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A Note on Quotient

Hiroshi MAEHARA *
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Graphs

Abstract

Two kinds of quotient graphs: reduced graphs and modified graphs, are
considered and enumerated.

1. Introduction

Our objects are two kinds of quotient graphs. One is the reduced graph introduced by

Roberts to characterize the indifference graphs [4]. The other is the modified graph use~ to

describe bounds on a certain combinatorial dimension of a forest [2]. The definitions of these

two quotient graphs are very similar and there is a simple relation between them.

In this note we will show some simple results concerning these quotient graphs and e­

numerate them by a typical application of Robinson's composition theorem [5]. The labeled

case is also treated.

2. Some simple results

Throughout, a graph means a finite simple graph. The vertex set of a graph G is de­

noted by V (G). For a vertex x of G, N ( %) and N [%] denote the neighborhood of % and

the closed neighborhood of %, respectively, that is, N( %) is the set of vertices adjacent to %

and N [x] = N (%) U {%}. Define two binary relation a and P on V (G) by

% a y -- N(%) = N(y).

x P Y -- N[%] = N(y).

These are clearly equivalence relations on V (G).

The reduction G* of a graph G is a graph obtained from G by cancelling out the e­

quivalence relation p, i. e. the vertices of G* are the equivalence classes and adjacency holds

between equivalence classes if and only if it holds between their representatives. See Figure

1. The modification GO of G is similarly defined using the equivalence relation a instead of

P. A graph G is reduced if G* =G and is rno dified if GO = G.

It is obvious that G** =G* and GOO = GO. Hence G* is a reduced graph and GO is a
modified graph. Moreover, G* and GO are embeddable in G as induced subgraphs, as easily

seen.
Since x a y in G if and only if % p Y in the complement G of G, we have the follow­

ing theorem.
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Theorem 1. GO ( G ) *.
Let ~ be the set of all reduced graphs and Jf{ be the set of all modified graphs.

Corollary 2. The correspondence G -+ G is a bijection from ~ to .Af..

\.
'.

reduction

reconstruction

."

Figure 1

Reduced graphs and modified graphs are considered as basic patterns of graphs In the

following sense.

Theorem 3. Any graph G is obtained from G* ( or GO ) by "substituting" for each vertex

of G* (or GO) an appropriate Kn(or K n ).

For the proof, see Figure 1.

It is intuitively clear that the reduction does not raise the connectivity of a graph.

What about the modification? Denote the connectivity of G by IC (G).

Theorem 4. IC ( GO) < IC ( G) and IC (G*) < IC ( G ).

Proof. For X C V (G) and x e V (G), we denote by X O and x O
, the images of X and x

under the natural projection V ( G) - V (Go ). Let -k = Ii, (G). Then there is a subset

U c V(G) of size k such that G- U (the removal of U from G ) is a disconnected graph or

a trivial graph. If G- U is a trivial graph then GO - UO is a trivial graph or empty. Since

the size of UO should be at most k, we have Ii, (GO) <k in this case. Suppose now G - U is
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disconnected and let x,y be two vertices from two different components of G-U. If XO =F yO

then XO and yO must belong to different components of GO-Vo. Hence /C(GO) <k. If XO= yO

then N(x) = N(y) C U in G. Hence Nexo) C U O in GO and the degree of XO in GO is at

most k. Hence /C(GO) -< k, too. The reduction case is easy and omitted.

3. Unlabeled enumeration

By Corollary 2, the number T" of reduced graphs of order n is equal to the number of

modified graphs of order n. To find Tn ' we want the cycle index sum Z(..IQ,,) for the set ..IQ"

of all reduced graphs of order n. Once Z(~,,) is computed, the number Tn is found by

summing up the coefficients. We denote by 9n the set of all graphs of order n.

Theorem 5. Using the notation in [ 1],

(*)
00 00

.~ Z(..IQ,,) [.~ Z(Sj)] =
n""1 J=1

00

~ Z(9,,).
"=1

This follows easily from Theorem 3 and Robinson's composition theorem [5] (see also

[1, p. 182] ) .

Comparing the terms of order n in both sides of (*), we see that Z(..~n) consists of

the terms of order n in

Since Z (9n) = Z (S~2) ; Sk, 2) (see [ I, p. 166]), we may regard Z ( 9n) as known. Hence

starting from Z (~1 ) = S I' we can derive inductively Z (~2 ), Z (.;Q3 ) , ....

The explicit formula of Z(9,,) for 3 -< n <8 is easily obtained from the formulas of

Z (8,,) and Z (S~) in [1, Appendix III]: We have only to replace the ceofficient of each

term of Z(S,,) by the 'corresponding' term of Z(S~2) in which, however, every variable
5k should be replaced by 2.

For example, from

1 4 2 2
Z(84 ) = 41(5

1
+ 65

1
5

2
+ 8S

1
5

3
+ 35

2
+ 65

4
)

and

Z (84(2) = 4\ (5: + 65:5: + 85: + 35:5: + 65
2
5

4
),

we have

Z (~) = i! (2
6
5: + 6 . 2

2
• 2

2
5:5

2
+ 8 . 2\5

3
+ 3 . 2

2
• 2

2
5: + 6· 2 . 25

4
).

After some calculations I obtained the following results for Z (~n).

1 2 1
Z(.;Q ) = - 5 + - 5

2 2 I 2 2
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ze~a)
2 3 1

=3 s1 +SI S2 +-s3 3

Z(~4)
4 4 3 2 2 2 1

=3 S1 +2 5
1
5

2 + 3 S1S3 + S2 + -s2 4

From these results the values of r n ,n -< 6 in Table 1 follow. To calculate Z (~ 1 ) by
hand is a hard task, but its coefficient sum is rather easily obtained.

4. Labeled enumeration

Let :7 be a family of graphs and Z ( .:7) be the cycle index sum of graphs in r7. Let

F (x) be the exponential generating function (egf) for labeled enumeration of graphs in .7;

that is,

00

F(x) = ~ F n X"/n!
n=1

where F n is the number of different labeled graphs of order n obtained when we label each

graph of :7 in as many ways as possible. We will follow the notation in [1 ].

Lemma. F(x) = ze c'7 ;x, 0,0, ... ,0)

Proof. Let G be a graph of order n in .:7 and reG) be the automorphism group of G.

Then the number of ways of labeling G is

.l(G) = n!/ I rCG) I,

where Ir( G) I is the cardinality of r (G), see [ 1, p. 4]. For a permutation a e r (G),

let j (a, k ) be the number of cycles of length k in the disjoint cycle decomposition of a.

Then a is the identity element of r (G) if and only if j (a ,k ) =0 for all k>- 2. Now since

the cycle index of r (G) is

"Z( G) = I r (G) 1-1 ~ n Ski1a,kl
aerlGI k=l

we have

-4-



MAEHARA : A Note on Quotient Graphs

Therefore

Z ( c7; x, 0, 0, ...,0) = ~ Z ( G ;X , 0" ..,0) = ~ 1. ( G ) x "In! = F ( x ) .
G e,7 G e:;r

Now let JJ, C:,:7 be three families of graphs, Z ( JJ), Z ( C:), Z (:7) be their cycle index
sums, and D(x), E(x),F(x) be the egf's for labeled enumeration of graphs in JJ, in e, in

~

Corollary 6. If Z(..l» [z(e)] = Z(c7) then D(E(x)) = F(.x).

Theorem 7. Let R" be the number of labeled reduced graphs of order n. Then

" (,:,
R" = 1: s (n, m) 2 ,

m"'l

where s( n ,m) is the Stirling number of the first kind.

Pnof. Let X be the set of all complete graphs and 9' be the set of all graphs. Let R

(x), K(x), G (x) be the corresponding egf's for labeled enumeration. Then by Theorem 3,

Z(~) [Z(X)]= Z(9'), and hence R(K(x»= G(.x) by Corollary 6. SinceK(z) =ez-l

and

we have

00

~ R" (eX
- 1) "/n! =

""'1

ki: 2( t·1zk /k!.
k "'I

Note here that (ez-l)"/n! is the egf of S(·,n), the Stirling number of the second kind

(see [3, p. 43]), that is,

00

~ S ( k , n ) Zk /k !.
k"'l

So we have

i< iR"SCk,n»xk/kl =
k "'I ""'I

and hence

00 1~1
~ R"SCk,n)= 2 ,k =1,2,3, ...•

""'1
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Now inverting this relation by the Stirling number of the first kind, we have the theorem.

Table 1. Number of reduced graphs.

n 1

1

1

2

1

1

3

2

4

4

5

32
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