) m}{1+m}\right)^{s+1}\right| \\
& =\left|(-s)^{-s}(s+1)^{s+1}\right|=\left|(s+1)^{s+1} / s^{s}\right|
\end{aligned}
$$

This proves the proposition for s with $-1<s<0$. From Lemma 2.1, the proposition holds for any negative real number s which is not -1 .

This completes the proof.
Proposition 2.3. We have the following two equalities.

$$
\begin{align*}
& c_{k}(\alpha, s)-c_{k}(\alpha-1, s)=c_{k-1}(\alpha+s, s) \tag{2.4}\\
& \psi(\alpha+\beta, s, x)=\psi(\alpha, s, x) \psi(\beta, s, x) \tag{2.5}
\end{align*}
$$

Proof. Proof of (2.4).

$$
\begin{aligned}
& c_{k}(\alpha, s)-c_{k}(\alpha-1, s) \\
& =\frac{\alpha(\alpha+k s+1, k-1)-(\alpha-1)(\alpha+k s, k-1)}{k!} \\
& \quad=\frac{(\alpha+s)(\alpha+s+(k-1) s+1, k-2)}{(k-1)!}=c_{k-1}(\alpha+s, s) .
\end{aligned}
$$

Proof of (2.5). It is sufficient to prove

$$
\begin{equation*}
c_{k}(\alpha+\beta, s)=\sum_{i+j=k} c_{i}(\alpha, s) c_{j}(\beta, s) \tag{2.6}
\end{equation*}
$$

which is proved by induction for k. Consider

$$
d_{k}(\beta)=c_{k}(\alpha+\beta, s)-\sum_{i+j=k} c_{i}(\alpha, s) c_{j}(\beta, s)
$$

as a polynomial of β (α being a parameter) of degree at most k. From (2.4), we have

$$
d_{k}(\beta)-d_{k}(\beta-1)=d_{k-1}(\beta+s)
$$

which vanishes by induction. Hence $d_{k}(\beta)$ must be constant C. Since $c_{j}(0, s)=$ 0 for $j>0$, we hace $C=d_{k}(0)=0$. This completes the proof of (2.6) whence of (2.5).

Corollary 2.4. For any rational number $\beta \in \mathbf{Q}$, we have

$$
\psi(\alpha \beta, s, x)=\psi(\alpha, s, x)^{\beta}
$$

where the right hand side is the branch which takes the value 1 at $x=0$.
Proposition 2.5. Let $\epsilon_{k}=e^{2 \pi i / k}$. For positive integers p, q with $(p, q)=1$, $n=p+q$, the equation (1.3): $y^{n}+x y^{p}-1=0$ has solutions

$$
\begin{equation*}
\epsilon_{n}^{j} \psi\left(-1 / n,-p / n, \epsilon_{n}^{p j} x\right), \quad 0 \leq j \leq n-1 \tag{2.7}
\end{equation*}
$$

in a neighborhood of $x=0$,

$$
\begin{align*}
& \epsilon_{p}^{-j} x^{-1 / p} \psi\left(1 / p, q / p,-\left(\epsilon_{p}^{-j} x^{-1 / p}\right)^{n}\right), \quad 0 \leq j \leq p-1 \tag{2.8}\\
& \epsilon_{q}^{j}(-x)^{1 / q} \psi\left(-1 / q, p / q,-\left(\epsilon_{q}^{j}(-x)^{1 / q}\right)^{-n}\right), \quad 0 \leq j \leq q-1 \tag{2.9}
\end{align*}
$$

in a neighborhood of $x=\infty$.
Proof. From (2.4), we have

$$
\begin{equation*}
\psi(\alpha, s, x)-\psi(\alpha-1, s, x)=x \psi(\alpha+s, s, x) \tag{2.10}
\end{equation*}
$$

Put $s=-p / n$ and $\alpha=0$ then we have

$$
1-\psi(-1, s, x)=x \psi(-p / n, s, x)
$$

which is equivalent to

$$
\begin{equation*}
\psi(-1 / n, s, x)^{n}+x \psi(-1 / n, s, x)^{p}-1=0 \tag{2.11}
\end{equation*}
$$

If we replace x by $\epsilon_{n}^{p j} x$, we know that (2.7) are solutions of (1.3).
Put $s=q / p$ and $\alpha=1$ in (2.10). Then we have

$$
\psi(1 / p, s, x)^{p}-1=x \psi(1 / p, s, x)^{n}
$$

which is equivalent to

$$
\left[(-x)^{1 / n} \psi(1 / p, s, x)\right]^{n}+(-x)^{-p / n}\left[(-x)^{1 / n} \psi(1 / p, s, x)\right]^{p}-1=0
$$

Put $x_{1}=(-x)^{-p / n}$, and wright x instead of x_{1}, then we know that functions in (2.8) are solutions of (1.3).

Now put $s=p / q$ and $\alpha=-s$ in (2.10), then we have

$$
\psi(-1 / q, s, x)^{n}-\psi(-1 / q, s, x)^{p}+x=0
$$

Then, by the same way as above, we know that functions in (2.9) are solutions of (1.3). This completes the proof.

Corollary 2.6. If σ_{k} denotes the elementary symmetric polynomial of degree k of $\left\{\epsilon_{n}^{j} \psi\left(-1 / n,-p / n, \epsilon_{n}^{p j} x\right), 0 \leq j \leq n-1\right\}$, then we have

$$
\begin{align*}
\sigma_{k} & =0, \quad 1 \leq k \leq n-2, k \neq n-p \tag{2.12}\\
\sigma_{n-p} & =(-1)^{n-p} x \tag{2.13}\\
\sigma_{n} & =(-1)^{n-1} \tag{2.14}
\end{align*}
$$

For any $s=m / n$ with positive integer n, put

$$
\begin{equation*}
\varphi_{j}(\alpha, s, x)=x^{j} \sum_{l=0}^{\infty} c_{j+l n}(\alpha, s) x^{l n} \tag{2.15}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\psi(\alpha, s, x)=\sum_{j=0}^{n-1} \varphi_{j}(\alpha, s, x) \tag{2.16}
\end{equation*}
$$

Proposition 2.7. Let $s=-p / n$ and $n=p+q$, then we have

$$
\begin{align*}
& \varphi_{j}(\alpha, s, x)= c_{j}(\alpha, s) x^{j} \\
& \times{ }_{n} F_{n-1}\left(\frac{-\alpha+\mu}{p}+\frac{j}{n}, 0 \leq \mu \leq p-1, \frac{\alpha+\nu}{q}+\frac{j}{n}, 0 \leq \nu \leq q-1\right. \tag{2.17}\\
&\left.\frac{j+1}{n}, \cdots, \frac{n-1}{n}, \frac{n+1}{n}, \cdots, \frac{n+j}{n} ; \frac{(-1)^{p} p^{p} q^{q}}{n^{n}} x^{n}\right)
\end{align*}
$$

Proof. If $k=n l(l \geq 1)$, then we have

$$
\begin{aligned}
& c_{k}(\alpha, s)=\frac{1}{k!} \alpha(\alpha-p l+1, n l-1)=\frac{1}{k!} \alpha(\alpha-p l+1, p l-1)(\alpha, q l) \\
& =(-1)^{p l} \frac{(-\alpha, p l)(\alpha, q l)}{(1, n l)}=(-1)^{p l} \frac{p^{p l} q^{q l} \prod_{\mu=0}^{p-1}\left(-\frac{\alpha}{p}+\frac{\mu}{p}, l\right) \prod_{\nu=0}^{q-1}\left(\frac{\alpha}{q}+\frac{\nu}{q}, l\right)}{n^{n l} \prod_{\lambda=0}^{n-1}\left(\frac{1}{n}+\frac{\lambda}{n}, l\right)}
\end{aligned}
$$

If $k=n l+j(1 \leq j \leq n-1)$, then we have

$$
\begin{aligned}
& c_{k}(\alpha, s) \\
& =\frac{1}{k!} \alpha\left(\alpha-\frac{p}{n}(n l+j)+1, n l+j-1\right) \\
& =\frac{1}{j!(j+1, n l)} \alpha\left(\alpha-\frac{p}{n}(n l+j)+1, p l\right)\left(\alpha-\frac{p j}{n}+1, j-1\right)\left(\alpha+\frac{q j}{n}, q l\right) \\
& =\frac{\alpha\left(\alpha+\frac{q j}{n}-j+1, j-1\right)}{j!}(-1)^{p l} \frac{\left(-\alpha+\frac{p j}{n}, p l\right)\left(\alpha+\frac{q j}{n}, q l\right)}{(j+1, n l)} \\
& =c_{j}(\alpha, s)(-1)^{p l} \frac{p^{p l} q^{q l} \prod_{\mu=0}^{p-1}\left(-\frac{\alpha}{p}+\frac{j}{n}+\frac{\mu}{p}, l\right) \prod_{\nu=0}^{q-1}\left(\frac{\alpha}{q}+\frac{j}{n}+\frac{\nu}{q}, l\right)}{n^{n l} \prod_{\lambda=0}^{n-1}\left(\frac{j+1}{n}+\frac{\lambda}{n}, l\right)}
\end{aligned}
$$

This implies (2.17).
Corollary 2.8. Let $s=-p / n, n=p+q$ and $\epsilon_{n}=e^{2 \pi i / n}$. Then $\psi\left(\alpha, s, \epsilon_{n}^{k} x\right)$ is, as a multi-valued function of $z=(-p)^{p} q^{q} n^{-n} x^{n}$, a solution of the differential equation (1.1). If $c_{j}(\alpha, s) \neq 0$ for $0 \leq j \leq n-1$, then $\psi\left(\alpha, s, \epsilon_{n}^{k} x\right) \quad 0 \leq k \leq n-1$ are linearly independent.

Proof. From (2.17), we know that $\varphi_{j}(\alpha, s, x)$ is a solution of (1.1) (see the lemma below). From (2.15) and (2.16), we have

$$
\begin{equation*}
\psi\left(\alpha, s, \epsilon_{n}^{k} x\right)=\sum_{j=0}^{n-1} \epsilon_{n}^{j k} \varphi_{j}(\alpha, s, x) \tag{2.18}
\end{equation*}
$$

which is thus a solution of (1.1). If $c_{j}(\alpha, s) \neq 0$ then $\varphi_{j}(\alpha, s, x) \neq 0$ and $\psi\left(\alpha, s, \epsilon_{n}^{k} x\right) \quad 0 \leq k \leq n-1$ are linearly independent from (2.18).

The following lemma is well known.

Lemma 2.9. Let $b_{0}=1$, then differential equation

$$
{ }_{n} E_{n-1}\left(a_{0}, a_{1}, a_{2}, \ldots, a_{n-1} ; b_{1}, b_{2}, \ldots, b_{n-1}\right)
$$

has solutions

$$
\begin{aligned}
& z^{1-b_{j}} F_{n-1}\left(a_{0}+1-b_{j}, \ldots, a_{n-1}+1-b_{j} ;\right. \\
& \left.\quad b_{0}+1-b_{j}, \ldots, b_{j}+1-b_{j}, \ldots, b_{n-1}+1-b_{j} ; z\right) ; 0 \leq j \leq n-1
\end{aligned}
$$

at $z=0$ and

$$
\begin{aligned}
& z^{-a_{j}} F_{n-1}\left(a_{j}+1-b_{0}, \ldots, a_{j}+1-b_{n-1} ;\right. \\
& \left.\quad a_{j}+1-a_{0}, \ldots, a_{j} \widehat{+1-} a_{j}, \ldots, a_{j}+1-a_{n-1} ; 1 / z\right) ; 0 \leq j \leq n-1
\end{aligned}
$$

at $z=\infty$.
Proof. ${ }_{n} E_{n-1}$ is defined by

$$
\begin{align*}
{\left[\vartheta \left(\vartheta+b_{1}\right.\right.} & -1)\left(\vartheta+b_{2}-1\right) \cdots\left(\vartheta+b_{n-1}-1\right) \\
& \left.-z\left(\vartheta+a_{0}\right)\left(\vartheta+a_{1}\right) \cdots\left(\vartheta+a_{n-1}\right)\right] u=0 \tag{2.19}
\end{align*}
$$

where $\vartheta=z \partial / \partial z$ (see [Bly]). It is easily verified that functions in Lemma satisfy (2.19).

Remark 2.1. If $s=p / q$ with $n=p+q$, then we can prove, for $0 \leq j \leq q-1$,

$$
\begin{aligned}
& \varphi_{j}(\alpha, s, x)=x^{j} \sum_{l=0}^{\infty} c_{j+l q}(\alpha, s) x^{l q} \\
& =c_{j}(\alpha, s) x^{j}{ }_{n} F_{n-1}\left(\frac{\alpha}{n}+\frac{j}{q}, \frac{\alpha+1}{n}+\frac{j}{q}, \cdots, \frac{\alpha+n-1}{n}+\frac{j}{q}\right. \\
& \left.\quad \frac{\alpha+1}{p}+\frac{j}{q}, \cdots, \frac{\alpha+p}{p}+\frac{j}{q}, \frac{1+j}{q}, \cdots, \frac{q-1}{q}, \frac{q+1}{q}, \cdots, \frac{q+j}{q} ; \frac{n^{n}}{p^{p} q^{q}} x^{q}\right) .
\end{aligned}
$$

3 Global properties of solutions of

$$
y^{n}+x y^{p}-1=0 .
$$

Put $r=\left|s^{s} /(s+1)^{s+1}\right|$, then $\psi(\alpha, s, x)$ is holomorphic in $\Delta_{r}:=\{x| | x \mid<r\}$ (Proposition 2.2).
Lemma 3.1. Assume $s \in \mathbf{R}$.
(1) If $\alpha \in \mathbf{R}$, then $\psi(\alpha, s, x)>0$ for real x in Δ_{r}.
(2) $\psi(-1, s, x)$ does not take negative value in Δ_{r}, that is $|\arg \psi(-1, s, x)|<$ π.

Proof. If $\alpha, x \in \mathbf{R}$, then $\psi(\alpha, s, x) \in \mathbf{R}$. Since $\psi(\alpha, s, x) \neq 0$ and $\psi(\alpha, s, 0)=1$, we have $\psi(\alpha, s, x)>0$.

Assume $\psi\left(-1, s, x_{0}\right)<0$ for some $x_{0} \in \Delta_{r}$. Put $\theta=\arg x_{0}$. Then there exist $t_{0}<r$ and positive number b_{0} such that

$$
\left|\arg \psi\left(-1, s, e^{i \theta} t\right)\right|<\pi, \text { for } 0<t<t_{0} \text { and } \psi\left(-1, s, e^{i \theta} t_{0}\right)=-b_{0}
$$

From (2.10), we know $y=\psi(-1, s, x)$ satisfies

$$
y+x y^{-s}-1=0
$$

Since $\psi\left(-1, s, e^{i \theta} t_{0}\right)^{-s}=e^{ \pm \pi i s} b_{0}^{-s}$, we have (put $x=e^{i \theta} t_{0}$)

$$
-b_{0}+e^{i \theta} t_{0} e^{ \pm \pi i s} b_{0}^{-s}-1=0
$$

Thus we have $e^{i(\theta \pm \pi s)}=\left(b_{0}+1\right) /\left(b_{0}^{-s} t_{0}\right)>0$, which implies $\theta=(\pm s+2 n) \pi, n \in$ Z. Since $y=\psi(-1, s, x)$ defines an open map, $\psi\left(-1, s, e^{i \theta} t\right)$ maps some open interval $\left(t_{0}-\delta, t_{0}+\delta\right)$ onto some open interval $\left(-b_{0}-\delta^{\prime},-b_{0}+\delta^{\prime}\right)$. This contradicts to the choice of t_{0}.

We assume $(p, q)=1$ and $n=p+q$. From Proposition 2.5,

$$
\begin{equation*}
f_{j}(x):=\epsilon_{n}^{j} \psi\left(-1 / n,-p / n, \epsilon_{n}^{p j} x\right), \quad 0 \leq j \leq n-1, \tag{3.1}
\end{equation*}
$$

are solutions of the equation (1.3): $y^{n}+x y^{p}-1=0$.
The equation (1.3) has multiple roots at x with

$$
(-1)^{p} p^{p} q^{q} n^{-n} x^{n}=1
$$

and at $x=\infty$. Let

$$
\begin{equation*}
x_{j}=e\left(\frac{-p(1+2 j)}{2 n}\right)\left(p^{-p} q^{-q}\right)^{1 / n} n, \quad 0 \leq j \leq n-1 \tag{3.2}
\end{equation*}
$$

where $e(x)=e^{2 \pi i x}$.
Lemma 3.2. At $x=x_{j}$, the equation (1.3) has double root

$$
\begin{equation*}
e((1+2 j) / 2 n)(p / q)^{1 / n} \tag{3.3}
\end{equation*}
$$

and n-2 simple roots.
Proof. The double root of the equation (1.3) is uniquely determined by (1.3) and $n y^{n-1}+p x y^{p-1}=0$.

We know that $f_{j}(x)$ are holomorphic in $\Delta:=\left\{x| | x \mid<r_{n, p}\right\}$ and continuous in the closure $\bar{\Delta}$ of Δ, where $r_{n, p}=(p / n)^{-p / n}(q / n)^{-q / n}$. They have analytic continuations along any curve not through $x_{k}, 0 \leq k \leq n-1$.

Put

$$
\begin{equation*}
D_{j}=f_{j}(\bar{\Delta}) \tag{3.4}
\end{equation*}
$$

then we have $D_{j}=e(j / n) D_{0}$ and put $D_{n}=D_{0}$.

Lemma 3.3.

$$
\begin{align*}
& \left(\frac{-1+2 j}{n}\right) \pi \leq \arg y \leq\left(\frac{1+2 j}{n}\right) \pi \quad \text { for } y \in D_{j} \tag{3.5}\\
& D_{j} \cap D_{j+1}=\left\{f_{j}\left(x_{j}\right)=f_{j+1}\left(x_{j}\right)\right\}=\left\{e((1+2 j) / 2 n)(p / q)^{1 / n}\right\} \tag{3.6}
\end{align*}
$$

and $D_{j} \cap D_{k}=\emptyset$ if $j-k \neq \pm 1$.
Proof. The inequalities (3.5) follow from Corollary 2.4 and (2) of Lemma 3.1. These inequalities imply that $D_{j} \cap D_{k}=\emptyset$ if $j-k \neq \pm 1$. Since any element of $D_{j} \cap D_{j+1}$ is one of (3.3), we have

$$
D_{j} \cap D_{j+1}=\left\{e((1+2 j) / 2 n)(p / q)^{1 / n}\right\}
$$

from (3.5). From Lemma 3.2, (3.6) follows.
Corollary 3.4. Let γ_{0} be a loop starting and ending at the origin and once surrounding x_{0}. Let $\gamma_{j}=e(-p j / n) \gamma_{0}$. Then, by the analytic continuation along $\gamma_{j}, f_{j}(x)$ and $f_{j+1}(x)$ are interchanged and other $f_{k}(x)$ are unchanged.

Proof. Assume γ_{0} (hence any γ_{j}) acts trivially on $\left\{f_{0}, \ldots, f_{n-1}\right\}$, then $f_{j}(x)$ are entire functions. This contradicts Proposition 2.2.

Definition 3.1. Let E be a Fuchsian linear differential equation of rank n on $\mathbf{P}^{\mathbf{1}}$. Let $Z=\mathbf{P}^{1}-\{$ singular points of $E\}$. Fix a base point $z_{b} \in Z$, and let V be the set of germs of holomorphic solutions of E at z_{b}. For any $\gamma \in \pi_{1}\left(Z, z_{b}\right)$ and $f \in V$, the analytic continuation $\gamma_{*} f$ of f along γ is again in V. We consider γ_{*} an element of $G L(V)$ and call the set $M(E)$ of all γ_{*} the monodromy group of E and $M(E) /($ its center) the projective monodromy group of E.

We say that $M(E)$, is (or E is) reducible if there exists a non trivial subspace V_{1} of V which is invariant under the action of $M(E)$ and say $M(E)$ is (or E is) irreducible if $M(E)$ is not reducible.

We say that $M(E)$ is (or E is) imprimitive if V has a direct sum decomposition $V=V_{1}+V_{2}+\cdots+V_{k}$ such that any element of $M(E)$ induces a permutation of $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$.

Choose a fundamental system $f_{j}(z), 1 \leq j \leq n$ of solutions of E and fix initial values of them at z_{b}. Then, by taking analytic continuations of $f_{j}(z)$, we have a multi-valued map

$$
z \in Z \longmapsto\left[f_{1}(z): f_{2}(z): \cdots: f_{n}(z)\right] \in \mathbf{P}^{n-1}
$$

which we call a Schwarz map of E.

Remark 3.1. In the above definition, we have two remarks.
If the characteristic exponents of E are real and do not differ by integers at each singular point then the Schwarz map above can be extended to a map from \mathbf{P}^{1} to \mathbf{P}^{n-1}.

If the Schwarz map has a single valued inverse map π_{E}, then the projective monodromy group of E is isomorphic to the covering transformation group of π_{E}.

The map of Δ_{r} to P^{n-1} defined by $\left[f_{0}(x): f_{1}(x): \cdots: f_{n-1}(x)\right]$ is extended to a multi-valued map of $\mathbf{C}-\left\{x_{0}, \cdots, x_{n-1}\right\}$ to P^{n-1} by the analytic continuation. Take the closure of its image in P^{n-1} which we denote by $X_{n, p}$.

Proposition 3.5. $X_{n, p}$ is equal to the set of common zeros of $\sigma_{k}, 1 \leq k \leq$ $n-1, k \neq q$, where σ_{k} are the elementary symmetric function of degree k. Put

$$
\begin{equation*}
\pi_{n, p}\left(\left[y_{0}: y_{1}: \cdots: y_{n-1}\right]\right)=(-1)^{n} \frac{p^{p} q^{q}}{n^{n}} \frac{\left(\sigma_{q}\left(y_{0}, \cdots, y_{n-1}\right)\right)^{n}}{\left(\sigma_{n}\left(y_{0}, \cdots, y_{n-1}\right)\right)^{q}} \tag{3.7}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\pi_{n, p}\left(\left[f_{0}(x): f_{1}(x): \cdots: f_{n-1}(x)\right]\right)=z:=(-1)^{p} p^{p} q^{q} n^{-n} x^{n} \tag{3.8}
\end{equation*}
$$

$\pi_{n, p}$ is an n !: 1 map of $X_{n, p}$ to P^{1} ramifying at $z=0,1, \infty$. The ramification indices at these points are $n, 2, p q$ respectively. The covering transformation group is isomorphic to symmetric group S_{n} of order n !.
Proof. Denote $\hat{X}_{n, p}$ be the set of common zeros of $\sigma_{k}, 0 \leq k \leq n-2, k \neq q$. From Bezout's theorem, $\left.\pi_{n, p}\right|_{\hat{X}_{n, p}}$ is an $n!: 1$ map of $\hat{X}_{n, p}$ to \mathbf{P}^{1}. From Corollary 2.6, we have $X_{n, p} \subset \hat{X}_{n, p}$, that is $X_{n, p}$ is an irreducible component of $\hat{X}_{n, p}$. From Corollary 2.6, (3.8) holds and from Corollary 3.4, we know that S_{n} acts on each fiber of $\left.\pi_{n, p}\right|_{X_{n, p}}$. Consequently we must have $\hat{X}_{n, p}=X_{n, p}$.

By definition of z, the ramification index is n at $z=0$. From Corollary 3.4, the index at $z=1$ is 2 . From Proposition 2.5, we know that the ramification index at $z=\infty$ is $p q$. This completes the proof.
The statement (2) of the following corollary is proved in [B-H, Proposition 2.6].
Corollary 3.6. (1) If $p<n-1$, then $\psi\left(-1 / n,-p / n, \epsilon_{n}^{k} x\right), 0 \leq k \leq n-1$ are solutions of a differential equation $n_{n-1} E_{n-2}$, the projective monodromy group of which is isomorphic to the symmetric group S_{n} of order n !. Any $n-1$ of the above solutions are linearly independent.
(2) The projective monodromy group of

$$
\begin{equation*}
{ }_{n-1} E_{n-2}\left(\frac{1}{n}, \frac{2}{n}, \cdots, \frac{n-1}{n} ; \frac{1}{p}, \cdots, \frac{p-1}{p}, \frac{1}{q}, \cdots, \frac{q-1}{q}\right) \tag{3.9}
\end{equation*}
$$

is isomorphic to S_{n}.
Proof. Proof of (1). Assume $p<n-1$ or equivalently $q>1$. Put $\alpha=-1 / n$ and $s=-p / n$. Let q^{*} be the integer such that

$$
1 \leq q^{*} \leq n-1 \quad \text { and } \quad q q^{*} \equiv 1 \bmod n
$$

Then $p^{*}:=n-q^{*}$ also satisfies $p p^{*} \equiv 1 \bmod n$. For $k=p$ or q, put $d_{k}=$ $\left(k k^{*}-1\right) / n$. Note $q^{*}>1$ and $d_{q}>0$ because $q>1$. We easily have $c_{q^{*}}(\alpha, s)=0$, consequently $\varphi_{q^{*}}(\alpha, s, x)=0$ (see Proposition 2.7). Since

$$
\left(-\alpha+d_{p}\right) / p=\left(\alpha+q-d_{q}\right) / q=p^{*} / n
$$

we have

$$
\begin{aligned}
& \varphi_{0}(\alpha, s, x) \\
& ={ }_{n-1} F_{n-2}\left(\frac{-\alpha}{p}, \cdots, \frac{-\alpha+p-1}{p}, \frac{\alpha}{q}, \cdots, \frac{\alpha+\widehat{+q-d_{q}}}{q}, \cdots, \frac{\alpha+q-1}{q} ;\right. \\
& \left.\frac{n-1}{n}, \cdots, \frac{\widehat{p^{*}}}{n}, \cdots, \frac{1}{n} ; z\right)
\end{aligned}
$$

where $z=(-1)^{p} p^{p} q^{q} n^{-n} x^{n}$ as before. By the same way, we know that $\left\{\varphi_{j} \mid 0 \leq j \leq n-1, j \neq q^{*}\right\}$ form a system of fundamental solutions of

$$
\begin{gather*}
{ }_{n-1} E_{n-2}\left(\frac{-\alpha}{p}, \cdots, \frac{-\alpha+p-1}{p}, \frac{\alpha}{q}, \cdots, \frac{\alpha \widehat{+q-d_{q}}}{q}, \cdots, \frac{\alpha+q-1}{q} ;\right. \tag{3.10}\\
\left.\frac{n-1}{n}, \cdots, \frac{p^{*}}{n}, \cdots, \frac{1}{n}\right)
\end{gather*}
$$

The equalities (2.18) imply that $\psi\left(-1 / n,-p / n, \epsilon_{n}^{k} x\right), 0 \leq k \leq n-1$ are solutions of (3.10) and moreover any $n-1$ of them are linearly independent. Since the projective monodromy group of (3.10) is isomorphic to the covering transformation group of $\pi_{n, p}$ which is isomorphic to S_{n} from Proposition 3.5. This completes the proof of (1).

Proof of (2). In (3.9), p and q are symmetric so that we can remain the assumption of $p<n-1$. Put $r=\left(-\alpha+d_{p}\right) / p=\left(\alpha+q-d_{q}\right) / q=p^{*} / n$ then, from Lemma 2.9, the equation (3.10) has the special solution

$$
\begin{aligned}
& z^{-r}{ }_{n-1} F_{n-2}\left(r, r+\frac{1}{n}, \cdots, r+\frac{q^{*}}{n}, \cdots, r+\frac{n-1}{n} ; 1+\frac{d_{p}}{p}, \cdots, 1+\frac{1}{p}\right. \\
& \left.\quad \frac{p-1}{p}, \cdots, \frac{1+d_{p}}{p}, 1+\frac{q-d_{q}}{q} \cdots, 1+\frac{1}{q}, \frac{q-1}{q} \cdots, \frac{q-d_{q}-1}{q} ; 1 / z\right) .
\end{aligned}
$$

Thus the projective monodromy groups of (3.9) and (3.10) are mutually isomorphic. This proves (2).

This completes the proof.

4 Schwarz map of a family of imprimitive ${ }_{n} E_{n-1}$.

Assume $(p, q)=1$ and put

$$
n=p+q, s=-p / n, z=(-p)^{p} q^{q} n^{-n} x^{n}, \epsilon_{k}=e(1 / k)=e^{2 \pi i / k}
$$

For an integer $m \geq 2$, put $\alpha=-1 /(m n)$ and put

$$
\begin{equation*}
f_{j}^{(1 / m)}(x)=\epsilon_{m n}^{j} \psi\left(\alpha, s, \epsilon_{n}^{p j} x\right), 0 \leq j \leq n-1, \tag{4.1}
\end{equation*}
$$

which is a m-th root of $f_{j}(x)$. When we consider $f_{j}^{(1 / m)}(x)$ as a multi-valued function of z, we denote it by $f_{j}^{(1 / m)}(z)$.

Lemma 4.1. $f_{j}^{(1 / m)}(z), \quad 0 \leq j \leq n-1$ are linearly independent solutions of differential equation (1.1).

Proof. Since $c_{j}(\alpha, s) \neq 0$, for $0 \leq j \leq n-1$, Corollary 2.8 proves the lemma.
Similar to (3.4) we put

$$
D_{j}^{(1 / m)}=f_{j}^{(1 / m)}(\bar{\Delta})
$$

Then we have $D_{j}^{(1 / m)}=e(j /(m n)) D_{0}^{(1 / m)}$ and can prove the following lemma and its corollary from Lemma 3.3 and Corollary 3.4.

Lemma 4.2.

$$
\begin{aligned}
D_{j}^{(1 / m)} \cap D_{j+1}^{(1 / m)} & =\left\{f_{j}^{(1 / m)}\left(x_{j}\right)=f_{j+1}^{(1 / m)}\left(x_{j}\right)\right\} \\
& =\left\{e((1+2 j) /(2 m n))(p / q)^{1 / n}\right\}, 0 \leq j \leq n-2, \\
D_{n-1}^{(1 / m)} \cap e(1 / m) D_{0}^{(1 / m)} & =\left\{f_{n-1}^{(1 / m)}\left(x_{n-1}\right)=e(1 / m) f_{0}^{(1 / m)}\left(x_{n-1}\right)\right\} \\
& =\left\{e((2 n-1) /(2 m n))(p / q)^{1 / n}\right\} .
\end{aligned}
$$

Corollary 4.3. (1) Let γ_{j} be the loop defined in Corollary 3.4. Then by the analytic continuations along $\gamma_{j}, 0 \leq j \leq n-2, f_{j}^{(1 / m)}(x)$ and $f_{j+1}^{(1 / m)}(x)$ are interchanged and other $f_{k}^{(1 / m)}(x)$ are unchanged, by that along $\gamma_{n-1}, f_{n-1}^{(1 / m)}(x)$ and $e(1 / m) f_{0}^{(1 / m)}(x)$ are interchanged and other $f_{k}^{(1 / m)}(x)$ are unchanged.
(2) We have

$$
\begin{aligned}
& f_{j}^{(1 / m)}(e(p / n) x)=e(-1 /(m n)) f_{j+1}^{(1 / m)}(x), \quad \text { for } \quad 0 \leq j \leq n-2, \\
& f_{n-1}^{(1 / m)}(e(p / n) x)=e((n-1) /(m n)) f_{0}^{(1 / m)}(x)
\end{aligned}
$$

From Lemma 4.1 (see also Remark 3.1), a Schwarz map of (1.1) is given by

$$
\begin{equation*}
z \in \mathbf{P}^{1} \longmapsto\left[f_{0}^{(1 / m)}(z): f_{1}^{(1 / m)}(z): \cdots: f_{n-1}^{(1 / m)}(z)\right] . \tag{4.2}
\end{equation*}
$$

We denote its image by $X_{n, p}^{(1 / m)}$ which is an irreducible curve in \mathbf{P}^{n-1}.

Theorem 4.4. Let $\alpha=-1 /(m n), m \geq 2, s=-p / n$, then we have

$$
\begin{array}{r}
X_{n, p}^{(1 / m)}=\left\{\left[y_{0}: y_{1}: \cdots: y_{n-1}\right] \in \mathbf{P}^{n-1} \mid \sigma_{k}\left(y_{0}^{m}, y_{1}^{m}, \cdots, y_{n-1}^{m}\right)=0\right. \tag{4.3}\\
1 \leq k \leq n-1, k \neq q\}
\end{array}
$$

where σ_{k} is the elementary symmetric function of degree k. Put

$$
\begin{equation*}
\pi_{n, p}^{(1 / m)}\left(\left[y_{0}: y_{1}: \cdots: y_{n-1}\right]\right)=(-1)^{n} \frac{p^{p} q^{q}}{n^{n}} \frac{\left(\sigma_{q}\left(y_{0}^{m}, y_{1}^{m}, \cdots, y_{n-1}^{m}\right)\right)^{n}}{\left(\sigma_{n}\left(y_{0}^{m}, y_{1}^{m}, \cdots, y_{n-1}^{m}\right)\right)^{q}} \tag{4.4}
\end{equation*}
$$

then $\pi_{n, p}^{(1 / m)}$ is an $m^{n-1} n!: 1$ map of $X_{n, p}^{(1 / m)}$ to \mathbf{P}^{1} and satisfies

$$
\begin{equation*}
\pi_{n, p}^{(1 / m)}\left(\left[f_{0}^{(1 / m)}(z): f_{1}^{(1 / m)}(z): \cdots: f_{n-1}^{(1 / m)}(z)\right]\right)=z \tag{4.5}
\end{equation*}
$$

The branch points of $\pi_{n, p}^{(1 / m)}$ are $z=0,1, \infty$ with ramification indices $n, 2, m p q$ respectively.
Proof. We denote the right hand side of (4.3) by $\hat{X}_{n, p}^{(1 / m)}$ for a moment. Since

$$
\left(f_{j}^{(1 / m)}(x)\right)^{m}=f_{j}(x)
$$

we have, from Proposition 3.5, $X_{n, p}^{(1 / m)} \subset \hat{X}_{n, p}^{(1 / m)}$. By definition, $\pi_{n, p}^{(1 / m)}$ is an $m^{n-1} n!: 1 \mathrm{map}$ of $\hat{X}_{n, p}^{(1 / m)}$ to \mathbf{P}^{1} and from (3.8) it satisfies (4.5). On the other hand, $\pi_{n, p}^{(1 / m)}$ restricted to $X_{n, p}^{(1 / m)}$ has $m^{n-1} n!$ points in general fiber because the covering transformation group of $X_{n, p}^{(1 / m)}$ includes S_{n} from (1) of Corollary 4.3 and multiplication of $e(1 / m)$ to coordinate y_{n-1} from (2) of the same corollary. Hence we have $X_{n, p}^{(1 / m)}=\hat{X}_{n, p}^{(1 / m)}$. The ramification index at $z=\infty$ is $m p q$ from Proposition 2.5.

This completes the proof.
Corollary 4.5. Let $\alpha=-1 /(m n), m \geq 2$, then the differential equation (1.1) has imprimitive finite irreducible projective monodromy group of order $m^{n-1} n$!.

Proof. The order of the projective monodromy group of (1.1) is equal to the degree of $\pi_{n, p}^{(1 / m)}$ which is $m^{n-1} n$! from the above theorem. Let Γ_{0} and Γ_{1} be loops once surronding $z=0$ and $z=1$ respectively. From Corollary 4.3, both Γ_{0} and Γ_{1} induce permutations on the set $\left\{\left\langle f_{j}^{(1 / m)}\right\rangle \mid 0 \leq j \leq n-1\right\}$ of one dimensional subspaces $\left\langle f_{j}^{(1 / m)}\right\rangle$ of V. Hence the monodromy group of (1.1) is imprimitive.

Since none of $\frac{-\alpha+k}{p}-\frac{l}{n}, \frac{\alpha+k}{q}-\frac{l}{n}$, is an integer for any integers k and l, (1.1) is irreducible from (the proof of) Proposition 3.3 of $[B-H]$.

Corollary 4.6. For any positive integer m and integer q with $1 \leq q \leq n-1$, the algebraic set
$\left\{\left[y_{0}: y_{1}: \cdots: y_{n-1}\right] \in \mathbf{P}^{n-1} \mid \sigma_{k}\left(y_{0}^{m}, y_{1}^{m}, \cdots, y_{n-1}^{m}\right)=0,1 \leq k \leq n-1, k \neq q\right\}$ is irreducible.

Proof. The statement is true for $m=1$ from Proposition 3.5 and for $m \geq 2$ from Theorem 4.4.
$5 \psi(\alpha,-1 / 3, x)$.

Lemma 5.1.

$$
\begin{align*}
& \psi(-1 / 2,-1 / 2, x)=\frac{-x+\sqrt{x^{2}+4}}{2} \tag{5.1}\\
& \psi(-1,1, x)=\frac{1+\sqrt{1-4 x}}{2} \tag{5.2}
\end{align*}
$$

Proof. From (2.16) and (2.17), we have

$$
\psi(-1 / 2,-1 / 2, x)={ }_{2} F_{1}\left(\frac{1}{2},-\frac{1}{2} ; \frac{1}{2} ;-\frac{1}{4} x^{2}\right)-\frac{1}{2} x_{2} F_{1}\left(1,0 ; \frac{3}{2} ;-\frac{1}{4} x^{2}\right) .
$$

Since ${ }_{2} F_{1}(a, b ; b ; x)=(1-x)^{-a},(5.1)$ is proved.
If $k \geq 1$, then we have

$$
\begin{aligned}
c_{k}(-1,1) & =-(k, k-1) / k! \\
& =k(k+1) \cdots(2 k-2) / k!=-(2 k-2)!/(k!(k-1)!) \\
& =-1 \cdot 3 \cdots(2 k-3) 2^{k-1} / k!=-(1 / 2, k-1) 2^{2 k-2} / k! \\
& =(-1 / 2, k) 4^{k} /(2 k!)
\end{aligned}
$$

Hence we have (5.2).

Lemma 5.2.

$$
\begin{align*}
& \psi(-1 / 3,-1 / 3, x) \\
& =\left(\frac{1}{2}\left(1+\frac{4}{27} x^{3}\right)^{1 / 2}+\frac{1}{2}\right)^{1 / 3}-\frac{1}{3} x\left(\frac{1}{2}\left(1+\frac{4}{27} x^{3}\right)^{1 / 2}+\frac{1}{2}\right)^{-1 / 3} \tag{5.3}\\
& =\left(\frac{1}{2}\left(1+\frac{4}{27} x^{3}\right)^{1 / 2}+\frac{1}{2}\right)^{1 / 3}-\left(\frac{1}{2}\left(1+\frac{4}{27} x^{3}\right)^{1 / 2}-\frac{1}{2}\right)^{1 / 3},
\end{align*}
$$

where cube roots take positive values if x is a positive small number.
Proof. From (2.16) and (2.17), we have

$$
\begin{aligned}
& \psi(-1 / 3,-1 / 3, x) \\
& ={ }_{3} F_{2}\left(\frac{1}{3},-\frac{1}{6}, \frac{1}{3} ; \frac{2}{3}, \frac{1}{3} ;-\frac{4}{27} x^{3}\right)-\frac{1}{3} x_{3} F_{2}\left(\frac{2}{3}, \frac{1}{6}, \frac{2}{3} ; \frac{4}{3}, \frac{2}{3} ;-\frac{4}{27} x^{3}\right) \\
& ={ }_{2} F_{1}\left(-\frac{1}{6}, \frac{1}{3} ; \frac{2}{3} ;-\frac{4}{27} x^{3}\right)-\frac{1}{3} x_{2} F_{1}\left(\frac{1}{6}, \frac{2}{3} ; \frac{4}{3} ;-\frac{4}{27} x^{3}\right),
\end{aligned}
$$

which is equal to, from Remark 2.1,

$$
\begin{aligned}
& \varphi_{0}\left(-1 / 3,1 / 1 ;-x^{3} / 27\right)-1 / 3 x \varphi_{0}\left(1 / 3,1 / 1 ;-x^{3} / 27\right) \\
& =\psi\left(-1 / 3,1 ;-x^{3} / 27\right)-1 / 3 x \psi\left(1 / 3,1 ;-x^{3} / 27\right) \\
& =\left[\psi\left(-1,1 ;-x^{3} / 27\right)\right]^{1 / 3}-1 / 3 x\left[\psi\left(-1,1 ;-x^{3} / 27\right)\right]^{-1 / 3} \\
& =\left[\frac{1+\sqrt{1+4 x^{3} / 27}}{2}\right]^{1 / 3}-\frac{1}{3} x\left[\frac{1+\sqrt{1+4 x^{3} / 27}}{2}\right]^{-1 / 3}
\end{aligned}
$$

from (5.2). This proves the lemma.

Theorem 5.3 (Cardano). The equation

$$
X^{3}+3 p X-2 q=0
$$

has roots

$$
\begin{equation*}
\epsilon_{3}^{m}\left(q+\sqrt{p^{3}+q^{2}}\right)^{1 / 3}+\epsilon_{3}^{2 m}\left(q-\sqrt{p^{3}+q^{2}}\right)^{1 / 3}, \quad 0 \leq m \leq 2 \tag{5.4}
\end{equation*}
$$

where $\epsilon_{3}=e^{2 \pi i / 3}$ and cube roots must be chosen such that

$$
\begin{equation*}
\left(q+\sqrt{p^{3}+q^{2}}\right)^{1 / 3}\left(q-\sqrt{p^{3}+q^{2}}\right)^{1 / 3}=-p \tag{5.5}
\end{equation*}
$$

Proof. Theorem follows from Lemma 5.2 and Proposition 2.5.
Lemma 5.4. Let $s=-p / n$. Then for any α, we have

$$
\begin{equation*}
\prod_{j=0}^{n-1} \psi\left(\alpha, s, \epsilon_{n}^{j} x\right)=1 \tag{5.6}
\end{equation*}
$$

Proof. From (2.18), we have

$$
\psi\left(\alpha, s, \epsilon_{n}^{j} x\right)=\sum_{k=0}^{n-1} \epsilon_{n}^{j k} \varphi_{k}(\alpha, s, x)
$$

First we note

$$
\varphi_{0}(0, s, x)=1, \frac{\partial \varphi_{0}}{\partial \alpha}(0, s, x)=0 \text { and } \varphi_{k}(0, s, x)=0 \text { for } k \geq 1
$$

Put $f(\alpha)=\prod_{j=0}^{n-1} \psi\left(\alpha, s, \epsilon_{n}^{j} x\right)$. Then $f(0)=1$ and

$$
\begin{aligned}
\left.\frac{d f}{d \alpha}\right|_{\alpha=0} & =\left.\sum_{k=0}^{n-1} \frac{\partial \psi}{\partial \alpha}\left(\alpha, s, \epsilon_{n}^{k} x\right) \prod_{j \neq k} \psi\left(\alpha, s, \epsilon_{n}^{j} x\right)\right|_{\alpha=0}=\left.\sum_{k=0}^{n-1} \frac{\partial \psi}{\partial \alpha}\left(\alpha, s, \epsilon_{n}^{k} x\right)\right|_{\alpha=0} \\
& =\left.\sum_{k=0}^{n-1} \sum_{j=0}^{n-1} \epsilon_{n}^{j k} \frac{\partial \varphi_{j}}{\partial \alpha}\right|_{\alpha=0}=\left(\left.\sum_{j=1}^{n-1} \frac{\partial \varphi_{j}}{\partial \alpha}\right|_{\alpha=0}\right)\left(\sum_{k=0}^{n-1} \epsilon_{n}^{j k}\right) \\
& =0
\end{aligned}
$$

Since $f(\alpha+\beta)=f(\alpha) f(\beta)$, we have $f(\alpha)=f(0) \exp (\alpha d f(0) / d \alpha)$. This proves (5.6)

Let $\alpha=-1 /(3 m)$ and put $y_{j}=f_{j}^{(1 / m)}\left(\alpha,-\frac{1}{3}, z\right)$ for $j=0,1,2$ (as for $f_{j}^{(1 / m)}$, see (4.1)). Then, from (4.3), (4.4) and (4.5), we have

$$
\begin{equation*}
y_{0}^{m}+y_{1}^{m}+y_{2}^{m}=0, \quad \pi_{3,1}^{(1 / m)}\left(\left[y_{0}: y_{1}: y_{2}\right]\right)=\frac{\left(y_{0}^{2 m}+y_{1}^{2 m}+y_{2}^{2 m}\right)^{3}}{54\left(y_{0} y_{1} y_{2}\right)^{2 m}}=z \tag{5.7}
\end{equation*}
$$

Let

$$
J(\tau)=12^{-3} q^{-2}\left(1+744 q^{2}+196884 q^{4}+21493760 q^{6}+\cdots\right), q=e^{\pi i \tau}
$$

be the elliptic modular function defined on the upper half plane. We have the following theorem.

Theorem 5.5. Let $\alpha=-1 / 12, s=-1 / 3, z=J(\tau)$. Recall $z=-4 x^{3} / 27$ and define x as a single valued function of τ so that $x>0$ for $\tau=(-1+\sqrt{3} i) / 2+t i$ with $t>0$. Then we have

$$
\begin{equation*}
f_{0}^{(1 / 4)}=C \vartheta_{2}(0, \tau), f_{1}^{(1 / 4)}=C \vartheta_{0}(0, \tau), f_{2}^{(1 / 4)}=e(1 / 8) C \vartheta_{3}(0, \tau) \tag{5.8}
\end{equation*}
$$

where $C=2^{-1 / 3} e(1 / 24) q^{-1 / 12} H_{0}^{-1}, H_{0}=\prod_{k=1}^{\infty}\left(1-q^{2 k}\right)$.
Proof. Let $C_{4}=\left\{\left[y_{0}: y_{1}: y_{2}\right] \in \mathbf{P}^{2} \mid y_{0}^{4}+y_{1}^{4}+y_{2}^{4}=0\right\}$, then

$$
\pi_{3,1}^{(1 / 4)}: C_{4} \longrightarrow \mathbf{P}^{1}
$$

satisfy, from (5.7),

$$
\pi_{3,1}^{(1 / 4)}\left(\left[y_{0}: y_{1}: y_{2}\right]\right)=\frac{\left(y_{0}^{8}+y_{1}^{8}+y_{2}^{8}\right)^{3}}{54\left(y_{0} y_{1} y_{2}\right)^{8}}
$$

It is well known (see, for example [Akh]) that

$$
\begin{equation*}
\pi_{3,1}^{(1 / 4)}\left(\left[\vartheta_{2}(0, \tau): \vartheta_{0}(0, \tau): e(1 / 8) \vartheta_{3}(0, \tau)\right]\right)=J(\tau) \tag{5.9}
\end{equation*}
$$

This and the equality (5.6) imply that both

$$
\left[f_{0}^{(1 / 4)}: f_{1}^{(1 / 4)}: f_{2}^{(1 / 4)}\right] \quad \text { and } \quad\left[\vartheta_{2}(0, \tau): \vartheta_{0}(0, \tau): e(1 / 8) \vartheta_{3}(0, \tau)\right]
$$

belong to the same fiber $\left(\pi_{3,1}^{(1 / 4)}\right)^{-1}(J(\tau))$. Hence for some fourth roots $\epsilon, \epsilon^{\prime}$ of 1 and some function $C^{\prime}=C^{\prime}(\tau)$, we have

$$
\left\{f_{0}^{(1 / 4)}, f_{1}^{(1 / 4)}, f_{2}^{(1 / 4)}\right\}=\left\{C^{\prime} \vartheta_{2}(0, \tau), C^{\prime} \epsilon \vartheta_{0}(0, \tau), C^{\prime} \epsilon^{\prime} e(1 / 8) \vartheta_{3}(0, \tau)\right\}
$$

If we put $\tau=(-1+\sqrt{3} i) / 2+t i$ and let t to $+\infty$, then $z=J(\tau)<0$ goes to $-\infty$. Since, from (5.3),

$$
\left.f_{j}^{(1 / 4)}=\epsilon_{12}^{j} 2^{-1 / 12}((\sqrt{1-z})+1)^{1 / 3}-\epsilon_{3}^{j}(\sqrt{1-z}-1)^{1 / 3}\right)^{1 / 4}
$$

we have (5.8) for some $C=C(\tau)$. Since $\vartheta_{2}(0, \tau) \vartheta_{0}(0, \tau) \vartheta_{3}(0, \tau)=2 q^{1 / 4} H_{0}^{3}$ ([Akh]), C takes the value in the statement of the theorem.

REFERENCES

[A-I] K. Aomoto and K. Iguchi, On quasi-hypergeometric functions, Methods and Applications of Analysis Vol 6 (1999) 55-66.
[Akh] N. I. Akhiezer, Elements of the Theory of Elliptic Functions, Translations of Mathematical Monographs Vol 79, American Mathematical Society, 1990.
[B-H] F. Beukers and G. Heckman, Monodromy for the hypergeometric function ${ }_{n} F_{n-1}$, Invent. math. 95 (1989) 325-354.
[Blr] G. Belardinelli, Fonctions Hypergéométriques de Plusieurs Variables et Résolution Analytique des Équations Algébriques Générales, Mémorial des Sciences Mathématiques CXLV, Paris, Gauthiers Villars, 1960.
[Bly] W. N. Bailey, Generalized Hypergeometric Series, Cambridge Tracts in Mathematics and Mathematical Phisics No. 32, 1935.
[Brn] B. C. Berndt, Ramanujan's Notebooks Part I, Springer-Verlag,1985.
[Erd] A. Erdélyi (Editor), Higher transcendental functions, Vol. I, MacGraw Hill, New York, 1953.
[Kt] M. Kato, Schwarz maps of ${ }_{3} F_{2}$ with finite irreducible monodromy groups, Kyushu J. of Math. Vol. 52 (1998) 475-495.

Mitsuo KATO
Department of Mathematics
College of Education
University of the Ryukyus
Nishihara-cho, Okinawa 903-0213
JAPAN
(e-mail: mkato@edu.u-ryukyu.ac.jp)
Masatoshi NOUMI
Department of Mathematics
Graduate School of Science and Technology
Kobe University
Rokko, Kobe 657-8501
JAPAN
(e-mail: noumi@math.sci.kobe-u.ac.jp)

