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CONVERGENCE RATES OF EQUI-UNIFORM

APPROXIMATION PROCESSES OF INTEGRAL

OPERATORS IN BANACH SPACES

TOSHIHIKO NISHISHIRAHO

Abstract. We establish quantitative pointwise estimates of the

rate of convergence of equi-uniform approximation processes of in

tegral operators in Banach spaces in terms of the modulus of con

tinuity of functions to be approximated and higher order absolute

moments of approximate kernels with respect to certain test sys

tems of approximating functions. Furthermore, applications are

presented for various equi-uniform summation processes, inter

polation type operators, convolution type operators, and several

concrete examples of approximating operators are also provided.

1. Introduction

Let N be the set of all natural numbers, and put No = N U {0}.

A bounded sequence {an}nGNo of real numbers is said to be almost

convergent to a if

1 n+m

lim V^ dk = a uniformly in m G No
n->-oo n + I ^-^

k=m

(cf. [10]). If {an} converges to a, then it is almost convergent to a,

but not conversely.
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Let {Bn} be the sequence of Bernstein operators defined by

A;=0

(/gC[o,i], xe[0,i]).

Then for all / G C[0,1], {Bn(f)(x)} is almost convergent to f(x)

uniformly on [0,1] (cf. [8]).

Let {an} be the sequence of Fejer operators defined by

(/ G C27r, x G

where

j=-n

is the nth Fejer kernel. Then for every / G C27r, {<rn(/)(#)} is almost

convergent to f(x) uniformly on the real line R (cf. [8]).

In view of these results, we generally make the following situation:

Let (J5, || • ||) be a Banach space and let (X,d) be a metric space.

Let B(X,E) denote the Banach space of all E-valued bounded func

tions on X with the supremum norm. BC(X, E) stands for the closed

linear subspace of B(X,E) consisting of all E-valued bounded con

tinuous functions on X. Also, we denote by C(X,E) the linear space

consisting of all E-valued continuous functions on X, Let Xo be a

subset of X. Let R = {KayX : a G D, X G A} be a family of operators

of BC(X,E) into B(X0,E), where D is a directed set and A is an

index set. Then & is called an equi-uniform approximation process on

BC(X, E) if for all F G BC(X, E\

lim \\Ka,x{F){x) - F(x)\\ = 0 uniformly in A G /I, x G Xo.
a

We here consider a family R of integral operators on BC(X, E) defined

as follows:

Let {Yai\ : & G D, X G A} be a family of separable topological

spaces with a Borel measure /iajA on Ya,x- For each a G D, X G A

and each x G X) let £QjA be a continuous mapping of Ya)A into X and

let Xc*,aOe; •) be a function in L^Y^a,/^), which denotes the Banach
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space of all /L£aj/\-integrable functions x on ^a,A with the norm

Then we define an integral operator by the form

(1) Ka

(FeBC(X,E)),

which exists as a Bochner integral.

In case Ya^\ = Y for all a G D and all A G yl, where Y is a separable

topological space, in [17] we studied the convergence of equi-uniform

approximation processes of integral operators defined by (1) and in

[21] (cf. [18], [19], [20]) we established quantitative estimates of the

rate of their convergence in terms of the modulus of continuity of

function F.

The purpose of this paper is to refine the rate of convergence of

equi-uniform approximation processes given in [21] by means of point-

wise estimates. Furthermore, applications are presented for various

summation processes, interpolation type operators, convolution type

operators, and several concrete examples of approximating operators

are also provided.

2. Preliminary results

(X, d) is said to be quasi-convex if x, y G X, d(x, y) < a + 6, a, b >

0, (a, b) 7^ (0,0), then there exists a point z € X such that d(x, z) < a

and d(z,y) < b. Let (T,r) be a metric linear space. If r(x,y) =

t(x + z, y + z) for all x,y,z G T, then r is called a translation invariant

metric function. A real-valued function <p on a linear space V is said

to be starshaped if cp(Px) < P<p(x) for all x G V and all (3 G [0,1].

Let F G B(X, E) and let 5 > 0. Then we define

u(F,6) = sup{\\F(x) - F(t)\\ : x,t G X,d{x,t) < 5},

which is called the modulus of continuity of F. Obviously, cj(F, •) is a

monotone increasing function on [0, oo) and

o;(F,0) = 0, v(F,6) < 2sup{||F(x)|| : x G X} (5 > 0).
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Note that if X is bounded, then

where S(X) denotes the diameter of X, and F is uniformly continuous

on X if and only if

lim uo(F,5) = 0.

Now in order to achieve our purpose, we always suppose that there

exist constants C > 1 and K > 0 such that

(2) cu(F^5)<(C + KOu(F,6)

for every £, S > 0 and for every F G B(X,E).

The following lemma gives sufficient conditions such that (2) holds

with C = K = 1, which can be more convenient for later applications

and generalizes [15, Lemma 3]:

Lemma 1. ([21, Lemma 2.4]) (&) If {X, d) is quasi-convex, then (2)

holds with C = K = 1.

(b) If X is a convex subset of a metric linear space with the trans

lation invariant metric function d and i/d(-,0) is starshaped, then (2)

holds with C = K = 1. In particular, if X is a convex subset of a

normed linear space, then (2) holds with C = K = 1.

Let V(X, E) denote the linear space of all E-valued functions on

X. For any scalar-valued function v on X and a e E, we define

(v ® d)(x) = v(x)a for all x £ X. lx stands for the unit function

defined by lx(%) = 1 for all x e X. Let A(X, E) be a linear subspace

of V(X, E) and let ^ be a mapping of A(X, E) into E. A positive

linear functional v on A(X, R) is called a majorant (or dominant)

functional of <p if F G A(X, E), v G A(X, R) and

(3) \\F{t)\\<v(t) foralHGX,

then \\<p{F)\\ < u(v). Let L be a mapping of A(X,E) into V{X0,E).

A positive linear operator 5 of A(X, R) into V(X0, R) is called a ma

jorant (or dominant ) operator of L if (3) implies that

11^(^)^)11 < S{v){x) for all x G Xo.

Lemma 2. ([21, Lemma 2.5]) Let (p be a mapping of A(X, E) into E

having a majorant functional v. Let p > 1 and x G X. Suppose that

{lx®a:aeE} C A(X,E), {lx,d(x,-),dp(x,-)} C A(X,
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Then for all F € A(X, E) n B(X, E) and all 5 > 0,

\\<p(F -lx® F(x))\\ < (Cu(lx) + Kmu(x;p,6))u(F,5),

where

m,{x;p, 8) =

Let x E Xo be fixed. Then applying Lemma 2 to (p(-) = L(-)(x)

and u(-) = S(-)(x), we have the following result, which generalizes

[5, Theorem 2.1] and improves the estimate by means of higher order

absolute moments.

Lemma 3. ([21, Lemma 2.6]) Let L be a mapping of A(X,E) into

V(X0,E) having a majorant operator S and let p > 1. Suppose that

{lx®a:ae E} C A{X,E)

and

{lx}(j{d(x,-),cF(x,-):xeXo}C A(X,R).

Then for all F e A(X, E) n B{X, E), x € Xo and all 5 > 0,

\\L(F-lx®F(x))(x)\\ < (CS(lx)(x) + Kms(x;p,S))u(F,S),

where

ms(x;p,6)

)(a:))1-1/p(5((f (x,

Now we make use of the following key estimate for integral operators

on BC(X,E).

Lemma 4. ([21, Lemma 2.7]) Let {x(x',') '■ % € X} be a family of

functions in L1(Y, jj),t a continuous mapping ofY into X andp > 1.

Assume that x(x'r)dp(x,T(-)) G L1(Y, ji) for each x € Xo. Then for

all F € BC(X, E), x e Xo and all 8 > 0,

X(x;v)(F(T(y))-F{x))dn(y)\\ <

where

c(x;p,5)

— 27 —



3. Pointwise estimates of equi-uniform convergence

Let p > 1. Let {si, 52,... , sr} be a finite set of positive real num

bers and let {$1, $2, • • • , $r} be a finite set of nonnegative real-valued

functions on Io x I. Assume that

(a G A A G A, x G Xo, i = 1, 2,... ,r)

and we define

which is called the s^th absolute moment of Xq,a(^; •) at x with respect

to $i.

Suppose that there exists a constant L > 0 such that

(4)

for all (x,t) e Xo x X. Let 21 := {xQ)A(:r; •) : a E D, A e A,x € X}.

For any a e -D, A G /I and «r G Xo we define

If for all a e £>, A e A and all rr <E Xo,

v \ fx* i/^ ^ 0 (ll-Sl e ?y ^- V \ ^

then 21 is said to be positive. Also, if for all a G D, A G yl and all

x G Xo,
r

XaAx\y)dfjLaJ<(y) = 1,

then Ql is said to be normal.

For any a e D,F e BC(X, E) we define

Ea(F) = sup{||A"a>A(F)(a;) - F(x)|| :XeA,xe Xo}.

Note that ^ is an equi-uniform approximation process on BC(X, E)

if and only if

for every F e BC(X, E).

From now on, let {ea}aeD be a net of positive real numbers.
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Theorem 1. For all a G D,X G A,F G BC(X, E) and all x G Xo,

(5) \\Ka,x(F)(x) - F(x)\\ < \\F(x)\\0a,x(x) +-ya,x(x)u(F,ea),

where

laAx)

and

ca,x(x) = min|Le~p^//a,A,i(a;; Si),

2=1

In particular, if 21 is positive and normal, then (5) reduces to

\\Ka,x(F)(x) - F(x)\\ < (C + Kca,x(x))u(F,ea),

and
r r 1 I

ScaiX{x) = minJLe"p J
2=1 2=1

Proof. We have

(6) \\KatX{F){x) - F{x)\\ <

Xa,x(x;y)(F(Za,x(y)) - F(x)\\

say. We have J^x{x) = \\F(x)\\(3a,x(x). Now, put

2=1

on account of (4). Applying Lemma 4 to x{x\') = Xa,A(^;#)

t — Ca,A? we obtain

<O*) ^ (C||Xoa(*;0IIi + KcQ,x(x;p,6))u>(F,6) (5 > 0),
where

cQtX(x;p,S) =min{6-^a,x(x), r1||xo^(*;-)ll!"1/PPa^(*)1/l>}

(
2=1 2=1

Putting 5 = ea in the above inequality, (6) establishes the desired

estimate (5).
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In the rest of this section, we restrict the integral operators Ka,\

defined by (1) to the subclass of BC(X, E) defined as follows:

Let Eq be a subset of E and X = {T(x) : x G X} a family of

mappings of Eq into E such that for each / G Eo, the orbit mapping

x h-> T(x)(f) is strongly continuous and bounded on X and let LQ)a

denote the restriction of the set Ka,\ to {T(-)(/) : / G Eo}, i.e.,

(7) LQ,A(*)(/) = / XaAx;y)T(Ux(y))(f) d^x{y) (/ G JS?0).

Shaw [25] considered the special case of (7) in the setting of certain

spaces of operator-valued functions and obtained several representa

tion formulas for strongly continuous semigroups of bounded linear

operators on Banach spaces.

The family £ = {La,x(x) : a G D,\ G A,x G X} is called an

equi-uniform X-approximation process on Eo if for every / G Eo,

(8) lim \\La9x(x)(f) - T(x)(f)\\ = 0 uniformly in A G A,x G Xo.
a

Concerning the rate of convergence behavior of (8), we define

wx(/,*) = sup{||T(aO(/) - T(t)(f)\\ :x,te X,d(x,t) < 5}

(/ e Eo, 5 > 0),

which is called the modulus of continuity of / associated with T, and

ea(f) := sup{||LttfA(a;)(/) - T(a;)(/)|| : A € A,x € Xo}.

Note that £ is an equi-uniform X-approximation process on Eq if and

only if

limeQ(/) =0

for every f G Eq.

Now, since for all / G £o, S > 0 and all a G D

witM) = w(T(.)(/M), ea(/) = £«(T(-)(/)),

Theorem 1 yields the following result which establishes the estimate for

the rate of convergence of the equi-uniform T-approximation process

£ on Eo:

Corollary 1. For all a G D,\ G A, f G Eo and all x G Xo,.

\\La^x)(f)-T(x)(f)\\ < \\T(x)(f)\\pa^x)

In particular, if 21 is positive and normal, then

\\La,x(x)(f)-T(x)(f)\\ < (C
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and

r r 1/

J.

4. Equi-uniform summation processes

Let A = {cSaJn : a G D, m G No, A G yl} be a family of scalars. ^4 is
said to be regular if it satisfies the following conditions:

(A-l) For each m G No, lim a^m = 0 uniformly in A G A.
aa

(A-2) lim J2 a£m = 1 uniformly in A € A.
a m=0

(A-3) For each a G D, A e A,

m=0

and there exists a0 G D such that

sup{a^ : a > a0, a G D, A G yl} < oo.

A is said to be stochastic if

a&n >° (aeD, meN0, XeA)

and

m=0

Obviously, if ,4 is stochastic, then Conditions (A-2) and (A-3) are

automatically satisfied.

A sequence {/m}m€N0 °f elements in E is said to be ^4-summable to

/if
OO

(9) ^lE a^/m - /| = 0 uniformly in A G A,
m=0

where it is assumed that the series in (9) converges for each a G D

and A G A.

Concerning the relation between the regularity ofA and w4-summability,

A is regular if and only if every convergent sequence of elements in E

is ^4-summable to its limit (cf. [1], [14]).
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As the following examples with D = No show, there are a wide

variety of families A and their particular cases cover many important

summability methods:

(1°) Given an infinite matrix A = (anm)n}m€No, if ofyn = anm for all
n, m G No and all A G A, then we obtain the usual matrix summability

by A

(2°) If A = No, then we obtain the summation method introduced

by Petersen [24] (cf. [1]). In particular, if

a(A) =|i if A < m < A + n,
n'm JO otherwise,

then we obtain the notion of almost convergent method (F-summability)

introduced by Lorentz [10].

(3°) Let Q = {q^ : A G A} be a familiy of sequences q^ —

{<ln }neN0 °f nonnegative real numbers such that

Q{n] '=QoX) + Q{iX) + "'+Q(nX)>0 (nGNo, XeA).

We define
{(A)

^txt if m < n,

0 if m > n.

Then ^t-summability is called a (JV, Q)-summability, and this kind

of summability is called the Norlund summability in the case where

qW = {qn}ne^0 is a fixed sequence of nonnegative real numbers sat

isfying q0 > 0. The special case of interest is the following: Let

AC [0,oo), fi > 0 and

1) (A G A, n G No),

where

° ' n \ n )n\
(v > -1, n e N).

In particular, if A = {0}, then we have the Cesaro summability of

order /3.

(4°) Let A C (0,oo),^ > -1 and define

0 if m > n,
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(Cesdro type).

(5°) Let A C [0,1] and define

fl(A) =/a)Am(l-Ar- if m<n,
n'm [0 if m > n,

(Euler-Knopp-Bernstein type).

Note that this can be a particular case of the generalized Lototsky

matrix defined as follows (cf. [6], [7], [26]): Let {/&i}ieN be a sequence

of functions of [0,1] into itself and define

i=l m=0

(6°) Let A C [0,1) and define

(Meyer-Konig- Vermes-Zeller type).

(7°) Let A C [0, oo) and define

ml

(Borel-Szdsz type).

(8°) Let A C [0,oo) and define

n'm \ m )

(Baskakov type).

This can be generalized as follows (cf. [4], [12]): Let {<£n}n€N be a

sequence of real-valued functions on [0,00) which possess the following

properties:

(<p-l) Each function <pn is expanded in Taylor's series on [0,00);

pn(0) = 1 (ne N);

Each function (pn is completely monotone, i.e.,

(-irVim)(*) > 0 (te [0,oo),n G N,m G No);

There exists a strictly monotone increasing sequence {£n}neN

of positive integers and a sequence {an,m}n,meN of real-valued
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functions on [0, oo) such that

<p™(t) = -n^"a)(l + On,m(t)) (i G [0, OO)).

Now we define

(m) / a \

-PA- (n € N,m € No).

Note that all the families A of the generic entries an)n given in the
above Examples (2°)-(8°) are stochastic and all the families A of the

generic entries ah/m given in the above Examples (4°)-(8°) are regular

for any finite interval A.

A sequence {Kn}ne^0 of operators of BC(X,E) into B(X0, E) is

called an equi-uniform .A-summation process on BC(X, E) if the famly

£ = {Kay\ • ot G D, A G A} is an equi-uniform approximation process

on BC(X,E), where each Ka,\ is defined by

oo

(10) Ka,x(F)(x) = J2 a{Q%Km(F)(x) (F G BC(X, E)),
771=0

which is assumed to be convergent. A family {Ln(x) : n G N0,:r G X}

of mappings of Eo into E is called an equi-uniform T-^4-summation

process on Eo if the family £ = {La>A(^) : a e D,\ e A,x e X} is

an equi-uniform T-approximation process on £o, where each L^\(x)

is defined by

(11) La,x(x)(f) =

ra=0

which is assumed to be convergent.

Now, let {l^}neN0 be a sequence of separable topological spaces with

a Borel measure jun on Fn, and let {£n}neN0 be a sequence of continuous

mappings of Yn into X and let 05 = {Xn(^; •) '- n e N0,x G X} be a

family of functions in Ll(Yn,(in) such that

We define

(12) lffl(F)(x)= / Xn(x;y)F(£n(v))diin(y) (FeBC(X,E)),
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(13) Ln(x)(f) = f Xn(^; y)T(Uy))(f) dnn(y) (/ e Eo)
JVn

and let Ka,\ and La,\ be defined by (10) and (11), respectively. Sup

pose that Xn(z; -)^0E,£n(-)) e Ll{Yn^n) for all n G N0,x G Xo and

for i = 1,2,... , r and we define

For any a G jD, A G yl and rr G Xq, we define

and

oo

^a,A,i(^; Si) = ^ |a^LlMm,i(^; Si) (» = 1,2,... , r).
m=0

Theorem 2. For a// a € D, X E A, F G BC{X, E) and all x € Xo,

(14) \\KaAF)(x) - F(x)\\ < \\F(x)\\Ta,x(x) + (:aA^(F,ea),

where

CaAx) = CbaAx) + KnaAx)

and

VaAX)

V()11

/n particular, if 55 is positive and normal and if A is stochastic, then

(14) reduces to

\\Ka*{F)(x) -F(x)\\ < (C + KVaiX(x))u(F,ea),

and

r r 1 I

Proof We have

(15) \\KaAF)(x) - F(x)\\

Xm(x;y)(F(U(y)) - F(x
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+

771=0

- i \\F(x)\\ = /£

say. We have I^(x) = \\F(x)\\TayX(x). Taking (F,/i) =

x(«; •) = Xm(x; •) and r = £m in Lemma 4, we get

(16) £ (
m=0

where

Now, if p > 1, then by Holder's inequality we have

oo

ra=0

11/ OO

m=0 m=0

which clearly holds for p = 1. Also, by (4) we have

Therefore, we obtain

oo

Y, |ogi,|cm(ar;p,«5) < mil
ra=0 2=1

2=1

and so putting 5 = ea in the above inequality, (15) and (16) yield the

desired estimate (14).

Corollary 2. For all a e D,\ 6 A, f G Eo and all x G Xo,

\\La,x(x)(f)-T(x)(f)\\ < ||T(o;)(/)||rQ,A(x) + Ca,A(xK(/,6Q).

/n pariticular, if 53 zs positive and normal and if A is stochastic, then

\\La,x(x)(f)-T(x)(f)\\ < (C
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and

r r , /

9a^i& *i), Ll/pe~l

5. Interpolation type operators

Let {Yai\ : a € jD, A G yl} be a family of finite sets. Then the

integral operators given by (1) and (7) reduce to

(17) Ka,x(F)(x) = Y, Xa,x(x;y)F(taAy)) (FeBC(x,E))

and

(18) La+(x)(f)= Y, XaAx;y)T(^x(y))(f) (/ e £<>),

respectively. These are called interpolation type operators with the

interpolation system {Xq,a(s2/) • V e ^q,a} and nodes {£q,aG/) : V €
Yai\}. Here we restrict ourselves to the following situation:

Let 1 < s < oo be fixed and let Rr denote the metric linear space

of all r-tuples of real numbers, equipped with the usual metric

l/s

(1 < 5 < OO)
d{x,t) = da{x,t) := { \ti % l

\xi-ti\:l<i< r} (5 = oo),

where x = (a;i,x2,... ,xr),t = (*i, *2> • • • >*r) £ ^r- Now, let X be

a convex subset of Rr. Therefore, by Lemma 1 (b), (2) holds with

C = K = 1. For i = 1,2,... , r, pi denotes the ith coordinate function

on Rr defined by Pi(x) = X{ for all x = (xi, x2,... , xr) e Rr. Then we

have

J] \Pi{x) -Pi(t)\p (x,t elr,p> 0),

where

(1 < 5 < 00, s

(1 < s < 00, s = p)

(5 = 00).
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Therefore, (4) holds with

Si =p > 1, $i(x

and so by Theorem 1 and Corollary 1, we have the following result

which can be more convenient for later applications to the concrete

examples of interpolation type operators.

Theorem 3. Let p > 1 and suppose that 21 is positive and normal

Then the following statements hold:

(a) For allaeD,\eA,F e BC(X, E) and all x e Xo,

\\Ka+(F)(x) - F(x)\\ < (l + cQ,A(x)MF,6Q),

where

ca,\(x)

//Q,A)i(a:;p), c(p,r,

i=\

and

Ha,\,i{x;p) =

(b) For allae D,\eA,f € Eo and all x € Xo,

\\La,x(x)(f)-T(x)(f)\\ < (1 + cQiA(a:)K(/,eQ).

Let X = [0, oo)r be the first hyperquadrant and let

maj : yl-»N, aa^ : A^ (0,oo) (a G D, i = 1, 2,... ,r)

and

4,a :={k = {kuk2,... ,/cr) GNJ:0< h < mQii{\),i = 1, 2,... ,

We define

and

... ,aQ,r(A)A;r) (/c G /Q)A).

Then the interpolation type operators (17) and (18) become

Ka,x(F)(x) = J2 XaAx; k)F(ZayX(k)) (F e BC(X,E))
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and

LaAx)(f) = J2 XaAx\k)T(^{k))(f) (/ e Eo),

respectively. These generalize the r-dimensional Bernstein operators,

which are defined as follows (cf. [11], [17]): Let Ir = [0,l]r be the

unit r-cube and let {vn,i}neN,i = 1,2,... ,r, be strictly monotone

increasing sequences of positive integers. Then we define

r

X

(FeC(ln£), xelr)

and

x

(/ G Eo, x G Ir).

Now, let Xq be a subset of Ir and let # G Xo. Then we have

and

, , fo , \r2l* (l<s< oo,5^2)
c(r, 5) := c(2, r,s) = t (5 = 2 00)

Therefore, Theorem 3 can be applied for p = 2. In particular, if

ma,i{X)aati(\) = 1

for all a G D, A G A and for i = 1,2,... , r, then

/Va,zOz;2) = .fA^)^^ ~^(x))-

Therefore, for the Bernstein operators, we have

(19) \\Bn(F)(x) - F(x)\\ < (l + cn(rjS))u;(F,6n9n(x))
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and

(20) \\Cn(x)(f)-T(x)(f)\\ < (l

where {en}nGN is a sequence of positive integers,

cn{r,s) := min{x/c(r, s)e~\ c(r, s)e~2}

and

In paritucular, (19) and (20) yield the following estimates for all

x e lr:

(21) \\Bn(F)(x) - F{x)\\ < 6n(r,s)u(F,en

(22) \\Cn(x)(f)-T(x)(f)\\ < 0B(r.«K(/,«»

Here

(

Let {Tj(t) : t e [0,1], j = 1,2,... , r} be a family of strongly contin

uous mappings of EQ into itself such that for every t, u E [0,1], tTj(u)

commutes with (1 — £)/, where / is the identity operator on E and

Tj(v)n = Tj(nv) whenever v e [0, l],n G No and nv G [0,1]. If

for all x = (xi, #2, • • • 5 ^r

3=1

> then

Therefore, the inequality (22) estimates the rate of convergence in [16,

Theorem 5] for r = 1, which improves the estimate in [3, Proposition

1.2.9] and furthermore, it generalizes and improves the convergence
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rate in [5, Theorem 1.1]. Also, we note that in view of Lemma 3, other

results of [5] can be generalized and improved by the same argument

as the above manner.

Suppose that A is stochastic, and let {ln}neN0 be a sequence of

positive integers. We define

oo

KQtX(F)(x) = Y, a(a%Bem(F)(x) (F € C(Ir,E), x e Ir)
ra=0

and

oo

La,x(x)(f) = £ a^A.(*)(/) (/ € Eo, x € Ir).
m=0

Then Theorem 2 and Corollary 2 establish the following estimates:

\\Ka,x(F)(x) - F(x)\\ < (1 + ca(r, s))u(F, 6at?Q)A(x));

Here

and
. ,„

(
m=0

Let A = D = No. Let i/m^ = m for all m € N and for i = 1,2,... , r.

Let ^m = ra + 1 for all m6N0. Then concerning the method of almost

convergence (see, Sec. 4, Example (2°)), we have

2=1

(cf. [13] for r = 1).

The statements analogous to the above results hold for the following

settings: Let Xo be a closed subset of Ar, where

r

Ar:={x = (xux2,... ,xr)eW:Xi>0,i = l,2,... ,

is the standard r-simplex; Let ma : A —> N.

«/a,A := {^ = (*i, A:2, • • • , kr) G Nr0 : h + k2 + • • • + kr < mQ(A)};
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Wte*) := (mf]) n^(i - ±XJr"-^>

(jc G X, A; G Ja,A),

/ro«(A)\ = ma(X)\

V k ) ' k^l ■ ■ ■ kr\(ma(X) - h - k2 kr)V

where

,... ,aatr(X)kr) (k G JO)A).

Next, let X = Xr := [—1, l]r, and let Xo be a closed subset of Xr.

Let Qn(i) = cos(narccost) be the Chebyshev polynomial of degree n,

and let tnj,j = 1,2,... ,n, be zeros of Qn(t), i.e.,

Let

ma)i:yl->-N, aa>; : yl -> [-1,1] (a € D, i = 1,2,... ,r)

and let

We define
r

where

and

^q,a(A:) = (aa,l(A)«matl(A),/bi, • • • ,aa,r(A)*mafr(A),fcr) (fe G iVa>A

Then the interpolation type operators (17) and (18) become

Ka,x(F)(x)= J2 XaAx;k)F(Ux(k)) (FeC(Xr,E))

and

L«Ax)(f)= Yl XaAx;k)T(^x(k))(f) (f € Eo),

respectively. These generalize the r-dimensinal Hermite-Fejer opera

tors, which are defined as follows (cf. [9], [17]):
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We define

Hn(F)(x) =

E), xexr)

and

Gn(x)(f) =

.7=1

(/ e Eo, x e Xr).

Now, let x G Xo. Then we have

O2 ,^(xA ™*,i(A)

*—2xi{aa9i(\)-l)

Therefore, Theorem 3 can be applied for p = 2. In particular, if

Oa,i(A) = 1

for all a; G £>, A 6 yl and for i = 1, 2,... , r, then

Therefore, for the Hermite-Fejer operators, we have

(23) \\Hn(F)(x) - F(x)\\ < (l + Cn(r,S))o;,(F,6nrn(a;))

and

where {6n}n€N is a sequence of positive integers and
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■i=l

In particular, (23) and (24) establish the following estimates for all

x e Xr:

,en

\
\\Hn(F)(x)-F(x)\\<(l + cn(r,

\\Gn(x)(f)-T(x)(f)\\ <

Suppose again that ^l is stochastic, and we define

^ 1

Ka,x(F)(x) = Y,a^H^(F)(x) (F e C(Xr,E), x e XT)
m=0

and

La,x(x)(f) = Y^^ (/ € Eo, x € Xr).

m=0

Then Theorem 2 and Corollary 2 establish the following estimates:

\\KQ,x(F)(x) - F(x)\\ < (l + ca(r,s))u{F,ea6a,x(x));

\\LQ,x(x)(f) - T(x)(f)\\ < (1 + ca(r, a))u*(f, ea6a,x(x)).

Here

1/2

6. Convolution type operators

In this section, we treat the equi-uniform ^-summation processes

of convolution type operators on BC(W, E). For this end, in (12) and

13) we especially take

yr y~
n _ A —

) = dy, Z = y
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and
r

Y[n opi)(x - y),

where {/in}n€N0 be a sequence of nonnegative Lebesgue integrable

functions on R such that

(25) f hn(t)dt =

for all n G No- In this case, the integral operators Kn and Ln defined

by (12) and (13) are called convolution type operators.

Suppose that A is stochastic, and let {Kai\} and {Lay\} be defined

as in (10) and (11), respecively.

Theorem 4. The following statements holds:

(a) For allae D,\e A,F e BC(X,E) and all x e Xo,

\\KaiX(F)(x) - F(x)\\ < (l + ca(p,r,s))Lj(F,ea9a

where

co(p, r, s) = min{(rc(p, r, s))l/pe~\ rc(p, r, 5)6

m=0

For a// a € D, A € A, f € £0 and all x € Xo,

Proof. We have

/ xn(a;; y)dy = i (ne No, x e
Jx

and so rQ)A(x) = 0 and bai\(x) = 1. Also, we have

m=0

m=0

Thus, by putting ea0Q)A(p) instead of eQ, the desired result follows from

Theorem 2.
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Let {/crJneNo be a sequence of nonnegatve, even 27r-periodic, Lebesgue

integrable functions on R having Fourier series expansions

oo

knU)eij\ kn
j=-oo

n(j):=—

with kn(0) = 1, and we define

Corollary 3. (a) For all a e D,\ e A,F £ BC(X, E) and all x G

Xo,

\\Ka,x(F)(x) - F(x)\\ < (l + 7rQ(r,5))^(F,6Q&,A),

where

( \ • f lrc(r,s) _! 7r2rc(r, s) _
7ra(r,5)=mm|7ry—y-ic,,1, ^ J-ea

and
oo - ,«

(
m=0

For all a e D,X e A,f e Eo and all x G Xo,

Indeed, by the inequality

2 7T
t<it<t (0<t<(26) t<sint<t (0<t<),

7T 2

for all m G No, we have

P7T pit i 9 pi*

I t2km(t) dt<n2 km(t) sin2 -dt=— (1 - cost)km(t) dt.
J-7T J-TT * * J-7T

Thus, we have ^q,a(2) < (tt/v^)^^, and so putting (7r/\/2)"1eQ in
stead of ea the desired result follows from Theorem 4.

Let (An(j)) (n)t7 = 1, 2,...) be a lower triangular infinite matrix of

real numbers and we define

n

ko(t) = 1, kn(t) = 1 + 2^xn(J)cos jt (neN,te R).
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Then applying Abel's transformation twice to the function kn(t), we

have

n-l

(n + l)An(n)Fn(t), An(0) = 1,

j=o

where Fm(t) is the rath Fejer kernel and

A2\n{j) = Xn(j) - 2Xn(j + »(j + 2).

Therefore, if Xn(n) > 0 and {An(j)}jGN0 is convex, i.e., A2Xn(j) > 0 for

all j G No, then kn(t) is a nonnegative, even trigonometric polynomial

of degree at most n and so Corollary 3 (a) and (b) hold with

m=0

1/2

Several examples of Xn(j) produce important positive summability

kernels mentioned as follows:

(1°) Fejer:

0

(2°) de la Vallee-Poussin:

0

(3°) Fejer-Korovkin:

j > n).

(j > n).

where

In this case, we have

n(t) = An ameimt

m=Q

(
m=0

= cob

— 47 —



(4°) Norlund:

\o (j > n),

where

0 < qo < qn <

ra=O

Obviously, if qn = 1 for all n G No, then the Norlund kernel reduces

to the Fejer kernel.

(5°) Cesdro:

0 (j>n),

where Cn (n G No, ^ > — 1) is defined as in Example (3°) of Section

4. Note that if qn = C^~l) for all n G No, then the Norlund kernel
reduces to the Cesaro kernel. Also, if (5 = 1, then the Cesaro kernel

turns out to be the Fejer kernel.

Other important examples of nonnegative, even trigonometric poly

nomials are the following:

(6°) Jackson: Let i/GN and

where the positive constant cn?I/ is chosen so that

i r
- /
K Jo

Since kn^{t) = cn^(n + iyFn(ty, we have cnA = l/(n + 1) and fcn,i(<)

becomes the nth Fejer kernel. Also, for v = 2 we have

n'z (n+l)(2(n+1)2 + 1)' ny ' 2(n +1)2 + 1'

and so, we have

m=0
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/2

Therefore, by selecting ea = (3/2) ~1/2 Corollary 3 yields the following

estimates:

\\Ka>x(F)(x) - F(x)\\ <

\\La,x(x)(f) - T(x)(f)\\ <

Here

Furthermore, making use of the inequality (26) we have for u > 3,

1—2t/

and

21/-3)

Therefore, we have

and so by selecting

lv-Z))^3tt(2i/-3)-

Corollary 3 again yields the following estimates:

\\Ka,x(F)(x) - F(x)\\ < (l + 8(P,r,s))u(F,va!X);

\\La,x(x)(f)-T(x)(f)\\<

Here

4 /7T.2i/ \vrc{r,s) 16
() y_, _

(7°) Abel-Poisson:

kn(t) = 1 + 2 2^ r™ cosmt (n G No, £ G M),

m=l
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where {rn}n€N0 is a sequence of real numbers converging to one such

that 0 < rn < 1 for all n e No. Since

1 - r2 1 - r2

nw 1 - 2rncos* + r\ (1 - rn)2 + 4rnsin2(i/2)

Corollary 3 (a) and (b) hold with

1/2

(8°) Gauss- Weierstrass:

I oo

. / n / 7T V^
JU f -f i — / X
^n \ ^ y — A / "T 7

where {An}nGNo is a sequence of positive real numbers converging to

zero. We can rewrite kn(t) as

oo

'2kn(t) = ^2 e-Xnm'2eimt = 1 + 2^ e"A"m2 cos mi.
m=l

Therefore, Corollary 3 (a) and (b) hold with

1/2

m=0

Next, we give several examples of nonperiodic, nonnegative func

tions hn(t) satisfying (25) for which Theorem 4 can be applied, from

a probabilistic point of view. These can be induced by various proba

bility density functions mentioned as follows:

Let {cyn}neno,{Pn}neNo an(3 {7n}neN0 be sequences of positive real
numbers. We define

Mn(p) = /J>{hn;p) := / \t\phn(t) dt < oo,
Jr

which is called the pth absolute moment of hn.

(9°) Burr type distribution:

nn{t) := < Hr,+tn) n

0 (t < 0).
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Then we have

and so

(3nr(an)

and

(10°) Gauss type distribution:

nr t
hn{t):=\ exp(

V 7ra a

Then we have

where
/»OO

:= / tx-le-ldt (x>0)
Jo'0

is the gamma function. In particular, we have

7T

and

1 3 5 31
A*n(2m) = (m - -) (m - -) (m - -) • • • --o^1 (m G

(11°) Laplace type distribution:

Then we have

Unip) =pr(p)apn.

In particular, we have

Hn(m) = m\a™ (m € N),

and so
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(12°) Student (t) type distribution:

hn{t) := \/~—7 i\ (1 + ant2)~ {t ^ ^)-

Then we have

and so

(13°) Gamma type distribution:

ijg£_tan-ie-i3nt (t> 0)r(an)t e > U ,

0 {t< 0).

Then we have

1 r(p + aw)

In particular, we have

m—1

i=0

and so

Pn Pn

(14°) J5eia iype distribution:

K{t) := { Brao(^) (7«/*)(l (^)) (0 < * < 5),
1 0 (t < 0 or 6 < t),

where

B{x,y) := /* tx~l(l - ty~l dt (x, y > 0)
./o

is the beta functiion and S is any fixed positive real numbers. Then

we have

Ha +6) r(an +
B(an,i3n)
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and so

Mn(l) = S-

and

In particular,if 5=1 and 7n = 1 for all n G No, then we have

m-l .

and so

Unjoin + 1)

(15°) Landau type distribution:

0 (W>1)-

Then we have

and so

In particular, if an = 2, then

and so

Furthermore, if f3n = n + 1, then

31
22

2 /
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and so

Also, if 4 := l/an G N, then

and so

a (~\\ — II ., (o\ I I
LJ I j JL JL /n _|_ n

(16°) Weibull type distribution:

(*>0),

(t < 0).

Then we have

and so

n Pn

(17°) Paretto type distribution:

^0

Then we have

and so

(an - l)(an - 2)

Finally, we remark that the estimates given in [21, Theorem 6.1 and

Corollary 6.2] (cf. [2]) can be improved, and we omit details.
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