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CONVERGENCE RATES OF EQUI-UNIFORM
APPROXIMATION PROCESSES OF INTEGRAL
OPERATORS IN BANACH SPACES

TOSHIHIKO NISHISHIRAHO

ABSTRACT. We establish quantitative pointwise estimates of the
rate of convergence of equi-uniform approximation processes of in-
tegral operators in Banach spaces in terms of the modulus of con-
tinuity of functions to be approximated and higher order absolute
moments of approximate kernels with respect to certain test sys-
tems of approximating functions. Furthermore, applications are
presented for various equi-uniform summation processes, inter-
polation type operators, convolution type operators, and several
concrete examples of approximating operators are also provided.

1. Introduction

Let N be the set of all natural numbers, and put Ny = N U {0}.
A bounded sequence {an}nen, of real numbers is said to be almost
convergent to a if

1 n+m .
Z ax =a uniformly in m € Ny
k=m

im
nooon + 1

(cf. [10]). If {a,} converges to a, then it is almost convergent to a,
but not conversely.
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Let {B,} be the sequence of Bernstein operators defined by

B =31 (3) e - o

(f € C[0,1], z € [0,1]).

Then for all f € C[0,1], {B.(f)(z)} is almost convergent to f(z)
uniformly on [0,1] (cf. [8]).
Let {o,} be the sequence of Fejér operators defined by

)@ =5 [ " Fu(e - 0)7(t) dt

-

(f € Cypy z €R),

where

Fo(u) = zn: (1 - anr'—l)ef (u € R)

j=-n

is the nth Fejér kernel. Then for every f € Ca,, {0,(f)(z)} is almost
convergent to f(z) uniformly on the real line R (cf. [8]).

In view of these results, we generally make the following situation:

Let (E,|| - ||) be a Banach space and let (X,d) be a metric space.
Let B(X, E) denote the Banach space of all E-valued bounded func-
tions on X with the supremum norm. BC(X, F) stands for the closed
linear subspace of B(X, E) consisting of all E-valued bounded con-
tinuous functions on X. Also, we denote by C(X, E) the linear space
consisting of all F-valued continuous functions on X. Let X, be a
subset of X. Let R = {K,: @ € D, X € A} be a family of operators
of BC(X,E) into B(Xy, E), where D is a directed set and A is an

index set. Then £ is called an equi-uniform approximation process on
BC(X,E) if for all F € BC(X,E),

lim||Kop(F)(z) — F(z)|| =0  uniformly in X € 4, z € X,.

We here consider a family £ of integral operators on BC(X, E) defined
- as follows:

Let {Yo» : @ € D, € A} be a family of separable topological
spaces with a Borel measure pq» on Y, . For each « € D)) € A
and each z € X, let £, be a continuous mapping of Y, » into X and
let xq,x(z;-) be a function in L!(Y, », tte,r), which denotes the Banach



space of all p, x-integrable functions x on Y, with the norm

Il = [ 0] i)

Then we define an integral operator by the form

(1) Kan(F)(@) = / X (@ 9) F(€ar () dttan(®)

Ya,A

(F € BO(X, E)),

which exists as a Bochner integral.

Incase Y,y =Y foralla € D and all A € A, where Y is a separable
topological space, in [17] we studied the convergence of equi-uniform
approximation processes of integral operators defined by (1) and in
[21] (cf. [18], [19], [20]) we established quantitative estimates of the
rate of their convergence in terms of the modulus of continuity of
function F'

The purpose of this paper is to refine the rate of convergence of
equi-uniform approximation processes given in [21] by means of point-
wise estimates. Furthermore, applications are presented for various
summation processes, interpolation type operators, convolution type
operators, and several concrete examples of approximating operators
are also provided.

2. Preliminary results

(X, d) is said to be quasi-convex if z,y € X,d(z,y) < a+b,a,b >
0, (a,b) # (0,0), then there exists a point z € X such that d(z,2) < a
and d(z,y) < b. Let (T,7) be a metric linear space. If 7(z,y) =
T(z+2,y+2) for all z,y,z € T, then 7 is called a translation invariant
metric function. A real-valued function ¢ on a linear space V is said
to be starshaped if ¢(8z) < By(z) for all z € V and all 3 € [0, 1].
Let F € B(X, E) and let § > 0. Then we define

w(F,8) = sup{||F(z) — F(t)| : z,t € X,d(z,t) < 6},

which is called the modulus of continuity of F. Obviously, w(F,-) is a
monotone increasing function on [0, co) and

w(F,0) =0, w(F,0)<2sup{||F(z)]:z€ X} (0 >0).



Note that if X is bounded, then
w(F,6) =w(F,0(X)) (6 26(X)),

where §(X) denotes the diameter of X, and F' is uniformly continuous
on X if and only if

lim w(F,d) =0.
6—40

Now in order to achieve our purpose, we always suppose that there
exist constants C > 1 and K > 0 such that

(2) w(F,&6) < (C+ K&)w(F,9)

for every £,6 > 0 and for every F' € B(X, E).

The following lemma gives sufficient conditions such that (2) holds
with C = K = 1, which can be more convenient for later applications
and generalizes [15, Lemma 3]:

Lemma 1. (21, Lemma 2.4]) (a) If (X,d) is quasi-convez, then (2)
holds with C = K = 1.

(b) If X is a convex subset of a metric linear space with the trans-
lation invariant metric function d and if d(-,0) is starshaped, then (2)
holds with C = K = 1. In particular, if X is a convex subset of a
normed linear space, then (2) holds with C = K = 1.

Let V(X, E) denote the linear space of all E-valued functions on
X. For any scalar-valued function v on X and a € E, we define
(v®a)(z) = v(z)a for all x € X. 1y stands for the unit function
defined by 1x(z) =1 for all z € X. Let A(X, E) be a linear subspace
of V(X, FE) and let ¢ be a mapping of A(X, F) into E. A positive
linear functional v on A(X,R) is called a majorant (or dominant)
functional of ¢ if F' € A(X,E),v € A(X,R) and

(3) |E ()] < v(t) for all t € X,

then ||o(F)|| < v(v). Let L be a mapping of A(X, E) into V(X,, E).
A positive linear operator S of A(X,R) into V(Xy, R) is called a ma-
jorant (or dominant ) operator of L if (3) implies that

IL(F)(z)|| < S(v)(z)  forall z € X,.

Lemma 2. (21, Lemma 2.5]) Let ¢ be a mapping of A(X, E) into E
having a majorant functional v. Let p > 1 and x € X. Suppose that

{lx®a:acE} C AX,E), {lx,d(z,),d(,-)} C A(X,R).



Then for oll F € A(X,E)N B(X,E) and all § > 0,
lp(F = 1x ® F(z))|| < (Cv(1x) + Kmy(z; p, 6))w(F, ),
where
my(z;p,8) = min{6Pu(d(z, ")), 6 'v(1x)' " VPu(d(z, )7}

Let z € X, be fixed. Then applying Lemma 2 to ¢(-) = L(:)(x)
and v(-) = S(-)(z), we have the following result, which generalizes
[5, Theorem 2.1] and improves the estimate by means of higher order
absolute moments.

Lemma 3. (21, Lemma 2.6]) Let L be a mapping of A(X,E) into
V(Xo, E) having a majorant operator S and let p > 1. Suppose that

{1x®a:a€ E} C A(X,E)
and
{1x}u{d(=z,-),d(z,") : z € Xo} C A(X,R).

Then for all F € A(X,E)NB(X,FE),z € X, and all § > 0,

IL(F — 1x ® F(z))(z)|| < (CS(1x)(z) + Kms(z;p, §))w(F, ),
where

ms(z; p, )
= min{§7S(d(z, ")) (x), 5" (S(1x)(x)) "/ (S(d(z, ) (2))/?}.

Now we make use of the following key estimate for integral operators
on BC(X, E).

Lemma 4. ([21, Lemma 2.7]) Let {x(z;:) : © € X} be a family of
functions in L*(Y, p), T a continuous mapping of Y into X andp > 1.
Assume that x(z;-)dP(z,7(-)) € LY(Y,p) for each x € Xy. Then for
all F € BC(X,FE),z € Xo and all § > 0,

| [ x@ ) (Frw)-F@) dut)]| < (Clixta i+ Kelai D)l F ),

where
c(z; p, 0)

= min{6"|Ix(z; )& (2, 7()) I, 67 (s )~ llx(e; )P (2, 7() I}



3. Pointwise estimates of equi-uniform convergence

Let p > 1. Let {s1,82,...,5:} be a finite set of positive real num-
bers and let {®;,P,, ..., P, } be a finite set of nonnegative real-valued
functions on Xy x X. Assume that

Xa,)\(x; )@:: (zafa,z\(')) € Ll (Ya,/\, Na,A)

(xeD, e A, z€ Xy, i=1,2,...,7)
and we define

Baxi(T; 8i) = |Ixan (@5 )P (2, Ear ()|,

which is called the s;th absolute moment of x, (; ) at  with respect
to sz
Suppose that there exists a constant L > 0 such that

@ Pat) < LY (20

i=1
for all (z,t) € Xo x X. Let A := {xax(z;") : € DX € A,z € X}.
For any a € D, A € A and z € X, we define

Ban(z) = ‘ /} - Xea(73Y) dpan(y) — 1|

Ifforalla € D,A € Aand all z € X,

XeA(T;y) 20 (p-ae. y € Yyn),

then 2 is said to be positive. Also, if for all « € D,\A € A and all
z € Xy,

/ Xa (T3 Y) dpan(y) =1,
Yo

then 2( is said to be normal.
For any o € D, F € BC(X, E) we define
Eo(F) = sup{||Kaa(F)(z) — F(z)|| : A€ A,z € Xo}.

Note that £ is an equi-uniform approximation process on BC(X, E)
if and only if

lim Eo(F) = 0

for every F' € BC(X, E).
From now on, let {e,}aep be a net of positive real numbers.



Theorem 1. For alla € D, € A,F € BC(X,E) and all z € X,,
(5)  NKan(F)(z) — F(2)|| £ |IF(@)]|Ban(2) + Yo (T)w(F, €a),

where
Yar(Z) = CllXar (Z; )|l + Kcan ()
and

r
Cap(z) = min{Le;” Z Ha,ri(T5 85),

L (3 analai ) e (a2,
=1

In particular, if 2 is positive and normal, then (5) reduces to
[Kap(F)(z) — F(z)|| < (C + Kca(2))w(F, €a),

and

1/p
Can(@ mm{Le Zua ri(@380), LPeg (Z Lapi(T; 5) ) }

Proof. We have
6)  IIKar(F)(z) — F(@)]| < | /

Y., Xa (T3 Y) dpan(y) — 1|||F(:1:)||
[ xer@ ) (Far) - ) duar()] = 130 + 120,

say. We have JC(:/)\(QI) = ||F(z)||Ba,x(z). Now, put

pa(E) = [ Xan (@5 )P (@, Lap (Dl < LY panilz; i)
=1

on account of (4). Applying Lemma 4 to x(z;:) = Xea(z;-) and
T = &4,1, We obtain

JA@) < (Clixan(@; M + Kean(@:p, 6)w(F,8) (6> 0),

where
Cap(%;P,8) = min{6 g (), 7 ||xar(®@; 1P e ()7}

<m1n{(5 pLZ/La,\z x 51) 0" ”Xa)\(.’L' )”1 I/P( Z‘u'a”\’i(x;si))l/p}.
=1

Putting § = €, in the above inequality, (6) establishes the desired
estimate (5).



In the rest of this section, we restrict the integral operators K, x
defined by (1) to the subclass of BC(X, E) defined as follows:

Let Ey be a subset of E and ¥ = {T(z) : z € X} a family of
mappings of Fy into E such that for each f € Ej, the orbit mapping
x + T(z)(f) is strongly continuous and bounded on X and let L, x
denote the restriction of the set K, to {T'(:)(f) : f € Ep}, i.e,,

(1) Lar(@)(f) = / Xer(@ 9T Ean@) () dhar(y)  (f € Eo).

},a A

Shaw [25] considered the special case of (7) in the setting of certain
spaces of operator-valued functions and obtained several representa-
tion formulas for strongly continuous semigroups of bounded linear
operators on Banach spaces.

The family £ = {Laa(z) : @ € D,A € A,z € X} is called an
equi-uniform ¥-approximation process on Ej if for every f € FEy,

(8) liin |Lax(z)(f) = T(z)(f)Il=0 uniformly in A € A,z € X.

Concerning the rate of convergence behavior of (8), we define
wg(f,6) = sup{||T(z)(f) = T@)(f)Il : z,t € X, d(x,t) < 6}
(f € Eo, 6 20),
which is called the modulus of continuity of f associated with ¥, and
ea(f) = sup{|[Lax(z)(f) = T(z)(f)Il : A € A,z € Xo}.

Note that £ is an equi-uniform ¥-approximation process on Ej if and
only if

li;nea(f) =0

for every f € Fj.
Now, since for all f € Ey,0 > 0 and all « € D

w‘I(fa 6) = w(T()(f)’é)a ea(f) = Ea(T()(f))a

Theorem 1 yields the following result which establishes the estimate for

the rate of convergence of the equi-uniform T-approximation process
£on E()I

Corollary 1. Foralla € D,A€ A, f € Ey and all x € X, .
1 Laa(2)(f) = T (@) (N < T (@) ()| Bax (@) + Yar()ws(f, €a)-

In particular, if 2 is positive and normal, then

| Lap(@)(f) = T(@)(F)ll < (C + Kcap(z))ws(f,€a),



and

‘ r T l/p
Can(z) = mln{Lpr Z,ua,/\,i(z; si), L'/Pe;! (Z Hho i (%5 Si)) }

=1 i=1

4. Equi-uniform summation processes

Let A= {af{‘)n :a € D,m € Ny, ) € A} be a family of scalars. A is
said to be regular if it satisfies the following conditions:

(A-1) For each m € Ny, lim ag’\}n =0 uniformly in A € A.

(A-2) lim ) ad, = uniformly in A € A.
@ m=0
(A-3) For each a € D, X € A,
o) = Z e, | < oo,
m=0

and there exists ag € D such that
sup{aV : @ > ay,a € D, € A} < oo.
A is said to be stochastic if
al), >0 (a€D, meNy, A€ 4)
and

Zafx’\’,)n=1 (e € D, X € A).
m=0

Obviously, if A is stochastic, then Conditions (A-2) and (A-3) are

automatically satisfied.

A sequence {fm}men, of elements in E is said to be A-summable to

fif
o0
9) limHZ a,(;f)nfm - f” =0  uniformly in A € 4,
“ m=0 .

where it is assumed that the series in (9) converges for each oo € D
and A € A.

Concerning the relation between the regularity of .4 and .A-summability,

A is regular if and only if every convergent sequence of elements in E
is A-summable to its limit (cf. [1], [14]).



As the following examples with D = Ny show, there are a wide
variety of families .4 and their particular cases cover many important
summability methods:

(1°) Given an infinite matrix A = (@nm)nmeno, if a&*,),, = Qpyy for all
n,m € Np and all A € A, then we obtain the usual matrix summability
by A.

(2°) If A = Ny, then we obtain the summation method introduced
by Petersen [24] (cf. [1]). In particular, if

l .
a()\)= i if /\S?TLSA"‘TL,
nm 0 otherwise,

then we obtain the notion of almost convergent method (F-summability)
introduced by Lorentz [10].

(3°) Let Q = {q(/\) : X € A} be a familiy of sequences ¢ =
{q,({\)}neNo of nonnegative real numbers such that
A =+ gk >0 (neNg A )

We define
™

q,__ .

nom if m<n
o, ={ @ sm

0 if m>n.

Then A-summability is called a (N, Q)-summability, and this kind
of summability is called the Norlund summability in the case where
q® = {gn}nen, is a fixed sequence of nonnegative real numbers sat-
isfying go > 0. The special case of interest is the following: Let
AC[0,00), 8> 0 and

() = cO+6-1) (Ae 4, neNy),

where

c =1, Cc¥= (

n—l—l/) _(w+1)w+2)---(v+n)
n n!
(v> -1, neN).

In particular, if A = {0}, then we have the Cesaro summability of
order (.

(4°) Let A C (0,00),8 > —1 and define

oM — CONCE jCPY it m <,
" 0 if m > n,



(Cesaro type).
(5°) Let A C [0, 1] and define

4O — (C)Am(@ = )~ ™ if m<n,
rm 0 if m>n,
(Euler-Knopp-Bernstein type).
Note that this can be a particular case of the generalized Lototsky

matrix defined as follows (cf. [6], [7], [26]): Let {h;}ien be a sequence
of functions of [0, 1] into itself and define

=1, ah=0 (n>n)

n

H(a:h,-(/\) +1-hi(N) = Zn: aS{},)nxm.

=1 m=0

(6°) Let A C [0,1) and define

a® = <TL + m) A (1 — A)n+1,
m

n,m

(Meyer-Kdnig- Vermes-Zeller type).
(7°) Let A C [0,00) and define

m
o2 = exp(-nn) ",

(Borel-Szdsz type).
(8°) Let A C [0,00) and define

o), = ("+m )X"(1+/\) nm,
’ m

(Baskakov type).

This can be generalized as follows (cf. [4], [12]): Let {¢n }nen be a
sequence of real-valued functions on [0, c0) which possess the following
properties:

(p-1) Each function ¢, is expanded in Taylor’s series on [0, 00);

(v-2)  ¢n(0)=1 (n€N);

(p-3) Each function ¢, is completely monotone, i.e.,

(-D)™p™(#) >0 (t€[0,00),n € N,m € Np);

(p-4) There exists a strictly monotone increasing sequence {£, }nen
of positive integers and a sequence {ay m }n men of real-valued



functions on [0, 00) such that
P () = —ngl" V(1 + onm(t) (¢ € [0,00)).
Now we define
afg=1, agn=0 (meN),

(m)
o), = (~)" 2 ym (e Nm e V).

m!
Note that all the families A of the generic entries a,({},)n given in the

above Examples (2°)-(8°) are stochastic and all the families A of the
generic entries aﬁ{},)n given in the above Examples (4°)-(8°) are regular
for any finite interval A.

A sequence {K,}nen, Of operators of BC(X, E) into B(Xy, E) is
called an equi-uniform .A-summation process on BC(X, E) if the famly
R ={Kan:a€ D, e A} is an equi-uniform approximation process
on BC(X, E), where each K, ) is defined by
(10)  Kap(F)(z) =D alhKn(F)(®) (F € BC(X,E)),

m=0
which is assumed to be convergent. A family {L,(z) : n € No,z € X}
of mappings of Ej into E is called an equi-uniform ¥-.A-summation
process on Ejy if the family £ = {Loa(z) : @« € D,\ € A,z € X} is
an equi-uniform ¥-approximation process on Ey, where each Ly x(z)
is defined by

(11) Z al) Lm (f € Ey),

m=0

which is assumed to be convergent.

Now, let {Y; }nen, be a sequence of separable topological spaces with
a Borel measure p,, on Y, and let {¢,},en, be a sequence of continuous
mappings of Y, into X and let B = {x,(z;*) : n € Ny,z € X} be a
family of functions in L(Y;, u,) such that

Z/ a(’\) ) Xm (%5 9)| dum(y) < oo (€ D,X € Az € X).
We define
(12) Ku(F)(z) = /Y 3@ ) F(Ea(®)) dimly)  (F € BO(X, E)),



13)  La@)(f) = / xn@ TEW) () dimy) (€ Eo)

n

and let K, » and L, be defined by (10) and (11), respectively. Sup-
pose that xn(x; )8 (z,&.(-)) € L' (Ya, a) for all n € Ng,z € X and
fori=1,2,...,r and we define

tin i (%3 8:) = |Ixn (25 )P (2, &n () ||2-
For any a € D, ) € A and z € X, we define

Tap(2) = ‘Z Qo / m(;y) dpm(y) — 1

m=0

and
o (x; 53) Zla(’\) |pmi(z;s:)  (E=1,2,...,7).

Theorem 2. For alla € D,)A € A,F € BC(X,E) and all z € X,,

(14)  [[Kap(F)(2) — F(@)|| £ |F(2)[ITax (@) + Cen(z)w(F, €0),
where

Capr(z) = Chap(z) + K1 (z)
and

naA( )

= minq Le,, 0 x;8;), LVPe; 0 z; 8;) z)-ir
{ Z aM i (Z ou\z z) ,,\( ) }

In particular, zf B is positive and normal and if A 1is stochastic, then
(14) reduces to

[ Kax(F)(z) = F(2)l| < (C + Ko p(2))w(F, ),

and
Na () = min{Le;” i Oani(T; 50), LYPe;! (2’: Oai(; Si)) l/p}'
=1 i=1

Proof. We have
(15) [ Kaa(F)(z) — F(z)||

< S 0] [ xnlain)(Fl6m(6) - Fla)) it

m=0



|Za<*> / n(@:9) dim(y) = 1|IF@)I] = IR @) + (@),

say. We have 12)(z) = ||F(2)llran(z). Taking (Y,p) = (Y, im),
x(z;) = Xm(z; ) and 7 = &, in Lemma 4, we get

(16) 1)< (Cbam)+f<2|a<*> [em(3,6) ) w(F, 8),

where

(239, 6) = min{ 67| xm (3 )& (, €D,
5 xm (s )17l ()P (3, Em (D17

Now, if p > 1, then by Hélder’s inequality we have

S 1o ot 5 M1 o (5P (53 6 () V7

m=0

< (3 6@llenai )™ (Z a2t (25 )P a3 (D)

m=0

which clearly holds for p = 1. Also, by (4) we have

[1Xm (23 )P (2, m (Nl S LD pmi(@;si)  (m € No).

i=1
Therefore, we obtain

Z |a ) lem(z;p,0) < m1n{6 ”Lzea,\, z; 8i),
i=1

m=0

(s—lba,,\(il;)l_l/le/p (i 00’,\’,'(11,'; Si)) l/p}(.U(F, 6),
i=1

and so putting § = ¢, in the above inequality, (15) and (16) yield the
desired estimate (14).

Corollary 2. Foralla € D,A€ A, f € Ey and all x € X,,
I Laa(@)(f) = T(z) ()N < IT(@)(HITan(®) + Can(@)wz(f; €a)-

In pariticular, if B is positive and normal and if A is stochastic, then

| La(2)(f) = T(@) ()l < (C + Kna(2))wsz(f, €a)



and
: L Up 1 1/p
Nax(T) = mln{Lea”ZOm,\,i(m‘; si), LYP¢; (Z O i(T; si)) }
i=1 i=1
5. Interpolation type operators

Let {Yon : @ € D,A € A} be a family of finite sets. Then the
integral operators given by (1) and (7) reduce to

(17) Kea(F)@) = Y Xep(@y)F(&ay))  (F € BC(X,E))
YEYa,

and

(18)  Lap Z XeA (@ YT EanW)(f)  (f € Eo),

respectively. These are called interpolation type operators with the
interpolation system {xax(;¥) : y € Yo} and nodes {&{an(y) : vy €
Y, }. Here we restrict ourselves to the following situation:

Let 1 < s < 0o be fixed and let R" denote the metric linear space
of all r-tuples of real numbers, equipped with the usual metric

r 1/s
d(z,t) = ds(z,t) := (mzl |z — il ) (1<s<00)
max{|z; —t;|: 1 <i<r} (s = 00),

where £ = (z1,%2,... ,Zr),t = (t1,t2,... ,t,) € R". Now, let X be
a convex subset of R". Therefore, by Lemma 1 (b), (2) holds with
C=K=1. Fori=1,2,...,r, p; denotes the ith coordinate function
on R" defined by p;(z) = z; for all x = (z1,%2,... ,2z,) € R". Then we
have

&(z,t) < clp,m,8) Y Ipi(e) — ()P (z,t€R7, p>0),

=1

where
rPls (1<s<o0,s#Dp)
c(p,r,8) =41 (1<s<o0,s=p)
1 (s = 00).



Therefore, (4) holds with
8 =P > 17 ¢1.($)t) = ]pz(x) - pl(t)l’ L= C(P, T, 8))

and so by Theorem 1 and Corollary 1, we have the following result
which can be more convenient for later applications to the concrete
examples of interpolation type operators.

Theorem 3. Let p > 1 and suppose that A is positive and normal.
Then the following statements hold:
(a) For alla € D,A € A,F € BC(X,E) and all x € X,,

[Kap(F)(2) = F(z)]| < (1 + ca(@))w(F, €a),

where
Ca(T)
i -p - ' 1/p ~1 - 1/p
= mln{C(P, T, S)Ca Z tua,/\,i(x;p)a C(P’ T, 3) pea (Z /J‘a,/\,i(a;;p)) }
=1 =1
and

Papi(Ti0) = D Xaa (@ 9)Ii(@) — pillan(®))IP-

yEYaA
(b) For alla € D,)\ € A, f € Ey and all z € X,,

1 Lax(2)(f) = T(z) ()l £ (1 + cap(2))ws(f, €a)-
Let X = [0,00)" be the first hyperquadrant and let

Meai: A= N, aq;: A— (0,00) (e€e D, i=1,2,...,71)
and
Iy :={k=(ki,ka,... k) €Ng: 0 < k; <mga;i(N),s=1,2,...,7}.
We define
Xex(T; k) = zlj (m"l’;(’\))xf‘(l — g;)MeiN) =k (z€ X, ke€l,y)
and

Ean(k) = (ag,1(N)k1, an2(Nka, - .. yaar (k) (k € I,)).

Then the interpolation type operators (17) and (18) become

= D Xap(@k)F(&a(k))  (F € BC(X, E))

kE[o‘ Y



and

= Y Xap(@E)TEan(B)(f)  (f € Eo),

k€l

respectively. These generalize the r-dimensional Bernstein operators,
which are defined as follows (cf. [11], [17]): Let L. = [0,1]" be the
unit 7-cube and let {vn;}nen,? = 1,2,...,7, be strictly monotone
increasing sequences of positive integers. Then we define

Vn,1 Vn,2 Vn,r

=33 R )

v, V 1Z
k1=0 ky=0 ko= n,l n, 2 n,r

,

Vn’j k] Vn.i—k

: H(k.)xj (1=
=1~

(FeCl,FE), z€l,)

and

Vn,1 Vn,2 Un,r

@ =33 Y o g

v, 1/ 1Z
k1=0 ky=0 k=0 n,l n,2 n,r

()

(f € Ey, z € ]I,-)
Now, let X, be a subset of I, and let z € Xy. Then we have
P i(752) = (Gai(N)Mai(A) = 1)} (2) + a3 ;(\)mei(N)pi(z) (1 - pi(z))
and

r2/s 1<s5<o00,8#2
c(r,s) :=¢(2,r,8) = {1 ES Z 2.00). 7 2)
Therefore, Theorem 3 can be applied for p = 2. In particular, if
Me,i(A)aai(A) =1
foralla € DA€ Aand fori=1,2,...,r, then

Honi(z;2) = ﬁm(pi(@ — ().

Therefore, for the Bernstein operators, we have
(19) 1B (F) () — F(z)l| < (14 cn(r, 8))w(F, enbn(z))



and

(200 [ICa(z)(f) = T(2) (Nl < (1 + cnlr, 8))we(f, €nbn(2)),

where {€,}nen is a sequence of positive integers,

cn(r, 8) := min{/c(r, s)e;*, c(r, s)€; 2}

and
T

tnla) = (3 ——oila) ~ 2a)))

i=1 ™
In paritucular, (19) and (20) yield the following estimates for all
z€el,:

T

(@) IBu(F)@) ~ F@) < alr, )0 (Freny| 3 =-);

=1

(22)  ICu(E)() = T@ I < bulr,sho(freny| S ).

Here

. c(r,s) c(r,s
On(r, s) :=1+m1n{ 2(6 ), (462)}.

Let {T;(t) : t € [0,1],5 = 1,2,... ,7} be a family of strongly contin-
uous mappings of Ey into itself such that for every t,u € [0, 1], tT}(u)
commutes with (1 — ¢)I, where I is the identity operator on F and
T;(v)" = T;(nv) whenever v € [0,1],n € Ny and nv € [0,1]. If

T(z) =[] Ti(e)

for all x = (x1,a,...,z,) € L, then

Gola)(1) = [T (=21 + 2513 (1)) ™ (9
~T1(+ 5@ -0)™ o)

Therefore, the inequality (22) estimates the rate of convergence in [16,
Theorem 5] for 7 = 1, which improves the estimate in [3, Proposition
1.2.9] and furthermore, it generalizes and improves the convergence



rate in [5, Theorem 1.1]. Also, we note that in view of Lemma 3, other
results of [5] can be generalized and improved by the same argument
as the above manner.

Suppose that A is stochastic, and let {£,}nen, be a sequence of
positive integers. We define

Ko (F)(z) = Ea< ) B, (F)(z) (FeC(l,E), z€l,)

and
Loa(@)(f) = Y_aQ)Ce.(x)(f)  (f € Eo, z€L,).
m=0

Then Theorem 2 and Corollary 2 establish the following estimates:
[ Kap(F)(z) = F(z)|| < (1 + calr, 5))w(F, €aPan(2));
ILa(2)(f) = T(2)(NI < (1 + calr, 5))wz(f, €adax(2))-

Here
ca(r, 8) := min{+/c(r, s)e3*, c(r,s)e;%}

Jor(@) = (Z o) 92 ( )

m=0

Let A=D =Ny. Let v,; =mforallm e Nand fort =1,2,...,r
Let £,, = m+1 for all m € Ny. Then concerning the method of almost
convergence (see, Sec. 4, Example (2°)), we have

Yo (z) < (i:(pi(x) _ p?(a:))) 1/2(1 + log(a + 1))1/2

a+1

\/—\/1+loga+1) (o, A€ No)

a+1
(cf. [13] for r = 1).
The statements analogous to the above results hold for the following
settings: Let X, be a closed subset of A,, where

and

T
Ay ={z=(z1,22,...,2,) ER 12, >0,i=1,2,... ,T,Z:L‘,' <1}

is the standard r-simplex; Let mq : A — N.
Ja’,\ = {k = (kl,kz,... ,k,-) € NS : kl +k2+"'+kr S ma(/\)};



) = (") a1 3T
=1

j=
(z € X, ke J,, )

(ma()\)> . M (A)! .
k T kl!kg!”'kr!(ma(/\)—kl —k?z—"'—k‘r)!’

ga,/\(k) = (aa,l (/\)klaaa,2(/\)k2’ ce ,aa,r()‘)kr) (k € Ja,)\)'
Next, let X = X, :=[-1,1]", and let X, be a closed subset of X,.
Let Qn(t) = cos(narccost) be the Chebyshev polynomial of degree n,
and let ¢, ;,7 =1,2,... ,n, be zeros of Q,(?), i.e.,

27 —1
tnj:cos(—JzT'lr), (j=1,2,...,n).

2,

Let

Mai: A =N, ag;: A4 —[-1,1] (ee D, i=1,2,...,7)
and let
Noy :={k = (ki,ka,... k) N : 1< k; <mgy;(N),i=1,2,...,7}.
We define

Xen (@ k) = [ [ Xmoson (@i ki) (2 € Xi, k € Nap),

where

Qma,i(A) (.’L‘,) 2
Xma i) (%33 ki) = (1 - xitm°'i(}‘)’ki){mai(/\)(xi = b (A)k:) }

and

fa,/\(k) = (aa,l (/\)tma,l()\),kla oo aaa,r(/\)tma,r(/\),kr) (k S Na,/\)-
Then the interpolation type operators (17) and (18) become
= 3 Xer@R)F(Eanr®)  (FeC(X,, B))
kEN,

and

= > Xan@ k)T (Ean(B)(f)  (f € Eo),

kENG

respectively. These generalize the r-dimensinal Hermite-Fejér opera-
tors, which are defined as follows (cf. [9], [17]):



We define

Vni1 Vnp2 Vn,r

= § : § : § :F an,kl’ ’/n21k2’ tVn,rakr)

k1=1ko=1 kr=1

Qu.;
X H tunjokj {,,m (z; — ) ,c])}

tVnJ»

(F € C(X,,E), z € X,)

and

Vn,1 Vn,2 Vn,r

:II)(f) Z Z Z T Vn k1t Vn,2,k2) - ’tVn,r,kr)(f)

k1=1ko=1 kr=1

Qu,; (T 2
* H ok {Vn,j(wj;( ) )}

by i ks

(f € FEy, T € Xr)
Now, let z € Xy. Then we have

(2;2) = M—2x~(a ~(/\)—1)mii§\)t (z:; k)
Haxi\T;2) = ma,i(/\) i\Qa,i ~ Ma,i(A)ski Xma,; A \Tis K
Ma,i(A)
+ (ai,l()\) - 1) Z tma,i(’\)»ki2xma.i(’\)(xi; ki)'
ki=1
Therefore, Theorem 3 can be applied for p = 2. In particular, if
aa’i(/\) =1
foralla € DA€ Aand fori=1,2,...,r, then
v (@m0 0 pi)?(2)
,U'a,)\,z (:B) 2) - ma,i(A) .
Therefore, for the Hermite-Fejér operators, we have
(23) | Hn(F)(z) — F(2)|| < (1+ cn(r, 5))w, (F, €aTn(x))
and

(24) 1Gn(2)(f) = T(@) (N < (1 + calr, 5))ws(f, €n, Ta(2)),

where {€,}nen is a sequence of positive integers and



To(z) 1= (ET: (Qu. Opi)2(:1,')>1/2'

: Ungi

=1 ’
In particular, (23) and (24) establish the following estimates for all
T € X,:

T

|HA(F)@) = F@)l < (14 ealr, ) (Freny| 3 =)

Vni

=1

1G2(@)(1) = T@NN < (14 ealr, s (Freny | S0 ).

V.
i=1 Tt

Suppose again that A is stochastic, and we define
Ko(F)(z Z o) H, (F)(z) (FeC(X,,E),z€X,)

and

Ea’\ Gy, (z (f € Ey, z € X,).

m=0

Then Theorem 2 and Corollary 2 establish the following estimates:
[Kan(F)(z) — F(z)|| < (14 ca(r, 5))w(F, €ada(2));
[Laa(@)(f) = T() (NIl < (1 + calr, 5))ws(f; €adan(T))-

Here .
buale) 1= (3 ahrt, (@)

m=0

6. Convolution type operators

In this section, we treat the equi-uniform .A-summation processes
of convolution type operators on BC(R", E). For this end, in (12) and
13) we especially take

Y,=X=R",
pn(y) =dy, &(y) =y



and
T

Xn(@3y) = [[(hn o pi)(z — v),
i=1
where {hn}nen, be a sequence of nonnegative Lebesgue integrable
functions on R such that

(25) /R hn(t)dt =1

for all n € Ny. In this case, the integral operators K, and L,, defined
by (12) and (13) are called convolution type operators.

Suppose that A is stochastic, and let {K, »} and {Lq 1} be defined
as in (10) and (11), respecively.

Theorem 4. The following statements holds:
(a) For alla € D,) € A,F € BC(X,E) and all z € X,

”KQ,,\(F)(.'II) - F(‘T)” < (1 + ca(p’ T, 8))(4)(F, faoa,z\(p))’
where

¢o(p, 7, 8) = min{(rc(p, r, s))l/”egl, re(p, T, s)e;?}

and
bar(p) = (3 o) / PR dt) " < co.
m—O

(b) For alla € D,\ € A, f € Ey and all x € X,
| Lax(z)(f) = T(z)(H)Il < (1 + calp, T, 5))wz(f, €afa(P))-
Proof. We have

/ Xn(®;y)dy=1  (n €Ny, z € X),
X

and so 7, x(z) = 0 and b, ,\(x) = 1. Also, we have

D Banilz;p) = Z / hun (i — y)|7: — wilP dys
i=1 —0

m

= > ol [ Al e = 0P

m=0
Thus, by putting €,0,,(p) instead of €,, the desired result follows from
Theorem 2.



Let {k, }nen, be a sequence of nonnegatve, even 2r-periodic, Lebesgue
integrable functions on R having Fourier series expansions

. 1 [T N
~ 1]t ) = —_— —-Ut
kn(t) ]_E_ook ka(7) = 5 /——7r kn(t)e " dt
with 15,1(0) =1, and we define

_ Jaka(®) (It <)
(1) = {3 (1t > ).

Corollary 3. (a) For allaa € D,A € A,F € BC(X,E) and all z €
‘YO:

[Kaa(F)(z) = F(2)|| < (1 + ma(r, 5))w(F, €aba,),

where
Ta(r, 8) = min{w rc(;‘, S)egl, 7r2r02(7', 3)652}
and g
oon = (3 a1~ Ka1)) "
m=0

(b) For alla € D,A € A, f € Ey and all x € X,
[Lax(2)(f) = T(2) ()l £ 1 + ma(r, 5))ws(f, €2a,n)-
Indeed, by the inequality
(26) %tgsintgt (ogtgg),

for all m € Ny, we have

/tzkm(t)dtgw/ kum(t) sin? = dt —/ (1 — cost)kn,(t) dt.

by (¥

Thus, we have 0,(2) < (7/v/2)0a,, and so putting (7/v/2) e, in-
stead of €, the desired result follows from Theorem 4.

Let (A.()) (n,7 =1,2,...) be a lower triangular infinite matrix of
real numbers and we define

ko(t) =1, _1+2Z’\ ) cos jt (neN, teR).



Then applying Abel’s transformation twice to the function k,(t), we
have

n—1

k() = Y + DEOAM() + (0 + DAa(n)Fa(t),  Aa(0) =1,

<.

where F,(t) is the mth Fejér kernel and
A2Xn(5) = Mn(4) = 22 (G + 1) + Aa(G + 2).

Therefore, if A,(n) > 0 and {A,(j)};en, is convex, i.e., A2),(j) > 0 for
all j € Ny, then k,(t) is a nonnegative, even trigonometric polynomial
of degree at most n and so Corollary 3 (a) and (b) hold with

Qo = (SuP{i al) (1 - Am(l)))l/ ’
m=0

Several examples of )\, (j) produce important positive summability
kernels mentioned as follows:
(1°) Fejér:

/\(])= 1_5.{.—1 (1S]Sn),
" 0 j>n)
(2°) de la Vallée-Poussin:
!n!!z .
() = 4 T (1<j<n),
0 (4 > n).
(3°) Fejér-Korovkin:
/\ (]) — An Ez_zjo a'maj+m (1 S .7 S n)7
" 0 j>n),
where
. (m+1 = -1
am=sm(n+2)7r (m=0,1,...,n), Anz(z:oafn) .

In this case, we have

kn(t) = An

Xn: ameimtr’ An(1) = cos(n I 2).
m=0



(4°) Norlund:

where

n
0<qo < qn < gy Qn:‘ZQm (n € Np).

Obviously, if g, = 1 for all n € Ny, then the Norlund kernel reduces
to the Fejér kernel.
(5°) Cesaro:

Mm@ ={a@  Asisn g5y
0 (7 >n),

where C%) (n € No, v > —1) is defined as in Example (3°) of Section

4. Note that if ¢, = C¥ ™V foralln € Ny, then the Norlund kernel
reduces to the Cesaro kernel. Also, if § = 1, then the Cesaro kernel
turns out to be the Fejér kernel.

Other important examples of nonnegative, even trigonometric poly-
nomials are the following:

(6°) Jackson: Let v € N and

sin 3(n + 1)t
Ealt) = no(6) = en { LR
2

where the positive constant c,, is chosen so that

1 ™
~ /0 ko (£) dt = 1

Since kn, (t) = cau(n+1)"F,(t)Y, we have ¢, = 1/(n+1) and ky 1(2)
becomes the nth Fejér kernel. Also, for v = 2 we have

3 £y - 2nn+2)
(n+1)(2(n+1)2+1)’ "(”‘an+nr+r

and so, we have

Cpn2 =

o0

1/2
Qoo = (Z +12+1)

m=




IA

3/ ) 1 1/2
\/;(n;a&fm(erl)z) '

Therefore, by selecting e, = (3/2)~'/2 Corollary 3 yields the following
estimates:

|Ka(F)(@) = F@)ll < (1+ 5 /3re(r, ) )w(F, va);
1Zar@)() = T@AI < (1+ Fv/Erelr, ) Jwelf, van):

oo
vop = (Y alhms)
m=0 (m + )

Furthermore, making use of the inequality (26) we have for v > 3,

Here

m\1-2v9py — 1 1—20 (7!')2” 1—20
— < | =

(2) 5 (n+1) <cpy < 5 (n+1)
and

2(2v-1)
7r) Sv (n+1)72

1= kau(1) < (5 3r(2v — 3)

Therefore, we have

m\2v-1 8v
< (= -
Qar = (2) | 3r2r—3) ">

and so by selecting

«=(3) Gy

Corollary 3 again yields the following estimates:
[Kan(F)(z) — F(z)|| < (146(p, 7, 5))w(F, va,3);
| Laa(z)(f) = T(@)(H)Il < (1 +0(p, 7, 8))wz(f, Va,)-

Here

4 7r)2,, vre(r, s) ﬁ(z)@ vre(r, s) }

"("”"3)=min{ﬁ(§ 3 -3) 7'2) 3av-3)J

(7°) Abel-Poisson:

kn(t):1+2zr,Tcosmt (n € Ny, t € R),

m=1



where {r,}nen, 1S a sequence of real numbers converging to one such
that 0 < r, <1 for all n € Ny. Since

1— 72 1—1r2
k t — n — n > 0’
n(t) 1-2rpcost+712 (1 —r1,)2+dr,sin?(t/2) ~

Corollary 3 (a) and (b) hold with

1/2
(Za(’\) l—rm> .

m=0

(8°) Gauss-Weierstrass:

= \/)\z i exp{—(—t#m)?} (n € Ny, t € R),

where {\;}nen, iS @ sequence of positive real numbers converging to
zero. We can rewrite k,(t) as

Z e dnmieimt 1 4 9 Z e~ 2™ cosmt.

m=—00 m=1

Therefore, Corollary 3 (a) and (b) hold with

Oar = (Z o®.(1 _Am))1/2.

Next, we give several examples of nonperiodic, nonnegative func-
tions h,(t) satisfying (25) for which Theorem 4 can be applied, from
a probabilistic point of view. These can be induced by various proba-
bility density functions mentioned as follows:

Let {an}neng, {Bn}nen, and {7V, }nen, be sequences of positive real
numbers. We define

in(p) = (s p) = /R [tPha(t) dit < oo,

which is called the pth absolute moment of h,,.
(9°) Burr type distribution:

fn—
h (t) — anﬁn’yn ﬁﬁ (t > O)a
e 0 (t<0).



Then we have

_ (o £)r (%)

By
pn(p) = 5T (o) ,
and so s

n _1\p(x

(1) = 2 r (;:F( OZ))F (%)

(o= 2)r(2)
n on— 5 | I &
pin(2) = o BT ai’; o

(10°) Gauss type distribution:

hn(t) == ”Wiﬂn exp(—;—z) (t e R).

Then we have

where

I'(z):= / t*le7tdt  (z>0)
: 0

is the gamma function. In particular, we have

m)=/2, @ =%

Un(2m) = (m—%)(m—g)(m—ﬁ)---g%az (m € N).

(11°) Laplace type distribution:

hn(t) := ﬁ exp(—Lil) (t € R).

n

and

Then we have

pn(p) = pI'(p)od.
In particular, we have

pn(m) = mla (m € N),
and so

:U'n(l) = Qnp, ,Un(2) = 202

n*



(12°) Student (t) type distribution:

hn(t) == \/%%(1 + apt?)Pn (t € R).

Then we have

() 1 wl(B—B)
and so
1 (:Bn - 1) . 1
Y e () R S e Ty
(13°) Gamma type distribution:
Ba"_jan—1g~pnt (t > 0)
I'(an) ’
ha(t) := {o (t <0).
Then we have
(p) = ir(p + o)
En\P) = I3 T (an) .

In particular, we have

n

m—1
1
nm=—mHan+2 (m € N),
gy L
and so
an(on + 1)

fn(1) = 22 pn(2) = 5

B’
(14°) Beta type distribution:

ha(t) = {m(t/é)"ﬂn (/1) (1= (t/a)”")" T (0<t<d),
0 (t<0or 6<1),
where .
B(z,y) :=/ Y1 -t tdt (z,y>0)
0

is the beta functiion and § is any fixed positive real numbers. Then

we have
Blan+2.6.)  Pla,+p) TlontZ
1 (p) = & (B(anjﬁn) )=5,, ?“(o-z:) r(a5+ﬁn1)%)’




and so

and
2F(an+:3n) F(an+%)
I(ew) F(an+ﬂn+,—;":).

In particular,if § = 1 and v, = 1 for all n € Ny, then we have

pn(2) =6

m—1 .
op + i
n(m)= || —FT7 7 N),
pin(m) gan+ﬂn+z (meN)
and so
Qn, an(an +1)
nll) = ——, n(2) = .
pal1) 0 + Bn tn(2) (an + Br)(an + Bn +1)
(15°) Landau type distribution:
oy = | (S,
0 (It] > 1).

Then we have

() KBt o)
ll'n(p) - [‘(a—ln-) F(,Bn + EGinl)’
and so
() = La) LBt 5) o D@ LGt 2)

In particular, if a,, = 2, then

+1 1
Nn(p) — F(%) F(ﬂn+ 2)

VT T(Bn+2)

and so ( 1)

1 (B, + 5 1
pn(1) = NN (AR pn(2) = W1

Furthermore, if 8, = n + 1, then

un(p)=r(p;1)(n+%)(n—%)(n—g)(n_g)...




and so

() DD 3 !
(n+1)! ’

Also, if £, :=1/a;,, € N, then

CItpt1) (B +0)
welP) = =R @ TG+ G+ 1)

pn(l) =

and so
2,—1 . 30,1

pn(1) = H ﬁnz-l-’t" 1n(2) = H ﬂn:'i‘

i:ln 'l:[n

(16°) Weibull type distribution:

ﬁ" ﬁn—l _ tﬁn
ha(t) = {“””gnt exp (-~ o) Et>g;,
0 £<0).

Then we have

and so

1/Bn 2/Bn_2
an ]- 20[11 2
/j,n(l) = ’an( = ———-— _

5 (B
(17°) Paretto type distribution:

Yo tBn—1
h t = B(an)ﬁn) (t+'y,,)°n+ﬂn
0= ¢>0.

Then we have
F(an - p)F(:Bn +p) ,yp
I'(an)T(Br) i

pn(p) =

and so

_ BnYn _ Br(Bn + 1)73;
a1’ Hn(2) = (an — 1) (an —2)

Finally, we remark that the estimates given in [21, Theorem 6.1 and
Corollary 6.2] (cf. [2]) can be improved, and we omit details.

pa(1)
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