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A Note on Moon’s Problem -- Crossings
in Random Graphs

Hiroshi MAEHARA®

1. Introduction

Let G be an (abstract) simple graph. Place the vertices of G randomly on the surface of a
unit sphere S so that all vertices of G are distributed independently and uniformly on S. Connect
two vertices @, b by the shortest arc on S whenever {a, b} is an edge of G. The resulting
configuration is called a random drawing of G on S. A random drawing of G on a hemisphere
H of S is defined similarly. The crossing number of a random drawing of G is the number of
pairs of arcs that interscet each other in a point interior to both. (All ‘singular’ cases of special
position may be ignored as they occur with probability zero.).

Moon studied the crossing number ¢(K, : S) in a random drawing of the complete »-graph
K,onS.In [2] he stated that the distribution of ¢(X, : S) is asymptotically normal as #
tends to infinity. However the argument to show the asymptotic normality of ¢(X, : S) was
incorrect [3] .

We show here that the “skewness” of the distribution of ¢ (X, : S) tends to a positive
constant as # tends to infinity. Hence the distribution of ¢(K, : S) is never asymptotically normal.
On the other hand, it is proved that the distribution of the crossing number ¢ (X, : H) in a random
drawing of K, on a hemisphere H is asymptotically normal. It is also shown that among all
graphs G with » vertices and m edges, the expected value of the crossing number in a random
drawing of G on S (or H) takes the largest value when the degrees of the vertices of G are as
equal as possible.

2. Geometric probability on the sphere
We recall here some results on geometric probability on a unit sphere S for later use (see
[ 4 1). For non-antipodal points a, & of S, ab denotes the shortest arc (and its length) joining
them. A subset K of S is convex if K is hemispherical and ab C K for every non-antipodal a, b
of K.
(2.1) The probability density function of the length s = ab for two random points a, b
on the unit sphere S is (1/2) sin s.
(2.2) The probability that a “random great circle” intersect a convex set K of perimeter
Lis L/ (2=).
(2.3) The mean distance between two points on the unit hemisphere H is 4/=.
(2.4)  The probability that four random points on the unit hemisphere H form a convex
spherical quadrilateral is 3—24/z%
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3. A complete graph on a unit sphere

Consider a random drawing of K, on S and let V be the vertex set of the drawing. Let
x(abcd) be the number of crossings inthe six arcsab, ac, ad, bc, bd, cd. Then x(abed) is a random
(0, 1) -variable, and the crossing number ¢(X, : S) is written as

c(Kp:S) = 2 x(abed)

where the summation is taken over all 4-subsets {a, b, ¢, d} of V . The conditional probability
that cd crosses ab given ab=s follows easily from (2.2) :

Prob[cd crosses ab | ab=s] = s/(dxn).
Then by (2.1) we have the expected values of x(abcd) and ¢(K,: S):
Elx(abed)] = 3/8, E[c(K,:8)] = ( §)@3/8).

Three points a, b, ¢, determine three great circles of the sphere S, and they divide the surface
into eight spherical triangles almost surely : the triangle T,,. enclosed by ab, bc, ca; the triangles
Tas, Ther Tea, each having one side in common with T,; the triangles T,, T,, T., each having
one point in common with T,,., and the triangle T having no point in common with Tg,.. It is
easily seen that the arcs ab and cd intersect each other if and only if the point 4 is in the triangle
T'2s. Since the probability that ¢d crosses ab under the condition ab=s is s/(4x), we have
E(area(Tas) | ab=s]/(dx) = s/(4x), where E[ | % %] denotes the conditional expectation
under the condition * *. Since x(abcd) takes the value 1 if and only if 4 falls in one of Tgs, Toc,
T.q, and since area(T,,)=area(T,.), . .., area(T,,.)=area(T), we have.

E(x(abed) | ab=s) = Prob[x(abed)=1 | ab=s]

(3.1)

Efarea(Ts,) + area(T,) + area(Tca) | ab=s]/(47)

1/2 — Elarea(Ta) | ab=s]/(4x) = 1/2—s/(4x).
Hence, for different @, &, ¢, d, ¢, £, we have

E (x(abcd) x(abef) ) E[ (1/2-s/(4n) )?]

i

(57 —4)/(3272).

Let y(abed) = x(abed)—3/8. Then

E [ylabed) y(cdef) ] = (n*—8)/(647?).
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(Note that y(abcd) and y(defg) are mutually independent as well as y(abcd) and y(efgh) are.)
Hence the variance of ¢(K,) is

olny=E[Ey(abed) ¥] = ( §)("54)( §)(x*~8)/(647%)+ O(n?)

= [(x*-8)/(2° n®) ] n*+ O (w°).

4. The skewness
We want to estimate the third central moment us(n) of c(K, : S) when # is large. First we

consider the expected value of the product z = x(abcd) x{defg) x(ghia). From (3.1) it follows
that

E{z | ad=s,dg=t, ga=u]l = [1/(47) ] @r-s) Qx-t) 2rn—u)
and hence
E[z] =7/2"-[1/(4=)]® E[(ad) (dg) (ga)] .
Let f(s, t, v} be the joint probability density function of s=ad, t=dg, u#=ga, and let f, (s,
1, #) be the joint probability density function of s, ¢, # when the random three points a, d, g are
chosen independently and uniformly on a fixed hemisphere H of S. Then

fu (s, ¢, u) Prob (a, d, g € H) =f(s, ¢, u) Prob (Aadg- " G =¢)/2,

where G is the great circle bounding H, and Prob (Aadg N G = ¢) is the probability that G
does not cut the triangle Aadg provided that the perimeter of Aadg is s+ {+ #. Then from (2.2)

Prob (Aadg N G = ¢) = 1—-(s+1t+u)/(2x).
Hence we have

fu (s, t, w) = 4f(s, t, u)—[2(s+t+u)/x] f(s, t, u).

Multiplying both sides by (s) (!)=(ad) (dg) and integrate (in full range of s, ¢, # such that s,
¢, u form a spheirical triangle), we get

E [(ad) (dg) | a,d, g € H] = 4E[(ad) (dg)] — (4/=) E[(ad) (dg)]
—(2/7) E[(ad) (dg) (ga)] .

_3._
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Since E {(ad) (dg)] = E[ad]? = (x/2)? and E [(ad)* dg] = E[(ad)?] E [dg) = (=* —4n)/ 4,
we have

E((ad) (dg) (ga)] = 2n—(n/2) E[(ad) (dg) | a,d, dE H] .
On the other hand

El(ad) (dg) | a,d, g H] = E[w(d)? | d=H],
where w(d) = E(ad) | a =€ H with d fixed] . Since w(d) is continuous in d € H and not
constant (because : by (2.3}, E[ w(d) | d€EH ] = 4/x, however, if d is the “center” of H
then w(d) = 1 by (2.1} ), we must have

E[w@d)? | deH] > E[w(d)| deH]*= (/=)
Thus we have
E [(ad) (dg) (ga)] < 2z—(=/2) (4/z)* = 2=—8/m = 3.7367. ..
< (=/2P = 3.8757....

and E[2]-(3/8) > 7/2"~[1/(4=)]® (x/2)*—(3/8)* =0. Hence

b . = Elyabcd) yldefg) y(ghia)] = E[z] —(3/8)° > 0.

Now it is not difficult to see that the third central moment u; (%) is

#(m) = E[{Zy(abed) ] =(5)(§)(3)36)p +0 (n)

= (p/8) n°* + O(n®.
Thus the skewness of ¢c(K, : S) is

us(n) /o (n) = (p/8) [2° z* / (2 —8)]*"* + o(1),

which tends to a positive constant as » tends to infinity.

5. A complete graph on a hemisphere
Here we prove the asymptotic normality of the crossing number ¢ (K, : H) on a hemisphere
H. This is a simple application of a limit lemma proved in [1] . First we state the lemma.
Let N be the set of natural numbers and » a positive integer. Suppose that for every 7-
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element subset A of N, there corresponds a random variable x(A) defined on a common
probability space and having the same mean §. We impose the following three conditions.

(5.1) For any finite number of »-subsets 4, B,...,D C N, the expected value
E[x(A4). .. x (D)] exists, and for any bijection 7: N - N, E[x(zA).. .x(zD)] = E[x(4)...
x (D)] .

5.2) If(Au... UBYNI(Cy...u D) = ¢,then
E[x(4)...x(D)] = E[x(4A) ... x(B)] E[x(C)...x(D)] .

Under the condition (5.1), the covariance cov [x(A4), x(B) ] of x (A) and x(B) depends only
on | A N B |. the number of elements in A N B. Let c(m) = cov [x (A),x(B)] il ]| A

N B | = m. Let { be the minimum value of m such that ¢(m) + 0.
(5.3) If|ANBU...yD)| s tandlANBI|< ¢, ..., |AND |< ¢,
then E{x(A). .. x(D)] = E[x(A)] E[ x(B)...xD)] .

Note that if { = 1 then (5.3) automatically follows from (5.2).

LEMMA. Suppose x(A ) (A runs over all r-subsets of N ) salisfy (5.1), (5.2), (6.3), and let
s(n) be the sum of x(A) for all r-subsets Aof (1,2, ..... ,nt . Then [s(n)—pu /o lends
lo the normal distribution with zero mean and unit variance as n lends to infinily, where

w=(D)0 et = [c®n 1/ (#0011

Now we proceed to the proof of asymptotic normality of the distribution of ¢ (K, : H).
Consider a countably infinite number of random points on the unit hemisphere H, distributed
independently and uniformly on H. Label these points by natural numbers. For any 4-subset A
= {a,b,c,d} of the natural numbers, let x(4) = x (abcd), the number of crossings in six arcs
ab, ac., ad, bc, bd, cd. Then x(abcd) = 1 if four points a, b, ¢, d, form a convex spherical
quadrilateral, and = 0 otherwise. Thus : = E[ x (4)] = 3-24/x* by (2.4), and x(A) s clearly
satisfy the conditions (5.1), (5.2). Furthermore, ¢(K,: H) = s(#), the sum of x(A) for all 4-
subsets of {1,2,...,n} .

Let v(a) = E[ x (abcd) | a:fixed] . Then as a function of @, »(a) is not constant. This
is seen as follows. Suppose a is fixed on the boundary of the hemisphere H, and b, ¢ be random
points on H. Then H is divided by the three great circles determined by &, b, ¢, into six triangles
(almost surely) : the triangle Tasc enclosed by ab, bc, ca; the triangles Tas, Toc, Tca, €ach having
one side in common with Tasc; and triangles T, T, each having one point in common with Tasc.

Further, these six triangles have the same expected area, as easily seen. Since x (abcd) = 1if
and only if d falls in Tap or Ty or Teq, we have E[ x (abcd) ] = via) = 1/2 + 6. Hence,
when « varies in H, v(a) also varies, and hence E[ x (abcd) x (aefg)] = E[v@? ] >

6. Thus c (1) = cov[ x (abdd), x (aefg)] > 0, and hence we can apply the lemma. Therefore,
the distribution of ¢(K,: H) is asymptotically normal as # —oo.
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6. Crossings in a general graph

Let G be a simple graph with » vertices and m edges. Let V be the vertex set of G. Denote
by ¢(G)the number of crossings in a random drawing of G on a unit sphers S or on a hemisphere
H. We show here that the expected value of ¢(G) is

(6.1) E[c(G)] = (8/2[m*+m— 3 deg (a)* ] ,
aeV

where 6 is the probability that two non-adjacent arcs ab and cd cross each other, and deg (a) is
the degree of the vertex a of G.

Let { a, &} be any edge of G. Then there are
m—(deg(a) + deg(d) )+ 1
edges not incident to a or 4. Hence
E[c(G)] = = [ m—(degla)+deg(b))+1] 6/2
(where the summation is over all edges {a, b } of G)
= (68/2) [m*+m— 3 (deg (a)+deg(b))] .
In the summation = (deg(a)+deg(b)), each deg(a) appears exactly deg(a) times. Hence
S (deg(a)+deg(b)) = a é v degla)®.

This proves (6.1).

Let d be the average degree of G. Then the “variance” of deg(a) (a € V) is
( £ deg(a)? }/n—(d)*. Therefore, from (6.1) it follows that among all graphs with » vertices and
m edges, E[ ¢(G) ] takes the largest value when G has the minimum variance of deg (a).
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