琉球大学学術リポジトリ

対合同変正則写像空間の位相幾何

メタデータ	言語：
	出版者：神山靖彦
公開日：2009－03－17	
キーワード（Ja）：有理関数，複素共役対合，多項式，重根，	
	配置空間，ループ空間，安定分解，生成多様体 キーワード（En）：rational function，conjugation， polynomial，multiple root，configuration space，loop space，stable splitting，generating variety 作成者：神山，靖彦，志賀，博雄，手塚，康誠，Kamiyama， Yasuhiko，Shiga，Hiroo，Tezuka，Michishige メールアドレス： 所属：
http：／／hdl．handle．net／20．500．12000／9229	
URL	

Configuration spaces and rational functions

Yasuhiko Kamiyama University of the Ryukyus

July 8, 2005

§1. Arnold's results

V.I. Arnold: On some topological invariants of algebraic functions.
Trudy Moscov. Mat. Obshch. 21, 2746 (1970);
English transl. in Trans. Moscow Math. Soc. 21, 30-52 (1970).

Today I will consider a certain question which originates in this paper.

Roughly speaking, the question is:

To study the relationship between the space of polynomials with n-fold roots and the space of n-tuples of polynomials with common roots

Definition of the configuration space

We set

$$
\begin{aligned}
C_{k}(\mathbb{C})=\left\{\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in \mathbb{C}^{k}:\right. \\
\left.\alpha_{i} \neq \alpha_{j} \quad \text { if } \quad i \neq j\right\} / \Sigma_{k}
\end{aligned}
$$

where Σ_{k} is the symmetric group on k letters.

Interpretation of $C_{k}(\mathbb{C})$
(1) $C_{k}(\mathbb{C})=\left\{f(z)=z^{k}+a_{1} z^{k-1}+\cdots+a_{k}\right.$: $a_{i} \in \mathbb{C}, f(z)$ does not have a multiple root\}.
(2) $C_{k}(\mathbb{C})=K\left(\beta_{k}, 1\right)$,
where β_{k} is Artin's braid group on k strings.

Today we use (1).

Example.

(1) $C_{1}(\mathbb{C})=\mathbb{C}$.
(2) $C_{2}(\mathbb{C})=\left\{(z+u)^{2}+v: v \neq 0\right\}$

$$
\cong \mathbb{C} \times \mathbb{C}^{*} \simeq S^{1}
$$

Arnold's results

Arnold first studied the homology of $C_{k}(\mathbb{C})$ systematically. The results are:
(1) Finiteness Theorem: For $q \geq 2$, $H_{q}\left(C_{k}(\mathbb{C}) ; \mathbb{Z}\right)$ is a finite group.
(2) Repetition Theorem: For $q \geq 0$, we have

$$
H_{q}\left(C_{2 d}(\mathbb{C}) ; \mathbb{Z}\right) \cong H_{q}\left(C_{2 d+1}(\mathbb{C}) ; \mathbb{Z}\right)
$$

(But $C_{2 d}(\mathbb{C})$ and $C_{2 d+1}(\mathbb{C})$ are not homotopy equivalent, because the fundamental groups are not isomorphic.)
(3) Stability Theorem: Fix q. Then for $k \geq 2 q$, we have

$$
H_{q}\left(C_{k}(\mathbb{C}) ; \mathbb{Z}\right) \cong H_{q}\left(C_{\infty}(\mathbb{C}) ; \mathbb{Z}\right)
$$

Moreover, Arnold calculated $H_{q}\left(C_{k}(\mathbb{C}) ; \mathbb{Z}\right)$ for $1 \leq q \leq 5$. The result is given by the following table.

Table 1. The groups $H_{q}\left(C_{k}(\mathbb{C}) ; \mathbb{Z}\right)$ for $1 \leq q \leq 5$.

$k \backslash q$	1	2	3	4	5
0,1	0	0	0	0	0
2,3	\mathbb{Z}	0	0	0	0
4,5	\mathbb{Z}	$\mathbb{Z} / 2$	0	0	0
6,7	\mathbb{Z}	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 3$	0
8,9	\mathbb{Z}	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 6$	$\mathbb{Z} / 3$
10,11	\mathbb{Z}	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 6$	$\mathbb{Z} / 6$
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
∞	\mathbb{Z}	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	$\mathbb{Z} / 6$	$\mathbb{Z} / 6$

Note that the stability theorem indeed holds.

- Fred Cohen (1976), using another approach, determined both $H_{*}\left(C_{k}(\mathbb{C}) ; \mathbb{Z} / p\right)$ (where p is a prime) as modules over the Steenrod algebra, and $H_{*}\left(C_{k}(\mathbb{C}) ; \mathbb{Z}\right)$.
- Using this, Brown and Peterson determined the stable homotopy type of $C_{k}(\mathbb{C})$. Let

$$
\Omega^{2} S^{3} \simeq \underset{1 \leq q}{ } \bigvee_{q}\left(S^{1}\right)
$$

be Snaith's stable splitting. Then

Theorem (Brown-Peterson, 1978).

$$
C_{k}(\mathbb{C}) \simeq \bigvee_{q=1}^{\left[\frac{k}{2}\right]} D_{q}\left(S^{1}\right)
$$

where $\left[\frac{k}{2}\right]$ is the largest integer $\leq \frac{k}{2}$.
By the repetition theorem, the number $\left[\frac{k}{2}\right]$ is reasonable.

Consequently, the bottom row of Table 1 (i.e., when $k=\infty$) turns out to be $H_{*}\left(\Omega^{2} S^{3} ; \mathbb{Z}\right)$.
$H_{*}\left(C_{k}(\mathbb{C}) ; \mathbb{Z}\right)$ is known completely now. But we review Arnold's proof.

Arnold's proof

We set

$$
\begin{aligned}
& P_{k, n}^{l}=\left\{f(z)=z^{k}+a_{1} z^{k-1}+\cdots+a_{k}:\right. \\
& a_{i} \in \mathbb{C} \text {, the number of } n \text {-fold roots } \\
&\text { of } f(z) \text { is at most } l\} .
\end{aligned}
$$

Here two n-fold roots may coincide. Hence,

$$
\begin{array}{r}
f(z) \in P_{k, n}^{l} \Leftrightarrow(\alpha(z))^{n} \nmid f(z) \text { for any } \\
\alpha(z) \text { of degree } l+1 .
\end{array}
$$

It is natural to assume $n \geq 2$. In particular,

$$
P_{k, 2}^{0}=C_{k}(\mathbb{C})
$$

Example 1.

(1) For $l \geq d$,

$$
P_{n d, n}^{l}=\mathbb{C}^{n d} \simeq\{\text { a point }\}
$$

(2)

$$
P_{n d, n}^{d-1} \cong \mathbb{C}^{n d}-\mathbb{C}^{d} \simeq S^{2(n-1) d-1}
$$

Proof. (1) is clear. For (2), we must exclude polynomials $f(z)$ of the form $f(z)=$ $(\alpha(z))^{n}$ for some $\alpha(z)$.

Induction. Fix n. By induction with making k larger and l smaller, we obtain information on $P_{k, n}^{l}$ for all k, n and l.
(For example, induction proceeds from Example 1 (1) to Example 1 (2).)

In particular, the case $n=2$ and $l=0$ is the above Arnold's results.

Remark. To be exact, Arnold considered the complement $S^{2 k}-P_{k, n}^{l}$ instead of $P_{k, n}^{l}$.

A table in low dimensions

Arnold calculated

$$
H_{*}\left(P_{2 k+i, 2}^{k-1} ; \mathbb{Z}\right)(i \geq 0)
$$

in low dimensions. The results are:

1. For $1 \leq q \leq 2 k-2$,

$$
H_{q}\left(P_{2 k+i, 2}^{k-1} ; \mathbb{Z}\right)=0
$$

2. For $2 k-1 \leq q \leq 2 k+3$,

$$
H_{q}\left(P_{2 k+i, 2}^{k-1} ; \mathbb{Z}\right)
$$

are cyclic and the orders are given by the following table.

Table 2. The orders of the groups

$$
H_{q}\left(P_{2 k+i, 2}^{k-1} ; \mathbb{Z}\right)
$$

for $2 k-1 \leq q \leq 2 k+3$.

$i \backslash q$	$2 k-1$	$2 k$	$2 k+1$
0,1	∞	0	0
2,3	∞	$k+1$	0
4,5	∞	$k+1$	$2 / k$
6,7	∞	$k+1$	$2 / k$
8,9	∞	$k+1$	$2 / k$
\vdots	\vdots	\vdots	\vdots
∞	∞	$k+1$	$2 / k$

$i \backslash q$	$2 k+2$	$2 k+3$
0,1	0	0
2,3	0	0
4,5	$(k+2) / 2$	0
6,7	$((k+2) / 2)(2 / k)$	$3 / k$
8,9	$((k+2) / 2)(2 / k)$	$6 / k v$
\vdots	\vdots	\vdots
∞	$((k+2) / 2)(2 / k)$	$6 / k v$

Here

1. We introduce the notation

$$
a / b=\frac{a}{\operatorname{gcd}(a, b)},
$$

where $\operatorname{gcd}(a, b)$ is the greatest common divisor of the integers a and b.
2. Stability Theorem: Fix k and q. In each column, we go downward. Then the homology stabilizes when

$$
i \geq 2(q-2 k+1)
$$

3. We have

$$
v=\left\{\begin{array}{lllll}
1 & & & \text { if } & k \not \equiv 1(\bmod 4) \\
1 & \text { or } & 2 & \text { if } & k \equiv 1(\bmod 4) .
\end{array}\right.
$$

But the exact value is left unknown.

Question. Is it possible to reconstruct Table 2 using standard techniques in algebraic topology?

Here "standard techniques in algebraic topology" means:

1. We allow to use the structure of $H_{*}\left(\Omega^{2} S^{3} ; \mathbb{Z} / p\right)$.
2. We allow to use spectral sequences for fibrations, e.g., Serre or EilenbergMoore.
3. We want to avoid inductive arguments.
§2. The space of rational functions

Definition of Rat ${ }_{k}\left(\mathbb{C} P^{n-1}\right)$

We set
$\operatorname{Rat}_{k}\left(\mathbb{C} P^{n-1}\right)=\left\{\left(p_{1}(z), \ldots, p_{n}(z)\right):\right.$
each $p_{i}(z)$ is a monic polynomial over \mathbb{C} of degree k and such that there are no roots common to all $p_{i}(z)$ \}.

Rat $_{k}\left(\mathbb{C} P^{n-1}\right)$ is considered to be the space of holomorphic maps

$$
S^{2} \rightarrow \mathbb{C} P^{n-1}
$$

of degree k with the basepoint condition

$$
\infty \mapsto[1, \ldots, 1] .
$$

There is an inclusion
$i_{k, n}: \operatorname{Rat}_{k}\left(\mathbb{C} P^{n-1}\right) \hookrightarrow \Omega_{k}^{2} \mathbb{C} P^{n-1} \simeq \Omega^{2} S^{2 n-1}$.

Example.

$\operatorname{Rat}_{1}\left(\mathbb{C} P^{n-1}\right)=\left\{\left(z+\alpha_{1}, \ldots, z+\alpha_{n}\right):\right.$

$$
\left.\alpha_{i} \neq \alpha_{j} \quad \text { for some } \quad i, j\right\}
$$

$$
=\mathbb{C}^{n} \text { - diagonal set }
$$

$$
\simeq \quad S^{2 n-3}
$$

Hence, the generator of $\pi_{2 n-3}\left(\Omega^{2} S^{2 n-1}\right)$ is constructed in $\operatorname{Rat}_{1}\left(\mathbb{C} P^{n-1}\right)$. Moreover, the following theorem holds.

Theorem (Segal, 1979). $i_{k, n}$ is a homotopy equivalence up to dimension $k(2 n-3)$.

That is, the homomorphism

$$
i_{k, n, *}: \pi_{q}\left(\operatorname{Rat}_{k}\left(\mathbb{C} P^{n-1}\right)\right) \rightarrow \pi_{q}\left(\Omega^{2} S^{2 n-1}\right)
$$

is
$\left\{\begin{array}{l}\text { an isomorphism when } q<k(2 n-3) \\ \text { an epimorphism when } q=k(2 n-3) .\end{array}\right.$
This theorem implies that Rat $_{k}\left(\mathbb{C} P^{n-1}\right)$ is a good finite dimensional model which approximates an infinite dimensional manifold $\Omega^{2} S^{2 n-1}$.

Later, the stable homotopy type of Rat $_{k}\left(\mathbb{C} P^{n-1}\right)$ was determined. Let

$$
\Omega^{2} S^{2 n-1} \underset{s}{\simeq} \bigvee_{1 \leq q} D_{q}\left(S^{2 n-3}\right)
$$

be Snaith's stable splitting. Then

Theorem (F.Cohen-R.Cohen- MannMilgram, 1991).

$$
\operatorname{Rat}_{k}\left(\mathbb{C} P^{n-1}\right) \simeq \bigvee_{q=1}^{k} D_{q}\left(S^{2 n-3}\right)
$$

In particular, the homomorphism

$$
\begin{array}{r}
i_{k, n, *}: \quad H_{*}\left(\operatorname{Rat}_{k}\left(\mathbb{C} P^{n-1}\right) ; \mathbb{Z}\right) \rightarrow \\
H_{*}\left(\Omega^{2} S^{2 n-1} ; \mathbb{Z}\right)
\end{array}
$$

is injective.

Relationship between P and Rat

We have the following 2 spaces:
$P_{k, n}^{l}=\left\{f(z)=z^{k}+a_{1} z^{k-1}+\cdots+a_{k}:\right.$ $a_{i} \in \mathbb{C}$, the number of n-fold roots of $f(z)$ is at most $l\}$
and
$\operatorname{Rat}_{k}\left(\mathbb{C} P^{n-1}\right)=\left\{\left(p_{1}(z), \ldots, p_{n}(z)\right):\right.$
each $p_{i}(z)$ is a monic polynomial over \mathbb{C} of degree k and such that there are no roots common to all $p_{i}(z)$ \}.

Concerning them, we have the following 2 theorems:

$$
\left[\frac{k}{2}\right]
$$

- Brown-Peterson: $P_{k, 2}^{0} \underset{s}{\sim} \bigvee_{q=1} D_{q}\left(S^{1}\right)$.
- Cohen et al. for $n=2$:

$$
\operatorname{Rat}_{k}\left(\mathbb{C} P^{1}\right) \simeq \bigvee_{q=1}^{k} D_{q}\left(S^{1}\right)
$$

Combining these theorems, we obtain:

$$
\begin{equation*}
P_{k, 2}^{0} \underset{\sim}{s} \operatorname{Rat}_{\left[\frac{k}{2}\right]}\left(\mathbb{C} P^{1}\right) \tag{1}
\end{equation*}
$$

Remark: We cannot improve (1) to an unstable homotopy equivalence, since π_{1} of the both sides are not isomorphic.

Later, (1) was generalized to the following:

Theorem (Vassiliev, 1992).
(2) $\quad P_{k, n}^{0} \underset{s}{\sim} \operatorname{Rat}_{\left[\frac{k}{n}\right]}\left(\mathbb{C} P^{n-1}\right)$.

Remark. For $n \geq 3$, we can improve Vassiliev's theorem to an unstable homotopy equivalence if we combine the theorems of R. Cohen-Shimamoto, and Guest-Kozlowski-Yamaguchi.
§3. Main results

Purpose

We have the following 3 theorems:

- Segal: The inclusion
$i_{k, n}:$ Rat $_{k}\left(\mathbb{C} P^{n-1}\right) \hookrightarrow \Omega_{k}^{2} \mathbb{C} P^{n-1} \simeq \Omega^{2} S^{2 n-1}$
is a homotopy equivalence up to dimension $k(2 n-3)$.
- Cohen et al.:

$$
\operatorname{Rat}_{k}\left(\mathbb{C} P^{n-1}\right) \simeq \bigvee_{q=1}^{k} D_{q}\left(S^{2 n-3}\right)
$$

- Vassiliev:

$$
P_{k, n}^{0} \underset{\sim}{\sim} \operatorname{Rat}_{\left[\frac{k}{n}\right]}\left(\mathbb{C} \boldsymbol{P}^{n-1}\right)
$$

We want to generalize these theorems.
About Vassiliev's theorem, we generalize as follows:

The left-hand side: Generalize to $P_{k, n}^{l}$. $P_{k, n}^{l}=\left\{f(z)=z^{k}+a_{1} z^{k-1}+\cdots+a_{k}:\right.$ $a_{i} \in \mathbb{C}$, the number of n-fold roots of $f(z)$ is at most $l\}$.

The right-hand side: What is the space which generalizes Rat $_{k}\left(\mathbb{C} P^{n-1}\right)$?

Definition of $X_{k, n}^{l}$

We set
$X_{k, n}^{l}=\left\{\left(p_{1}(z), \ldots, p_{n}(z)\right):\right.$
each $p_{i}(z)$ is a monic polynomial over \mathbb{C} of degree k and such that there are at most l roots common to all $p_{i}(z)$.

Here two common roots may coincide.
Clearly

$$
X_{k, n}^{0}=\operatorname{Rat}_{k}\left(\mathbb{C} P^{n-1}\right)
$$

Remark. The space $X_{k, n}^{l}$ was suggested by Fred Cohen.

Example 2.

(1) For $l \geq d$,

$$
X_{d, n}^{l}=\left(\mathbb{C}^{d}\right)^{n} \simeq\{\text { a point }\}
$$

(2) $X_{d, n}^{d-1} \cong\left(\mathbb{C}^{d}\right)^{n}$ - diagonal set

$$
\simeq S^{2(n-1) d-1}
$$

Proof. (1) is clear. For (2), we must exclude n-tuples

$$
\left(p_{1}(z), \ldots, p_{n}(z)\right)
$$

of polynomials which satisfy

$$
p_{1}(z)=\cdots=p_{n}(z)
$$

We want to give Segal type, Cohen et al. type and Vassiliev type theorems for $X_{k, n}^{l}$. For that purpose, we need some notations.

Homotopy fibre

We set
(1) $J^{l}(2 n-2):$ the l-th stage of the James construction which builds $\Omega S^{2 n-1}$. That is,
$J^{l}(2 n-2) \simeq S^{2 n-2} \cup e^{2(2 n-2)} \cup \cdots \cup e^{l(2 n-2)}$.
(2) $W^{l}(n)$: the homotopy theoretic fibre of the inclusion

$$
J^{l}(2 n-2) \hookrightarrow \Omega S^{2 n-1}
$$

In particular,

$$
W^{0}(n)=\Omega^{2} S^{2 n-1}
$$

(3) Wong generalized Snaith's stable splitting as follows.

$$
W^{l}(n) \underset{s}{ } \bigvee_{1 \leq q} D_{q} \xi^{l}(n)
$$

Theorem 1 [Segal type] (K, 2003).

There is an unstable map

$$
\alpha_{k, n}^{l}: X_{k, n}^{l} \rightarrow W^{l}(n)
$$

which is a homotopy equivalence up to dimension

$$
\left[\frac{k}{l+1}\right](2(l+1)(n-1)-1)
$$

We will not use this theorem later.

Theorem 2 [Cohen et al. type] (K, 2001).

$$
X_{k, n}^{l} \simeq \bigvee_{q=1}^{k} D_{q} \xi^{l}(n)
$$

From Theorem 2, we can calculate $H_{*}\left(X_{k, n}^{l} ; \mathbb{Z} / p\right)$, where p is a prime. This is the subspace of $H_{*}\left(W^{l}(n) ; \mathbb{Z} / p\right)$ spanned by monomials of weight $\leq k$.

Theorem 3 [Vassiliev type] (K, 2003). Except when $(n, l)=(2,0)$, there is a homotopy equivalence

$$
P_{k, n}^{l} \simeq X_{\left[\frac{k}{n}\right], n}^{l}
$$

As mentioned above, this holds stably when $(n, l)=(2,0)$.

Note that Theorem 3 indeed holds between Examples 1 and 2:

Example 1.

(1) For $l \geq d$,

$$
P_{n d, n}^{l}=\mathbb{C}^{n d} \simeq\{\text { a point }\}
$$

(2)

$$
P_{n d, n}^{d-1} \cong \mathbb{C}^{n d}-\mathbb{C}^{d} \simeq S^{2(n-1) d-1}
$$

Example 2.
(1) For $l \geq d$,

$$
X_{d, n}^{l}=\left(\mathbb{C}^{d}\right)^{n} \simeq\{\text { a point }\}
$$

(2) $X_{d, n}^{d-1} \cong\left(\mathbb{C}^{d}\right)^{n}$ - diagonal set $\simeq S^{2(n-1) d-1}$.

Table 2. The orders of the groups

$$
H_{q}\left(P_{2 k+i, 2}^{k-1} ; \mathbb{Z}\right)
$$

for $2 k-1 \leq q \leq 2 k+3$.

$i \backslash q$	$2 k-1$	$2 k$	$2 k+1$
0,1	∞	0	0
2,3	∞	$k+1$	0
4,5	∞	$k+1$	$2 / k$
6,7	∞	$k+1$	$2 / k$
8,9	∞	$k+1$	$2 / k$
\vdots	\vdots	\vdots	\vdots
∞	∞	$k+1$	$2 / k$

$i \backslash q$	$2 k+2$	$2 k+3$
0,1	0	0
2,3	0	0
4,5	$(k+2) / 2$	0
6,7	$((k+2) / 2)(2 / k)$	$3 / k$
8,9	$((k+2) / 2)(2 / k)$	$6 / k v$
\vdots	\vdots	\vdots
∞	$((k+2) / 2)(2 / k)$	$6 / k v$

Reconstruction of Table 2

(1) By Theorem 3,

$$
P_{2 k+i, 2}^{k-1} \simeq X_{k+\left[\frac{i}{2}\right], 2}^{k-1} .
$$

Hence, we calculate the right-hand side.
(2) By Theorem 2, as a vector space,

$$
H_{*}\left(X_{k+\left[\frac{i}{2}\right], 2}^{k-1} ; \mathbb{Z} / \boldsymbol{p}\right)
$$

is isomorphic to the subspace of

$$
H_{*}\left(W^{k-1}(2) ; \mathbb{Z} / p\right)
$$

spanned by monomials of weight $\leq k+\left[\frac{i}{2}\right]$.
(3) We can determine

$$
H_{*}\left(W^{k-1}(2) ; \mathbb{Z} / p\right)
$$

from the mod p Serre spectral sequence for the fibration

$$
\Omega^{2} S^{3} \rightarrow W^{k-1}(2) \rightarrow J^{k-1}(2)
$$

(4) If we follow the steps (1)-(3), then we can prove that the value of the indeterminacy v in Table 2 is 1 when $k \equiv 1(\bmod 4)$.

Example

We calculate the case $i=\infty$ and $q=2 k$. By Theorems 2 and 3,

$$
H_{2 k}\left(P_{\infty, 2}^{k-1} ; \mathbb{Z}\right) \cong H_{2 k}\left(W^{k-1}(2) ; \mathbb{Z}\right)
$$

Hence, it suffices to prove

$$
H^{2 k+1}\left(W^{k-1}(2) ; \mathbb{Z}\right) \cong \mathbb{Z} /(k+1)
$$

We can consider the Serre spectral sequence for the fibration

$$
W^{k-1}(2) \rightarrow J^{k-1}(2) \rightarrow \Omega S^{3}
$$

Recall that

$$
H^{*}\left(\Omega S^{3} ; \mathbb{Z}\right) \cong \Gamma\left(x_{2}\right),
$$

the divided power algebra. That is,

$$
y_{2 j}:=\frac{x_{2}^{j}}{j!}
$$

is the generator of $H^{2 j}\left(\Omega S^{3} ; \mathbb{Z}\right)$.
$\boldsymbol{H}^{*}\left(\boldsymbol{W}^{k-1}(2) ; \mathbb{Z}\right)$

First, let

$$
u_{2 k-1} \in H^{2 k-1}\left(W^{k-1}(2) ; \mathbb{Z}\right) \cong \mathbb{Z}
$$

be the generator which kills $y_{2 k}$.

Next, since

$$
y_{2} y_{2 k}=x_{2} \frac{x_{2}^{k}}{k!}=(k+1) y_{2 k+2}
$$

the spectral sequence becomes as follows.

Then we must have

$$
H^{2 k+1}\left(W^{k-1}(2) ; \mathbb{Z}\right) \cong \mathbb{Z} /(k+1)
$$

This is what we wanted to prove.

A concluding remark

Today we considered one of 4 cases. That is, for $\left(p_{1}(z), \ldots, p_{n}(z)\right)$, there are cases
(1) $p_{i}(z)$ is a polynomial over \mathbb{R} or \mathbb{C}.
(2) whether a point $\in \mathbb{C}$ off the real axis can be a common root.

For example, when $p_{i}(z)$ is a polynomial over \mathbb{R} and $p_{i}(z)(1 \leq i \leq n)$ may have common roots, but none of the common roots lie on the real axis. Then ($p_{1}(z), \ldots, p_{n}(z)$) is considered to be an element of

$$
\Omega_{k \bmod 2} \mathbb{R} P^{n-1} \simeq \Omega S^{n-1}
$$

where $S^{1}=\mathbb{R} \cup\{\infty\}$. Note that is a single loop space.

Today's theorems hold for these 4 cases under suitable modifications.

