琉球大学学術リポジトリ

市販の教育実験用装置によるブランク定数の測定

メタデータ	言語:		
	出版者: 琉球大学理学部		
	公開日: 2009-04-08		
	キーワード (Ja):		
	キーワード (En):		
	作成者: 矢ヶ崎, 克馬, 幾島, 康夫, 照屋, 全次, 当山, 忠久,		
	Yagasaki, Katsuma, Ikushima, Yasuo, Teruya, Zenji,		
	Toyama, Tadahisa		
	メールアドレス:		
	所属:		
URL	http://hdl.handle.net/20.500.12000/9588		

琉球大学理学部紀要 第36号, 1983年

市販の教育実験用装置によるプランク定数の測定

矢ヶ崎克馬* 幾島康夫** 照屋全次*** 当山忠久****

Measurement of the Planck's Constant with an Equipment Manufactured by Shimazu Co., Ltd.

Katsuma YAGASAKI, *Yasuo IKUSHIMA, Zenji TERUYA, and Tadahisa TOYAMA

Synopsis

The Planck's constant has been measured in the practical training of the special course of physics with an equipment using white light with color filters, but, according to the instruction, the results obtained were very poor. In this investigation, the critical photo-current coinside with the critical wave length of the color filter is determined reasonably by knowing the wave length dependences of the intensity of radiation of the white light source and the sensitivity of electron emission of the phototube and the decreasing of the reaching ratio of photo-electrons with higher energy than that of the inverse field from the photo-electric surface to the anode. The logarithmic method is the most suitable for determination of the critical photo-current. The values obtained with this method are within 3% of error compared with the accurate value. At the same time, the differential method and that using the line spectrum source are performed with a fair accuracy.

1 はじめに

プランク定数の測定は琉球大学理学部物理学科に於いて2年次後期に専門実験として履習す

受付:1983年5月14日

- * 琉球大学理学部物理学科 Department of Physics
- ** 琉球大学理学部物理学科(学部学生)現在;九州大学大学院工学研究科在学
- *** 琉球大学理学部物理学科(学部学生) 現在;大阪市立大学大学院理学研究科在学
- **** 琉球大学理学部物理学科(学部学生) 現在;広島大学大学院環境科学研究科在学

る「物理実験Ⅱ」の中の1テーマとして取り組まれる。装置は市販の島津製作所による「プラ ンク定数測定装置」をそのまま使用しており、その測定原理は以下の通りである。図1に示す

様に光電管に振動数 ν の光を当て、光電効果によりたたき出された電子の運動エネルギーを Ek とすると、それらは次式の関係にある。

 $h\nu = e\phi + E_k$

(1)

ここでhはプランク定数,eは電子の電荷,øは光電面に使用されている金属の仕事函数である。 光電子は陽極に到達し光電流となるが,図1の回路により光電管に逆電圧を加え,逆電圧が(2) 式の様に光電子の運動エネルギーに相当する電圧(阻止電圧)になった時,光電子は陽極に到

$$eV = E_k = h\nu - e\phi \qquad (2) \qquad V = \frac{h}{e}\nu - \phi \qquad (2)'$$

達できなくなり、光電流はゼロとなる。今、既知の波長をを持つ幾つかの光の阻止電圧を求め、 (2)' により整理すると、その直線の勾配からプランク定数 h が、縦軸との交点から仕事函数 φ が得られる。この原理により、実際に測定する方法は、光源として100Wの白熱球を用い、図 2 の様に透過特性と限界波長が与えられている赤、橙、緑、青の4 つのフィルターについて各 々の阻止電圧を求め、プランク定数 h を決定する。阻止電圧の決め方は、増幅器の増幅率を調 節して、逆電圧を加えない時、丁度100μAの光電流が流れるようにセットし、逆電圧を増加さ せ、光電圧が1μAないし 2μA の時の電圧を阻止電圧として求めさせている。しかし、この方

図2 フィルターの特性

法の通りにやると得られる値は真値の30%~60%程度のものであり(島津のカタログにある測定例では h = 3.6×10⁻³⁴J·s)、装置の名前にうたわれているプランク定数の決定という立場から言うと、定数を決定することにはほど遠く「プランク定数を決定できる方法を原理的にやってみる」という域を出ない。

このように測定結果の悪い原因として考えられることは、図2で示されているように、各フ ィルターの限界波長より短波長側に尾を引いて光が漏れており、そのために、阻止電圧を決め る臨界光電流値を1µAないし2µAとしているが、これらの値には科学的な根拠がないことで ある。更に、実際の逆電圧-光電流特性は図7に示される様な曲線となるが、低電流となった 領域の曲線が横に寝ているため、僅な臨界光電流の違いが大きな阻止電圧の違いをもたらして おり、この臨界値の判断が決定的に重要な役割を果すものとなる。測定上の問題として考えら れることは、阻止電圧は低電流の領域で決定されるから、低電流の読み取りの精度の良いアン メーターを用意しなければならない。プランク定数の測定については実験教育上の見地から幾 つかの論文が見られるが^{1,2,3,4,5)},ほとんどが光源としてスペクトル線を用いており、白熱光に フィルターを用いて行う実験では良い値は得られていない。本研究に於いては、阻止電圧を決 定する臨界光電流値を科学的に判断するために光源の強度の波長依存と光電管の放射感度を調 べ、打ち出されている光電子の波長分布を明らかにし、かつ、ナトリウムランプを光源とした 測定により阻止電圧以下の逆電圧を加えられた場合でも陽極に到達する光電子数は逆電圧の増 加と共に減少することを示し、これから阻止電圧を決定する臨界光電流値を合理的に推定した。 更に、線スペクトル光源を用い各線スペクトルの阻止電圧を決定することによりプランク定数 を求めた。これらの測定は、装置に附属した計器より感度の良い計器を用い(アンメーターと して岩通製のデジタルアンメーターを用いた),雑音となる光を完全に遮断し、時間を充分かけ て行われた。

なお、この研究は第2著者以下の著者及び測定データーの一部を提供してくれた2名の諸君 がいずれも2年次の時に第1著者の指導のもとに行われたものである。

2 光源及び装置の特性

実験指導書による基礎的な測定方法は、100W の白熱球を光源として赤、橙、緑及び青の4 種類のフィルターを使用して行なわれるものである。各フィルターの特性と限界波長は、図2 に示されている。実験指導書には、図2のフィルター特性のみが示されるだけであるが、阻止 電圧を決定するための臨界光電流値を決めるためには、実際に打ち出されている光電子の波長 分布を具体的に知らなければならない。その為には光源の白熱球の輻射強度の波長分布および 光電管の放射感度特性を知らなければならない。100W 白熱球の輻射強度の波長分布は物理定 数表によって得た⁶⁾。又、用いられている光電管は浜松テレビKK製の「1P39」であり、そ の放射感度は同社の製品カタログから得た⁷⁾。図3にそれらをまとめて示す。可視光域での白 熱球の輻射強度は、波長が長くなるに従って増加し、光電管の放射感度は、波長が長くなるに 従って減少している。求める光電子数の波長に対する分布曲線は、

(白熱球の輻射強度)×(フィルターの透過率)×(光電管の放射感度)

図3 白熱球の輻射強度の波長依存及び光電管1 P39の放射感度の波長依存

で与えられ、結果を図4に示す。図2のフィルター特性だけが与えられている時点では、各フ ィルターでの光電子の強度と波長依存に随分差があるように感じられるが、図4の曲線はいず れも良く類似した形をしており、強度も高々1.5倍程度の差に留まっていることが解る。逆に この様な結果を導く目的意識によってフィルターの選択がなされていることを窺い知ることが

図4 光電子数の波長依在

各フィルターの限界波長は、点線により図中に示されているが、限界波長より短波長側の部 分は図2で見る印象よりも実際は随分大きな比率を占めていることが解り、この短波長側の "は み出し"部分が阻止電圧を決定する時にどれだけの光電流への寄与があるかを評価することが 当面の課題である。

その目的にそって我々は、ナトリウムランプを光源として測定を行い図5の曲線を得た。比較 のために、光電子はその運動エネルギーが電場ポテンシャルを上回る限りすべて陽極に到達す ると仮定し、ナトリウムランプを事実上D線のみとした理想的曲線を図6に示す。D線に対す る阻止電圧は0.6~0.7V付近とみられるが、理想曲線に対して測定曲線は阻止電圧に至るまで に0.2~0.4µA 程度、すなわち初電流値の2/1000~4/1000程度までに減衰し急激な電流変化 が起こるのではなく連続的にゼロに向っている。このようにエネルギーの大きい光電子も逆電 圧を加えられると陽極からそらされてしまい、到達する電子数は逆電圧と共に減少する。図5 の結果から推定すると図4に於いて与えられた各フィルターの限界波長より短波長側の光によ る残存電流は、この限界波長に対する阻止電圧を加えた時、1/1000程度に減衰していると判 断できる。

3 測定及び結果

1 連続スペクトル光源による測定

図7に各フィルターをつけて測定した場合の逆電圧一光電流特性を示す。測定は、外部光を 完全に遮断した状態で、0.02Vずつ逆電圧を増加させては測定し、3回の測定の平均値をもっ て測定値とした。この図に於いて、各フィルターに与えられた限界波長に対応する阻止電圧附 近では、勾配が小さくなり曲線が横に寝ているため、阻止電圧を決定する際に大きな誤差を生 じ易い。従って、以下に詳述する3つの方法、即ち、(i)電流対数法、(ii)図式微分法、(iii)微 分対数法により阻止電圧を決定した。

(i)電流対数法――光電流を対数尺により示す方法である。図7の曲線を片対数グラフを用いて プロットしたものが図8である。グラフのスケールを対数尺に取るだけで低電流域の曲線は立 ち上って勾配を急にしており,阻止電圧を精度良く決めるには好都合となる。

橙のフィルターは、ナトリウムランプのD線より少し短波長側に限界波長を持つ。従って、 この波長に対応する阻止電圧を加えられた時、D線と同じ程度だがそれより少し強い減衰を受 けることが推定される。ここでは、減衰率を、1/1000~2/1000程度と判断した。図4に示さ れる橙の限界波長より短波長側のゼロ電圧の時の寄与は、面積比から概算すると10%程度、即

図 7 各フィルターの光電流-逆電圧特性

ち、10μA程度である。この10μAが1/1000~2/1000程度に減衰した時、即ち、0.01~0.02μ Aに達した時が橙の限界波長に対する阻止電圧が加えられた時である。各フィルターの限界波 長に対応する阻止電圧を加えた時の減衰率は波長の短い程、著しいので、赤フィルターの阻止 電圧はもっと大きな電流値で、緑や青のフィルターの阻止電圧はもっと小さな電流値で決定す べきであるが、実際の電流値を実践的に決定するのは困難であるので、本研究に於いては簡単 化して、すべての阻止電圧を0.01μAあるいは0.02μAの時の電圧として決定した。

こうして得られた阻止電圧と振動数の関係を式(2)に従ってプロットしたものを図9に示す。 この直線の傾きから得られたプランク定数は、光電流が0.01 μ Aの値を阻止電圧とした時、h=6.81×10⁻³⁴J·s、0.02 μ Aの値を選んだ時は、h=6.65×10⁻³⁴J·sであった。この様に臨界電流 値はあくまで概算による値であるが、Naランプの実測の結果から減衰効果を推定することに より、真値からの誤差率0.3~2.7%の非常に良い値を得るところとなった。

(ii)図式微分法 今,逆電圧 - Vが加えられ電流Iが流れているとする。電流Iは毎秒陽極に 到達している全電子数に比例している。逆電圧を - (V+dV) に増加させると,電流は(I-dI)と なった。電流dIは逆電圧を - Vから - (V+dV) に増加させた時に陽極に到達できなくなった電 子数に比例している。従ってdI/dV は逆電圧を単位電圧変化させた時に到達できなくなった電 子数を表わす。図10は,図7を図式微分して得たdI/dV - V曲線である。

図7に於いて、微少電流がかなり尾を引いていることから、限界波長に対応する阻止電圧は、 図10に於いてはdI/dVを事実上ゼロに外挿した電圧をとった。こうして得られたプランク定数 は、h=5.75×10⁻³⁴J·sであった。

(ii)微分対数法 図10の微分法のグラフに於いては、阻止電圧附近の曲線は図7の*I*-V曲線 と同様、横に寝ており阻止電圧の決定精度を悪くしている。従って電流対数法と同じ目的で、 微分値を対数尺で取り、図11に示す。

電流対数法では、初電流を基準とすれば1/10000に減衰するところをメドに阻止電圧を決定した。これに従って、図11に於いても微分値が1/10000程度に減少する点、 $dI/dV=0.1\mu$ A/Vの値における逆電圧を阻止電圧とし決定した。こうして得られたプランク定数の値は、 $h=6.33\times10^{-34}$ J·Sであった。

2 線スペクトル光源による測定

線スペクトル光源を用いて測定した場合の解析と結果は、進上の報告³⁾に詳しく述べられて いる。図12は、比嘉政勝君及び永田浩君による Cd ランプを光源とした場合の測定結果である。 ひとつの線スペクトルによってたたき出された光電子は逆電圧が増加すると共に陽極に到達す る数がほぼ直線的に減り、eV がその運動エネルギーに等しくなると完全に到達しなくなる。 その過程は、図12に於いてひとつの直線ブランチとして現われる。従って、ひとつの直線ブラ ンチと次の直線ブランチの交点の逆電圧をその線スペクトルの阻止電圧として決定できる。こ の阻止電圧決定法は屈折法と呼ばれている。又、図12では短い波長の強い線スペクトルの場合 には、その阻止電圧に於いて電流が一拠に減少することも見られる。永田君と比嘉君は微分法 により精度良く阻止電圧を決定しているが、ここでは屈析法によって決定した。こうして得た 一連の阻止電圧は図12に矢印で示す。この阻止電圧がそれぞれどの波長の線スペクトルに対応 するかは、図13に示す方法で決定した。一枚のグラフ用紙に各線スペクトルの振動数を縦線と して示し、もう一枚のグラフ用紙に大きめにスケールを取って阻止電圧のセットを記入し、両 者の角度及び位置を変化させては、全部が一致するところを見い出して、各スペクトル線と阻 止電圧を対応させた。こうして得られたプランク定数の値は、 h=6.63×10⁻³⁴J·s であった。

図14は, Hg ランプを光源とした場合の測定結果である。Cd ランプと同様にいくつかの直線ブランチに分割される。Cd ランプと同様な方法でスペクトル線と阻止電圧の対応を定め, $h = 6.80 \times 10^{-34}$ J·sという値を得た。

4 ま と め

以上の様にして,得られた結果をまとめて表1に示した。値はいずれも真値の数%以内にあ り,従来得られている値に比較すれば,充分満足のいくものである。本研究に於いて新しく得 られた事柄は以下の諸点である。

図13 阻止電圧とスペクトル線の対応図

図14 Hgランプの光電流-逆電圧特性

表 1

阻止電圧の決定法	hの値 (10 ⁻³⁴ J·s)	誤差(%)	決定条件
電流対数法	6.81 6.65	2.7 0.3	0.01µA 0.02µA
微分外挿法	5.75	13.3	0 へ外挿
微分対数法	6.33	4.5	0.1µA/V
屈接法 (Hg)	6.80	2.6	直線の交点
屈接法 (Cd)	6.63	0	11

標準值 6.63×10-34 J·s

(1) 光源(100W白熱球) の強度の波長依存,フィルター特性及び光電管分光特性を考慮し て実際に打ち出されている光電子数のエネルギースペクトルを得た。

(2) ナトリウムランプの測定結果から、逆電圧を加えた場合の光電流の減衰の程度を知り、 各フィルターの臨界光電流値を合理的に推定し阻止電圧を決定した。その際、減衰の程度が逆 電圧の大きさのみに依存し、光の振動数や、初期電流の大きさには無関係であると仮定したが この仮定が現実と一致しているかどうかは今後の研究により検証したい。

(3) 臨界光電流値は、初電流(100µA)に比し10000分の1程度と推定される。従って対数 法によらないと臨界光電流値に対応する阻止電圧値は正しく求まらない。本研究では、白熱電

24

球を光源とする場合としては、最も良い値(誤差率0.3%)を得ている。

(4) 図式微分法により陽極に到達できなくなった光電子の電圧依存特性を得,このカーブからプランク定数を得た。ここでは対数法によらない図式微分法によっても5.75×10⁻³⁴Js という値を得たが,この値は対数法によらない報告値としては最良の群に属するものである。

(5) 線スペクトル光源による測定に於いては各スペクトルによる光電流が逆電圧と共に,ほ ぼ直線的に減衰しているので,減衰曲線を直線で近似し,各阻止電圧を得た。又,波長と阻止 電圧の対応を図式的に得て,これから非常に精度の良い結果を得た。

謝辞

カドミウムランプを光源とする精度の良い測定結果を提供してくれた永田浩君及び比嘉政勝 君に深く感謝致します。また,原稿の完成及び論文の発表会に際しましては,具志堅清明君は じめ磁性体研究室の方々に大変な便宜を計っていただき,お世話になりました。ここに深く感 謝致します。

参考文献

- 1)中込八郎:物理教育18(1970)90.
- 2) 中川保雄:物理教育24(1976) 22.
- 3)進上芳雄:物理教育26(1978)125.
- 4) 出口孝彦, 北松孝一: 物理教育27 (1979) 35.
- 5) 島田昌敏, 岡本哲行:物理教育21 (1973) 176.
- 6)物理定数表(飯田修一他編集,朝倉書店,1979年) p.184.
- 7) Hamamatsu 光電変換素子(浜松テレビ株式会社, 1973年) p.4