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Abstract

3D FE elastic program was included to my FE software package in 1989, though the theory and FE formulation of this 3D

FE elastic program was not described. The functionals for 3D and 2D elasticity are explained in this paper regarding the

variational principle that is more sophisticated theoretical basis of FE formulation than the principle of virtual work. The FE

formulation of 3D elasiticity is explained here based on the principle of virtual work, because the 3D elastic program

including my FE software package was developed using the principle of virtual work.

Introduction

I had developed a three-dimensional elastic finite element program in 1989 (Hayashi, 1989a) though the

program has not used for a long time. This is because the power of computer which I could use in my

laboratory was too poor to calculate any three dimensional problems. Fortunately as the situation surrounding

computer has been improved recently, students of my laboratory are enjoying analyze 3D FE models of

several interesting tectonic structures. Although the theory and formulation of 3D FE elastic problem are

similar to those of 2D problem, it is necessary to show clearly their logical strictness.

I have insisted in my recent paper "Theoretical basis of FE simulation software package" (Hayashi, 2008)

that the FE software package has been continuously improved and revised for over thirty years from 1972.

First purpose of the present paper is to describe the variational principle regarding 2D and 3D elasticity

offering the explicit form of the functional regarding 2D and 3D elasticity with which we can develop the FE

formulation (Lanczos, 1974; Hayashi, 1975; Washizu, 1975;Chung, 1978; Hayashi, 1979; Hayashi and Kizaki,

1979; Fletcher, 1984; Hayashi, 1984; Hayashi, 1989b). I have not written the FE formulation using these

functionals here because 3D elastic program in my FE software package was corded based on the principle of

virtual work (Hayashi and Kizaki, 1972), not based on the variational principle. Second purpose is to explain

the FE formulation of 3D elasticity using the principle of virtual work referring Zienkiewicz (1977), though

that of 2D elasticity was described in the former work (Hayashi, 2008). As I have written in my former paper,

the readers have to be familiar with the variational method to understand the variational principle for elasticity

by referring appendices B and C, and Hayashi (1979,1989b).

The variational principle for elasticity is written as follows (Hayashi, 1979,1989b).

The equilibrium equation of elasticity is
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We take the functional for elasticity as II [kJ, and estimate the Euler equation of II [hJ. If the Euler equation

is identical to the equilibrium equation, the variational principle "ut that makes the first variation of II [w ] be

zero satisfies the equilibrium equation of elasticity".

How to derive the equilibrium equation of elasticity is attached in appendix A.

Several variational calculuses that are necessary to estimate the Euler equation from the functional are attached

in appendices B and C.

Notations

t

p

D

3D

K,

v,

D

Dt

P

V

A,//

f

g

Cartesian coordinate

time

density

domain

closed surface surrounding D

displacement vector

velocity vector

body force vector per unit mass

unit normal vector

stress tensor

Lagrangian differentiation

Kronecker's delta

pressure

coefficient of viscosity

Lame's constants

certain function

certain vector

(g is a vector gi)
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Functional of elasticity in two dimension

The fundamental equations in this case are defined,

'(* +mXuJj+m («„), + Pfro (i)
The subscripts i, j and k change from 1 to 2 because the case is of two dimension. They are expressed in every

component as

( A +ft XuJ^+a* («,,)., + Pf=0 (1.2)'

It will be easily understood that the functional corresponding to (1)' is taken as

where F{xeueu^ is the function as

in which U(utJ) is called either the energy of elastic strain or the function of elastic strain and is defined

Since in this case F is the function of two variables and two functions, the Euler's equation of II [w.] is written

as

Hereafter we will prove that the fundamental equations (1)' are identical with the Euler's equation (3). If they

are identical, we have to admit that the functional defined by (2) is the real functional of (1)'. In the present

case, fortunately, it is possible to calculate the Euler's equation explicitly. The preliminary calculations for

(3.1), are

Fj.r*K\>+2t< GO..

F,r~ Pf,
Substituting these results into (3.1), we obtain the explicit form of (3.1) as the function of ui and u2.

(A +ft )(ukk)A+fi (mj)jt+ pfi=O (3.1)'

The preliminary calculations for (3.2) are also accomplished as

Fn=~ Pf2

Then the explicit equation of (3.2) is

(A+/<)(KMWk,W/2=0 (3.2)'

This is the demonstration that (3)' is identical to (1)'.
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Functional of elasticity in three dimension

Needless to say that to the derivation of the Euler's equation for three dimensional elasticity is quite similar to

two dimensional case. The fundamental equations of three dimensional case are same to (1) of two dimension,

except where the subscripts i, j and k run from 1 to 3. Expand (1) into every x. components, so we obtain

( A +/, ){uj 1+^ («in+t/U2+Wl>pf= 0 (4.1)

( A +/, )(ukX+v Kn+"2,2+«2> Pfr 0

(A +/* )("J.3+/^ kn+"3,2+W3> Pfr °
The following II [«.] is interpreted as the functional which corresponds to (4).

n[w.]=//F(x.,W).,MvVF (5)

where F(x. ,u. ,u. .) is the function represented by

Expanding these into the xt components and taking account of three dimensional case, we obtain

F=(^+// )(«,,2+«2,2+«3/)+ A ("u«,3+«J3«,,+«,1f()

As Fixl9ul9ufJ) is of three variables and three functions, the Euler's equation of II [w] will be written as

Then each partial derivative of (6.1) can be calculated as well as two dimensional case.

FB,=(A+2/U)«11+A(«3J+«2J)

(*•■■■.■).■= * («J.,+2a<«i.,,

From the results, we obtain the following simpler form of (6.1).

* K ),+2/^ ",,,+>" (",,22+M2,21 )+f (W3.3.+M«.33)+ Pfr°
This is changed into

A K \i+f (wI,i+Mu2+",,33+("u),1)+ P fr °
Then it becomes

),+^ ("u1+"1,22+k,33)+ P fr° (6-D'
In a quite similar way, we can derive other remaining equations.

Therefore it is now clear that three equations of (6.1)', (6.2)' and (6.3)' are identical to (4).

FE formulation of 3D elastic problem

How to construct the elastic FE formulation for three dimension is described in "The finite element method"

written by Zienkiewicz (1977). Below is the brief explanation of FE formulation. Proper element is a



FE formulation and theoretical basis of elastic simulation software package including 3D elasticity 11

Fig.l Tetrahedron ijmp

m

tetrahedral element ijmp shown in Fig.l when we consider the three dimensional case. Displacement vector is

u=

w

Displacement vector for the point i is

Since the simplest relation is linear, displacement is considered as a linear function of coordinates.

u=a ^ajc+aj+a/ (1)

Each value of displacement in the points i, j, m and p is written as

Estimating the

have u as

where

6V=det

1 xi
1 X.

1 X

and ~

a=det

x. ys

xm ym

\ yP

value of four constants a x,

vciy+dz)ur(afbp+c.y+d.

y< z~
yj zj
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V Z
Sp p_

z
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a2,a3,a4 from the four equations and substituting them into (1), we

z)u.+(a +bx+c y+dz)u —(a +bx+cy+dz)u \
j ^ m m m* mm p p p" p p
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6=-det

c=-det

— UCl
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For this tetrahedral element the element displacement vector ae is defined as

where

a =

Displacement vector u is described by the element displacement vector ae as

u=[lN IN. IN IN ]a-
L i j m p J

where I is an identity tensor and

N

= 77}(a +b x + c y + d z)
m ov m m m^ m

The strain vector e is written by u as

dx
dv_

dw

e = 1 \ = 1 du_ dv_ \ =Lu

dy dx

dv dw

dz dy

dw du

dx~+dz~

which is described by the element displacement vector a' as

e=5a'=[B.BBwBp]a'

where
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dN{
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The stress vector s is shown by the strain vector e as

= Z)e

where

2(1-y)

0

0

0

0

\-2y

2(1-k)

sym

2(1"

As well as the case of two dimensions, according to the principle of virtual work, we have the stiffness

equation of element.

fe=Keue

where
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Appendix A

It is discussed here how the equilibrium equations of elasticity

is derived from the conservative law of momentum.

dp

Fig.Al Conservative law of momentum

(1) Conservative law ofmomentum

We applied the conservative law of momentum to the mass that occupies a certain domain D and is surrounded

with a certain closed surface dD as shown in Fig.A1. For any x. component of momentum, we obtain

When we apply the Gauss's theorem to both the first and the second terms of right hand side, the equation

becomes

| i )dD-JD (pv,v, )dD+

Since 3D is taken arbitrarily, the integrands of both sides must be equal, then
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This equation is transformed into

and the left hand side is expanded as follows.

If we substitute the continuity equation

into (Al), we have

pVi,<+vJvurP-^

Therefore, we obtain finally the following equation.

Dv

P~En=a'-J*f*i (A2)

This is called the conservative law of momentum for general continuum.

(2) Equilibrium equations ofelasticity

The constitutive equation of elasticity is defined as

Partially differentiate both sides with respect to xy, we obtain

Substitute this formula into (A2) and neglect the inertia term, we obtain the equilibrium equation of elasticity

(A+^^.+z/^J.+p/^O (A3)

In this case, we need not consider the conservative law of mass because number of variables which was

handled with is three, that is, w,, u2 and «3, whereas we already have above three equations (if the situation

concerned with three dimension).

Appendix B

Typical four cases of Euler's equation are described here.

(1) Euler's equation on one variable and onefunction

When u is the function of a variable x only, the functional I[u] for a certain function f with variables of u(x)

and x is defined as follows.

The first variation S i[w] of the functional i[w] is also defined

u,iS)dx (Bl)

where dflxMU*) is the total differential ofj{x,u,u% The dfixuu') is written in more detailed form as follows if

we consider the Taylor's theorem.
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7X,) (B2)

in which e is a small positive parameter. Functions rj (x) and rj \x) are continuous within [xx, x2] and

Substitute (B2) into (Bl), we obtain

In order to derive the Euler's equation from i[w], S i[w] is taken to be zero, then

/''(¥,„ + n'f,,)dx=o

From the technique of the integration of parts, we have

Since rj (xj= tj (*2)= 0 and rjfu, £ f=0, the equation is simplified into

/>('■-£>-»
Applied the fundamental auxiliary theorem of variational analysis into this equation, the Euler's equation of

i[w] is given as

f'~it=0 (B3)
(2) Euler's equation ofone variable and multi-functions

The u. is only the function of a variable x and the subscript i takes the number 1 to n. The function f depends

on the variables of x, ut'(x\ whereas we denoted f 2LsJ[x,ul,u.r). The functional J[w] corresponding tofix,ujtu.r) is

defined as

'[«.]=/,>(*,«,.«;)<&
Similar to the former paragraph the first variation of 7[m.] is

4<l=/,>/(*>«,«;>& (B4)
where dflx.UfUf) is the total differential of the/fat^t//) and is represented by

i

In this equation e. are small real numbers, tj .(*,)= 7 ,(x2)=0 and both the functions of tj .(x) and 7 /(*) are

continuous within [xl9 x2], therefore (B4) becomes

Let 5i[w.] to be zero, the Euler's equation of i[w] is obtained

Applying the integration of parts for the equation, we have

Since from rj .(x{)= rj .(x2)=0, the relation rj.f^ Ei=0, whereas we have the following equation.

By means of the fundamental auxiliary theorem of the variational analysis, the Euler's equation of i[«.] is given
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(3) Euler's equation ofmulti-variables and onefunction

The u is depending on n-variables of x. and f is the function of x. , u and u.,, so that the functional i[w] in

respect of f(xeu,u) is written by

in which D is the n-dimensional spatial domain.

The first variation of i[w] becomes

where the total differential of f{xeu,u) is

df{xi,uiu)=s(rjf>u + rjj^ + rjj^ + •••+7,,/^ )

By taking that dI[u]=0, we can give the Euler's equation of i[w] as follows.

fD{n&+^4 + ^X,, +«"+^/.J<©=o (B6)
The integral of the last n-1 functions on the left side of (B6) is

By using the Gauss's theorem of n-dimension, the first integral of this formula becomes

Since rj (jc) vanishes on dD, the integral is equal to zero. Therefore the primitive equation (B6) becomes

Apply the fundamental auxiliary theorem of the variational analysis into the equation above, we have the

Euler's equation of i[«] as the following form.

/u-(/4-(a-----(u=° (B7)

(4) Euler's equation ofmulti-variables and multi-functions

In the present case u. is the function of n-variables of x. and f depends on x., u. and u... The functional of

f(xe uf u..) is defined as

/
The first variation of i[w(] is written by

where the total differential of /(x^w^m^) is also represented by

df(xi9 Ut, UiJ) = Y,S{T1if,ui + %f,uo f J )

If d i[w.] is replaced to be zero, the Euler' s equation of Ify] becomes,

/>/, +7,^ +7oAa+M*+^/OdD= 0 (B8)
The integral of the left hand side excluding the first term results in

From the Gauss's theorem of n-dimension, the first integral of the formula above is given.
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Since the contribution of tj .(x) vanishes on dD, this integral is equal to zero. Consequently, the primitive

equation (B8) becomes

/>,(/« -(/,.,),-(/,., I—if,X)dD=Q
Then we give the last form of the Euler's equation with respect to i[w], by means of the fundamental auxiliary

theorem of variational analysis.

/„,-(/„„ ),-CO2---CO,,=0 (B9)

Appendix C

Special four examples of Euler's equation are described here.

(1) Euler's equation oftwo variables and twofunctions

In the case of two variables and two functions the generalized Euler's equation (B9) becomes

/■,-(Q-(Q2=0 (C10-2)
These are also represented in the detail form as follows.

(cio.2)'

(2) Euler's equation oftwo variables and threefunctions

/»,-(/»,, ),,-(-O.2=0 (cn.i)

f..-(f.Jr(fJ,=0 (cn.3)
These are represented in a detail form by

)+}BO (cii.3y
\a,J acXatJ at,

(3) Euler's equation ofthree variables and threefunctions

<cl2-2>

(C12-3)
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These are also written in a detail form.

l= o (C12.2)'

£L=0 (ci2.3y

(4) Euler's equation ofthree variables andfourfunctions

/», - (/»,., ), - (/«,.: )2 - (f#u X = 0 (C13.1)

/. -(/-,\ -(/-J,2 -(/»J,3 = ° (C13.2)

/«3 -(/«,., )j -(/»J,2 -(/»„),, = ° (C13.3)

These are revealed in a detail form as follows.

axXduu) JxA^J ^WJ ^ (C13>1)

d{ df\ d{ af\ d{ df\ df .
— —— +——:i—+——:i——^=o ccn 2v
&W *UJ ^UJ ^2 ( }

^= 0 (C13 3)'


