琉球大学学術リポジトリ

対合同変正則写像空間の位相幾何

メタデータ	言語:
	出版者: 神山靖彦
	公開日: 2009-03-17
	キーワード (Ja): 有理関数, 複素共役対合, 多項式, 重根,
	配置空間, ループ空間, 安定分解, 生成多様体
	キーワード (En): rational function, conjugation,
	polynomial, multiple root, configuration space, loop
	space, stable splitting, generating variety
	作成者: 神山, 靖彦, 志賀, 博雄, 手塚, 康誠, Kamiyama,
	Yasuhiko, Shiga, Hiroo, Tezuka, Michishige
	メールアドレス:
	所属:
URL	http://hdl.handle.net/20.500.12000/9229

Configuration spaces and rational functions

Yasuhiko Kamiyama University of the Ryukyus

July 8, 2005

$\S1.$ Arnold's results

V.I. Arnold: On some topological invariants of algebraic functions.
Trudy Moscov. Mat. Obshch. 21, 27–46 (1970);
English transl. in Trans. Moscow Math.
Soc. 21, 30–52 (1970).

Today I will consider a certain question which originates in this paper.

Roughly speaking, the question is:

To study the relationship between the space of polynomials with n-fold roots and the space of n-tuples of polynomials with common roots

Definition of the configuration space

We set

$$egin{aligned} C_k(\mathbb{C}) &= \{ (lpha_1, \dots, lpha_k) \in \mathbb{C}^k: \ &lpha_i
eq lpha_j & ext{if} \quad i
eq j \} / \Sigma_k, \end{aligned}$$

where Σ_k is the symmetric group on k letters.

Interpretation of $C_k(\mathbb{C})$

(1) $C_k(\mathbb{C}) = \{f(z) = z^k + a_1 z^{k-1} + \dots + a_k : a_i \in \mathbb{C}, f(z) \text{ does not have a multiple root} \}.$

(2) $C_k(\mathbb{C}) = K(\beta_k, 1)$,

where β_k is Artin's braid group on k-strings.

Today we use (1).

Example.

(1) $C_1(\mathbb{C}) = \mathbb{C}$.

(2) $C_2(\mathbb{C}) = \{(z+u)^2 + v : v \neq 0\}$ $\cong \mathbb{C} \times \mathbb{C}^* \simeq S^1.$

Arnold's results

Arnold first studied the homology of $C_k(\mathbb{C})$ systematically. The results are:

(1) Finiteness Theorem: For $q \ge 2$, $H_q(C_k(\mathbb{C});\mathbb{Z})$ is a finite group.

(2) Repetition Theorem: For $q \ge 0$, we have

 $H_q(C_{2d}(\mathbb{C});\mathbb{Z})\cong H_q(C_{2d+1}(\mathbb{C});\mathbb{Z}).$

(But $C_{2d}(\mathbb{C})$ and $C_{2d+1}(\mathbb{C})$ are not homotopy equivalent, because the fundamental groups are not isomorphic.)

(3) Stability Theorem: Fix q. Then for $k \ge 2q$, we have

 $H_q(C_k(\mathbb{C});\mathbb{Z})\cong H_q(C_\infty(\mathbb{C});\mathbb{Z}).$

Moreover, Arnold calculated $H_q(C_k(\mathbb{C});\mathbb{Z})$ for $1 \le q \le 5$. The result is given by the following table.

Table 1. The groups $H_q(C_k(\mathbb{C});\mathbb{Z})$ for $1 \leq q \leq 5$.

$\overline{k\setminus q}$	1	2	3	4	5
0, 1	0	0	0	0	0
2,3	\mathbb{Z}	0	0	0	0
4, 5	\mathbb{Z}	$\mathbb{Z}/2$	• 0	0	0
6,7	\mathbb{Z}	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/3$	0
8,9	\mathbb{Z}	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/6$	$\mathbb{Z}/3$
10, 11	\mathbb{Z}	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/6$	$\mathbb{Z}/6$
	I	I	:	ł	ł
∞	\mathbb{Z}	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/6$	$\mathbb{Z}/6$

Note that the stability theorem indeed holds.

• Fred Cohen (1976), using another approach, determined both $H_*(C_k(\mathbb{C});\mathbb{Z}/p)$ (where p is a prime) as modules over the Steenrod algebra, and $H_*(C_k(\mathbb{C});\mathbb{Z})$.

• Using this, Brown and Peterson determined the stable homotopy type of $C_k(\mathbb{C})$. Let

$$\Omega^2 S^3 \mathop{\simeq}\limits_s \bigvee_{1\leq q} D_q(S^1)$$

be Snaith's stable splitting. Then

<u>Theorem</u> (Brown-Peterson, 1978).

$$C_k(\mathbb{C}) \mathop{\simeq}\limits_{s} \bigvee_{q=1}^{\left[rac{k}{2}
ight]} D_q(S^1),$$

where $\left[\frac{k}{2}\right]$ is the largest integer $\leq \frac{k}{2}$.

By the repetition theorem, the number $\left\lceil \frac{k}{2} \right\rceil$ is reasonable.

Consequently, the bottom row of Table 1 (i.e., when $k = \infty$) turns out to be $H_*(\Omega^2 S^3; \mathbb{Z})$.

 $H_*(C_k(\mathbb{C});\mathbb{Z})$ is known completely now. But we review Arnold's proof.

Arnold's proof

We set

$$P_{k,n}^l = \{f(z) = z^k + a_1 z^{k-1} + \dots + a_k : a_i \in \mathbb{C}, ext{the number of } n ext{-fold roots} \ ext{of } f(z) ext{ is at most } l\}.$$

Here two *n*-fold roots may coincide. Hence,

$$f(z) \in P_{k,n}^{l} \Leftrightarrow (lpha(z))^{n}
middle f(z)$$
 for any $lpha(z)$ of degree $l+1$.

It is natural to assume $n \ge 2$. In particular,

$$P^0_{k,2}=C_k(\mathbb{C}).$$

Example 1.

(1) For
$$l \geq d$$
, $P_{nd,n}^l = \mathbb{C}^{nd} \simeq \{ \text{a point} \}.$

(2)

$$P^{d-1}_{nd,n}\cong \mathbb{C}^{nd}-\mathbb{C}^d\simeq S^{2(n-1)d-1}.$$

Proof. (1) is clear. For (2), we must exclude polynomials f(z) of the form $f(z) = (\alpha(z))^n$ for some $\alpha(z)$.

Induction. Fix n. By induction with making k larger and l smaller, we obtain information on $P_{k,n}^l$ for all k, n and l. (For example, induction proceeds from Example 1 (1) to Example 1 (2).)

In particular, the case n = 2 and l = 0 is the above Arnold's results.

<u>Remark</u>. To be exact, Arnold considered the complement $S^{2k} - P_{k,n}^l$ instead of $P_{k,n}^l$.

A table in low dimensions

Arnold calculated

$$H_*(P^{k-1}_{2k+i,2};\mathbb{Z}) \; (i \geq 0)$$

in low dimensions. The results are:

1. For
$$1\leq q\leq 2k-2$$
, $H_q(P^{k-1}_{2k+i,2};\mathbb{Z})=0.$

2. For $2k - 1 \le q \le 2k + 3$,

$$H_q(P^{k-1}_{2k+i,2};\mathbb{Z})$$

are cyclic and the orders are given by the following table.

Table 2. The orders of the groups

$H_q(P^{k-1}_{2k+i,2};\mathbb{Z})$

for $2k - 1 \le q \le 2k + 3$.

$i \setminus a$	2k - 1	2k	2k+1
$i \setminus q$			
0,1	∞	0	0
2,3	\sim	k+1	0
4, 5	∞	k+1	2/k
6,7	∞	k+1	2/k
8,9	∞	k+1	2/k
I	I	ł	1
∞	∞	k+1	2/k
. <u></u>			
$\overline{i\setminus q}$	2k -	+ 2	2k+3
0, 1	0		0
2,3	0	I	0
4, 5	(k + 1)	2)/2	0
6,7	((k+2)/	(2)(2/k)	3/k
8,9	((k+2))/	$^{\prime}2)(2/k)$	6/kv
I	1		i
∞	((k+2)/	$^{\prime}2)(2/k)$	6/kv

165

Here

1. We introduce the notation

$$a/b = rac{a}{\gcd(a,b)},$$

where gcd(a, b) is the greatest common divisor of the integers a and b.

2. Stability Theorem: Fix k and q. In each column, we go downward. Then the homology stabilizes when

$$i \ge 2(q-2k+1).$$

3. We have

 $v = \begin{cases} 1 & \text{if } k \not\equiv 1 \pmod{4} \\ 1 & \text{or } 2 & \text{if } k \equiv 1 \pmod{4}. \end{cases}$ But the exact value is left unknown. <u>Question</u>. Is it possible to reconstruct Table 2 using standard techniques in algebraic topology?

Here "standard techniques in algebraic topology" means:

- 1. We allow to use the structure of $H_*(\Omega^2 S^3;\mathbb{Z}/p).$
- 2. We allow to use spectral sequences for fibrations, e.g., Serre or Eilenberg-Moore.
- 3. We want to avoid inductive arguments.

\S 2. The space of rational functions

Definition of $\operatorname{\mathsf{Rat}}_k(\mathbb{C}P^{n-1})$

We set

 $\operatorname{Rat}_k(\mathbb{C}P^{n-1}) = \{(p_1(z), \dots, p_n(z)):$ each $p_i(z)$ is a monic polynomial over \mathbb{C} of degree k and such that there are no roots common to all $p_i(z)\}.$

 $\operatorname{Rat}_k(\mathbb{C}P^{n-1})$ is considered to be the space of holomorphic maps

 $S^2
ightarrow \mathbb{C}P^{n-1}$

of degree k with the basepoint condition

$$\infty\mapsto [1,\ldots,1].$$

There is an inclusion

 $i_{k,n}: \operatorname{Rat}_k(\mathbb{C}P^{n-1}) \hookrightarrow \Omega^2_k\mathbb{C}P^{n-1} \simeq \Omega^2 S^{2n-1}.$

Example.

$$\begin{aligned} \mathsf{Rat}_1(\mathbb{C}P^{n-1}) &= & \{(z+\alpha_1,\ldots,z+\alpha_n): \\ & \alpha_i \neq \alpha_j \quad \text{for some} \quad i,j\} \\ &= & \mathbb{C}^n - \text{diagonal set} \\ &\simeq & S^{2n-3}. \end{aligned}$$

Hence, the generator of $\pi_{2n-3}(\Omega^2 S^{2n-1})$ is constructed in $\operatorname{Rat}_1(\mathbb{C}P^{n-1})$. Moreover, the following theorem holds.

<u>Theorem</u> (Segal, 1979). $i_{k,n}$ is a homotopy equivalence up to dimension k(2n-3).

That is, the homomorphism

$$i_{k,n,st}:\pi_q(\operatorname{\mathsf{Rat}}_k(\mathbb{C}P^{n-1})) o\pi_q(\Omega^2S^{2n-1})$$
 is

 $\left\{ \begin{array}{l} {
m an isomorphism when } q < k(2n-3) \\ {
m an epimorphism when } q = k(2n-3). \end{array} \right.$

This theorem implies that $\operatorname{Rat}_k(\mathbb{C}P^{n-1})$ is a good <u>finite dimensional</u> model which approximates an <u>infinite dimensional</u> manifold $\Omega^2 S^{2n-1}$. Later, the stable homotopy type of $\operatorname{Rat}_k(\mathbb{C}P^{n-1})$ was determined. Let

$$\Omega^2 S^{2n-1} \simeq \bigvee_{1 \leq q} D_q(S^{2n-3})$$

be Snaith's stable splitting. Then

<u>Theorem</u> (F.Cohen-R.Cohen- Mann-Milgram, 1991).

$$\mathsf{Rat}_k(\mathbb{C}P^{n-1}) \mathop{\simeq}\limits_{s} \bigvee_{q=1}^k D_q(S^{2n-3}).$$

In particular, the homomorphism

$$egin{aligned} i_{k,n,st} &\colon & H_st(\operatorname{\mathsf{Rat}}_k(\operatorname{\mathbb{C}} P^{n-1}); \operatorname{\mathbb{Z}}) o \ & H_st(\Omega^2 S^{2n-1}; \operatorname{\mathbb{Z}}) \end{aligned}$$

is injective.

Relationship between P and Rat

We have the following 2 spaces:

 $P_{k,n}^l = \{f(z) = z^k + a_1 z^{k-1} + \dots + a_k : a_i \in \mathbb{C}, ext{the number of } n ext{-fold roots} \ ext{of } f(z) ext{ is at most } l\}$

and

 $\operatorname{Rat}_k(\mathbb{C}P^{n-1}) = \{(p_1(z), \dots, p_n(z)):$ each $p_i(z)$ is a monic polynomial over \mathbb{C} of degree k and such that there are no roots common to all $p_i(z)\}.$ Concerning them, we have the following 2 theorems:

• Brown-Peterson:
$$P_{k,2}^0 \simeq \bigvee_{q=1}^{\left\lfloor rac{k}{2}
ight
ceil} D_q(S^1).$$

• Cohen et al. for n = 2:

$$\mathsf{Rat}_k(\mathbb{C}P^1) \mathop{\simeq}\limits_{s} \bigvee_{q=1}^k D_q(S^1).$$

Combining these theorems, we obtain:

(1)
$$P_{k,2}^0 \simeq \operatorname{Rat}_{\left[\frac{k}{2}\right]}(\mathbb{C}P^1).$$

Remark: We <u>cannot</u> improve (1) to an unstable homotopy equivalence, since π_1 of the both sides are not isomorphic.

Later, (1) was generalized to the following:

<u>Theorem</u> (Vassiliev, 1992).

(2)
$$P_{k,n}^0 \simeq \operatorname{Rat}_{\left[\frac{k}{n}\right]}(\mathbb{C}P^{n-1}).$$

<u>Remark</u>. For $n \ge 3$, we can improve Vassiliev's theorem to an unstable homotopy equivalence if we combine the theorems of R. Cohen-Shimamoto, and Guest-Kozlowski-Yamaguchi.

§3. Main results

Purpose

We have the following 3 theorems:

• Segal: The inclusion

 $i_{k,n}: \operatorname{Rat}_k(\mathbb{C}P^{n-1}) \hookrightarrow \Omega^2_k\mathbb{C}P^{n-1} \simeq \Omega^2 S^{2n-1}$

is a homotopy equivalence up to dimension k(2n-3).

• Cohen et al.:

$$\operatorname{Rat}_k(\mathbb{C}P^{n-1}) \underset{s}{\sim} \bigvee_{q=1}^k D_q(S^{2n-3}).$$

• Vassiliev:

$$P^0_{k,n} \mathop{\simeq}\limits_{s} \operatorname{Rat}_{\left[rac{k}{n}
ight]}(\mathbb{C}P^{n-1}).$$

We want to generalize these theorems.

About Vassiliev's theorem, we generalize as follows:

The left-hand side: Generalize to $P_{k,n}^l$.

 $P_{k,n}^l = \{f(z) = z^k + a_1 z^{k-1} + \dots + a_k : a_i \in \mathbb{C}, ext{the number of } n ext{-fold roots} \ ext{of } f(z) ext{ is at most } l\}.$

The right-hand side: What is the space which generalizes $\operatorname{Rat}_k(\mathbb{C}P^{n-1})$?

Definition of $X_{k,n}^l$

We set

 $X_{k,n}^{l} = \{(p_{1}(z), \dots, p_{n}(z)) :$ each $p_{i}(z)$ is a monic polynomial over \mathbb{C} of degree k and such that there are at most l roots common to all $p_{i}(z)\}.$

Here two common roots may coincide. Clearly

$$X_{k,n}^0 = \operatorname{Rat}_k(\mathbb{C}P^{n-1}).$$

<u>Remark</u>. The space $X_{k,n}^l$ was suggested by Fred Cohen.

Example 2.

(1) For
$$l \geq d$$
, $X_{d,n}^l = (\mathbb{C}^d)^n \simeq \{ \text{a point} \}.$

(2)
$$X_{d,n}^{d-1} \cong (\mathbb{C}^d)^n$$
 – diagonal set
 $\simeq S^{2(n-1)d-1}$.

Proof. (1) is clear. For (2), we must exclude n-tuples

$$(p_1(z),\ldots,p_n(z))$$

of polynomials which satisfy

$$p_1(z) = \cdots = p_n(z).$$

We want to give Segal type, Cohen et al. type and Vassiliev type theorems for $X_{k,n}^l$. For that purpose, we need some notations.

Homotopy fibre

We set

(1) $J^{l}(2n-2)$: the *l*-th stage of the James construction which builds ΩS^{2n-1} . That is,

$$J^{l}(2n-2) \simeq S^{2n-2} \cup e^{2(2n-2)} \cup \cdots \cup e^{l(2n-2)}.$$

(2) $W^{l}(n)$: the homotopy theoretic fibre of the inclusion

$$J^l(2n-2) \hookrightarrow \Omega S^{2n-1}.$$

In particular,

$$W^0(n) = \Omega^2 S^{2n-1}.$$

(3) Wong generalized Snaith's stable splitting as follows.

$$W^l(n) \simeq \bigvee_{1 \leq q} D_q \xi^l(n).$$

<u>Theorem 1</u> [Segal type] (K, 2003).

There is an unstable map

$$lpha_{k,n}^l: X_{k,n}^l o W^l(n)$$

which is a homotopy equivalence up to dimension

$$\left[rac{k}{l+1}
ight](2(l+1)(n-1)-1).$$

We will not use this theorem later.

<u>Theorem 2</u> [Cohen et al. type] (K, 2001).

$$X^l_{k,n} \mathop{\simeq}\limits_{s} \bigvee_{q=1}^k D_q \xi^l(n).$$

From Theorem 2, we can calculate $H_*(X_{k,n}^l; \mathbb{Z}/p)$, where p is a prime. This is the subspace of $H_*(W^l(n); \mathbb{Z}/p)$ spanned by monomials of weight $\leq k$.

<u>Theorem 3</u> [Vassiliev type] (K, 2003). Except when (n,l) = (2,0), there is a homotopy equivalence

$$P_{k,n}^l\simeq X_{\left[rac{k}{n}
ight],n}^l.$$

As mentioned above, this holds stably when (n, l) = (2, 0).

Note that Theorem 3 indeed holds between Examples 1 and 2:

Example 1.

(1) For
$$l \geq d$$
, $P_{nd,n}^l = \mathbb{C}^{nd} \simeq \{ \text{a point} \}.$

(2)

$$P^{d-1}_{nd,n}\cong \mathbb{C}^{nd}-\mathbb{C}^d\simeq S^{2(n-1)d-1}.$$

Example 2.

(1) For
$$l \geq d$$
, $X_{d,n}^l = (\mathbb{C}^d)^n \simeq \{ ext{a point} \}.$

(2)
$$X_{d,n}^{d-1} \cong (\mathbb{C}^d)^n$$
 – diagonal set
 $\simeq S^{2(n-1)d-1}$.

Table 2. The orders of the groups

 $H_q(P^{k-1}_{2k+i,2};\mathbb{Z})$

for $2k - 1 \le q \le 2k + 3$.

	$\overline{i\setminus q}$	2k-1	2k	2k+1
	0,1	∞	0	0
	2,3	∞	k+1	0
	4, 5	∞	k+1	2/k
	6,7	∞	k+1	2/k
	8,9	∞	k+1	2/k
	I	:	I	ł
	∞	∞	k+1	2/k
	<u></u>			
4	$i \setminus q$	2k -	+ 2	2k+3
	0,1	0		0
	2,3	0	0	
	4, 5	(k+2)/2		0
	6,7	((k+2)/2)(2/k)		3/k
	8.9	((k+2))	6/kv	

6, 7	((k+2)/2)(2/k)	3/k
8,9	((k+2)/2)(2/k)	6/kv
I	i	i
∞	((k+2)/2)(2/k)	6/kv

182

Reconstruction of Table 2 (1) By Theorem 3,

$$P^{k-1}_{2k+i,2}\simeq X^{k-1}_{k+\left[rac{i}{2}
ight],2}.$$

Hence, we calculate the right-hand side.

(2) By Theorem 2, as a vector space,

$$H_*(X^{k-1}_{k+\left\lceilrac{i}{2}
ight
ceal,2};\mathbb{Z}/p))$$

is isomorphic to the subspace of

$$H_*(W^{k-1}(2);\mathbb{Z}/p)$$

spanned by monomials of weight $\leq k + \left[\frac{i}{2}\right]$.

(3) We can determine

$$H_*(W^{k-1}(2);\mathbb{Z}/p)$$

from the mod p Serre spectral sequence for the fibration

$$\Omega^2 S^3 \to W^{k-1}(2) \to J^{k-1}(2).$$

(4) If we follow the steps (1)-(3), then we can prove that the value of the indeterminacy v in Table 2 is 1 when $k \equiv 1 \pmod{4}$.

Example

We calculate the case $i = \infty$ and q = 2k. By Theorems 2 and 3,

 $H_{2k}(P^{k-1}_{\infty,2};\mathbb{Z})\cong H_{2k}(W^{k-1}(2);\mathbb{Z}).$ Hence, it suffices to prove

$$H^{2k+1}(W^{k-1}(2);\mathbb{Z})\cong \mathbb{Z}/(k+1)$$

We can consider the Serre spectral sequence for the fibration

$$W^{k-1}(2)
ightarrow J^{k-1}(2)
ightarrow \Omega S^3.$$

Recall that

$$H^*(\Omega S^3;\mathbb{Z})\cong \Gamma(x_2),$$

the divided power algebra. That is,

$$y_{2j}:=rac{x_2^j}{j!}$$

is the generator of $H^{2j}(\Omega S^3;\mathbb{Z}).$

 $H^*(\Omega S^3;\mathbb{Z})$

First, let

$$u_{2k-1}\in H^{2k-1}(W^{k-1}(2);\mathbb{Z})\cong\mathbb{Z}$$

be the generator which kills y_{2k} .

Next, since

$$y_2y_{2k}=x_2rac{x_2^k}{k!}=(k+1)y_{2k+2},$$

the spectral sequence becomes as follows.

Then we must have

$$H^{2k+1}(W^{k-1}(2);\mathbb{Z})\cong \mathbb{Z}/(k+1).$$

This is what we wanted to prove.

 $H^*(\Omega S^3;\mathbb{Z})$

A concluding remark

Today we considered one of 4 cases. That is, for $(p_1(z), \ldots, p_n(z))$, there are cases

(1) $p_i(z)$ is a polynomial over \mathbb{R} or \mathbb{C} .

(2) whether a point $\in \mathbb{C}$ off the real axis can be a common root.

For example, when $p_i(z)$ is a polynomial over \mathbb{R} and $p_i(z)$ $(1 \le i \le n)$ may have common roots, but none of the common roots lie on the real axis. Then $(p_1(z), \ldots, p_n(z))$ is considered to be an element of

 $\Omega_k \mod {}_2 \mathbb{R}P^{n-1} \simeq \Omega S^{n-1},$ where $S^1 = \mathbb{R} \cup \{\infty\}$. Note that is a single loop space.

Today's theorems hold for these 4 cases under suitable modifications.