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1. Introduction

Liquid films falling down a vertical or inclined surface show a hydrodynamic

instability which causes surface waves evolving on the films. The earliest theoretical

studies into the hydrodynamic instability started with the linear stability analysis

based on the Orr-Sommerfeld equation. The Orr-Sommerfeld equation is derived from

the Navier-Stokes equations and the continuity equation by introducing the

two-dimensional disturbance rJ represented by

1] =8 expf(m - wt )} (1)

where 0, W (=2rcfho/uo, ho: Nusselt film thickness, Uo: average velocity, f: wave

frequency) and a (=2rrho/A, A: wavelength) are the initial amplitude, the

dimensionless angular frequency and the dimensionless wave number. When a IS

allowed to be complex, sinusoidal waves with an amplitude 0 at the film inlet

exponentially grow or decay 'spatially' in the direction of film flow. When W IS

complex, the film is initially covered with sinusoidal waves with amplitude 0, which

exponentially grow or decay with time or 'tempOl:ally'. Benjamin (1957) and Yih

(1963) found approximate analytical solutions to the temporal Orr-Sommerfeld

equation for the cases of low Reynolds number or very low wave number a. Then,

approximate solutions not restricted to small Reynolds number were developed by



Anshus and Goren (1966) and Krantz & Goren (1971). Krantz & Owen (1973)

showed that the approximate solutions to the spatial Orr-Sommerfeld equation are in

much better agreement with experimentally measurements of wave growth rates for

falling films of low surface tension on a vertical surface. Whitaker (1964) and Pierson

and Whitaker (1977) numerically solved the Orr-Sommerfeld equation without any

assumption for a water film falling down a vertical surface at Reynolds numbers Re =

10/3, 20/3, 100/3, 200/3, 1000/3 and 2000/3, and found that the solutions to the spatial

and temporal equations are in good agreement with each other except at Re = 100/3

and 200/3 where discrepancies occur in the wave number am corresponding to the

maximum growth rate by % and %, respectively. These linear stability analyses

for falling films on a vertical surface showed that wave growth rate begin at the

origin, rapidly increases with wave number to the maximum and then monotonously

decreases, and that the dimensionless wave velocity c/"= c/uo is 3 at vanishing wave

number, rapidly decreasing with wave number to the minimum, and then

monotonously increases. The monotonously decreasing growth rate curve intersects

the axes of zero growth rate where the disturbances are 'neutral', i.e. they neither

grow nor decay.

The comparison between the solutions to the Orr-Sommerfeld equation and the

experimental results (Anshus and Goren (1966), Krantz and Owen (1973) and Pierson

and Whitaker (1977)) demonstrated that the solutions of the wave number and the

phase velocity of the fastest growing waves roughly predict the experimental

measurements of wave number and wave velocity of waves at the inception line with

a several centimeter distance from the film inlet (Kapitza and Kapitza (1949),

Stainthorp and Allen (1965), Jones and Whitaker (1966), Strobel and Whitaker

(1969), Tailby and Potalski (1962) and Pierson and Whitaker (1977)). These waves



originated from the ambient noise and 'naturally' occurred on falling films on vertical

surfaces without any attempt to impose disturbances on the films.

Visible real waves on the films are not linear or not sinusoidal, but are nonlinear.

Approximate nonlinear stability theories have been developed to study the wave

evolution subsequent to the wave inception. Benny (1966) derived a single nonlinear

evolution equation for the film thickness from the Navier-Stokes equations and the

continuity equation by assuming small wave number (or long wave, i.e. holJ... • 1) and

low Reynolds number at which inertia is small. Lin (1969), Gjevik (1970) and Nakaya

(1975) derived the analytical solutions to the long-wave evolution equation and

Pumir, Manneville and Pomeau (1983) and Joo, Davis and Bankoff (1991) obtained

the complete numerical solution to the extended Benney type equation. They all

predicted finite-amplitude steady-traveling waves for wave numbers slightly larger

than the neutral wave number ac . Most of the predicted long waves have longer and

flatter valleys between shorter and steeper crests at Reynolds numbers of several units

(Lin (1970)). Recently Ooshida (1999) further developed the long-wave evolution

equation by combining the Pade' approximation with the long-wave expansion, and

showed that his solutions to the developed equation are in agreement with the

experimental results of steady traveling wave profile on a vertical ethanol film at Re =

9.1 by Kapitza and evolving wave profiles on a slightly inclined glycerin-water

solution films of f3 = 4.6 at Re = 23 by Liu et a1.

Alekseenko et al. (1985) derived coupled integral boundary layer equations for

film thickness and local flow rate by introducing a parabolic velocity profile in the

film and boundary layer assumption. Bunov, Demekhin and Shkadov (1984) assumed

steady- traveling waves and solved the integral boundary layer equations. They found

that there exist two families of waves, i.e. the first fani.ily has phase velocities smaller



than 3uo and transform wave profile with an decrease in wave number from the

neutral wave number a c from sinusoidal waves via double-peaked ones into the

negative solitary humps (steep and deep valleys), and the second family has phase

velocities larger than 3uo and transform the profile from sinusoidal waves via

tear-drop waves with a single front-running small wave into positive solitary humps

with front-running small waves. The profiles of the double-peaked waves and the

negative solitary humps of the first family are the same as these of the tear-drop

waves with a single front-running wave and the solitary humps, respectively when the

former profiles are turned upside down. The solutions by Demekhin, Tokarev,

Shkadov (1987) and Tsvelodub (1990) are in good agreement with the experimental

measurements of wave profiles on films falling down vertical walls at Re = 8.0 and

7.5 by Alekseenko, et a1. (1985) and Nakoryakov, Pokusaev and Alekseenko (1983).

The boundary layer equations without introduction of any velocity profile in the

film are derived by omitting the second derivative a21ax2 term in the Navier-Stokes

equations and introducing the long-wave approximation a/ay ~ a/ax, and first studied

by Shkadov et al (1970). Chang, Demekhin and Kopelevich (1993) numerically

solved the steady-traveling two-dimensional boundary layer equations and found the

two wave families which have basically the same characteristics as those found by

Bunov, Demekhin and Shkadov (1984). Their numerical solutions are in good

agreement with the experimental measurements of wave profiles on falling water

films on vertical walls obtained at Re < 31 by Kapitza and Kapitza (1949),

Nakoryakov et a1. (1985) and Stainthorp and Allen (1965). Chang et al also performed

stability analyses of these waves and indicate that all waves are unstable to

three-dimensional disturbances with small growth rate. Chang, Demekhin and

Kalaidin (1996) numerically solved the transient boundary layer equations with the



boundary condition of imposing very small amplitude disturbances of vanous

frequencies with random phases at the inlet of computation domains of 2.5 m or less

lengths in the flow direction for a water film falling down a vertical wall at Re - 8 or

less, and demonstrated that the solutions are in good agreement with the expetimental

measurements of the variation of wave velocity in downstream direction at Re :::; 45

and the variation of distance between the film inlet and the wave inception line with

Reynolds number at Re :::; 80. Their detail examination of the solution for a 2.5 m long

film at Re = 18.75 showed that the film surface is nearly smooth in a distance from the

entrance, where the disturbances of frequency f - fro exponentially grow, and then the

disturbances rapidly develop into visible sinusoidal waves, closely packed tear-drop

shaped humps and then solitary humps with front-running capillary waves in

approximately 10 wavelength distance. These solitary humps coalesce several times

with neighbors at different distances to change into saturated stationary humps with

larger velocities and larger separations. After wave inception, the average wave

velocity decreases to the minimum as nearly sinusoidal waves grow into tear-drop

waves and then gradually increase downstream to the saturated velocity at x - 1.2 m

or larger. This gradual increase in the wave velocity is caused by coalescence of

neighboring humps to form a single rump of larger peak.

Direct numerical studies of the complete Navier-Stokes equations have also been

performed by Bach and Villadsen (1984), Kheshgi and Scriven (1987), and

Malamataris and Papanastasiou (1991), and by Ho and Patera (1990), Nagasaki and

Hijikata (19 ), Salamon, Armstrong and Brown (1994) and Ramaswamy, Chippada

and Joo (1996) using the finite elemnt method and alternative methods, respectively to

handle the moving boundary, i.e. the film surface. Salamon et al. (1994) solved the

steady-state Navier-Stokes equations with the assumption of the existence of steady



traveling waves, and Nagasaki and Higikata (199 ) solved the transient Navier-Stokes

equations coupled with the periodic boundary conditions, i.e. the film thickness and

flow conditions at the film inlet are the same as those at the exit of the computation

domain. The solutions obtained with the periodic conditions predict 'temporal growth'

of waves which may approximately be converted to the wave growth in the flow

direction ('spatial growth') by assuming the wave propagation distance equal to the

integration of the wave velocity with respect to time. The spatial wave growth is

directly predicted with the non-periodic boundary conditions. Ramaswamy, Chippada

and Joo (1996) employed the non-periodic boundary conditions, as well as the

periodic boundary conditions with very long computation domains. These three

research groups used mesh points on the spines vertically stretching from the wall to

the film surface, and the mesh points slide up and down along the spine depending on

local film thicknesses varying with time. Ho and Patera (1990), Salanom et al. (1994)

and Ramaswamy et al. (1996) obtained fairly good agreement with the experimental

results of Kapitza and Kapitza (1949) and the solutions to the integral boundary layer

equations for profiles of solitary tear-drop waves and closely packed waves at Re = 6

and 20, respectively on a vertically falling film. Nagasaki and Hijikata (199 )

numerically constructed steady traveling waves, i.e. nearly sinusoidal waves, closely

packed tear-drop waves and solitary tear-drop humps with front-running capillary

waves, at Re = by decreasing wave number. Their results for wave velocity and

peak height are fitted by the empirical correlation by Nosoko et al (1996). Most

results of Ramaswamy et al. (1996) with the non-periodic boundary conditions were

obtained for a falling film on slightly inclined plane (inclination angle from a

horizontal plane, f3 = 6.4°) at Re = 179, which is imposed disturbances of a single

frequency at film inlet. They numerically constructed spatial growth of the



on the film flow. When two-dimensional and three-dimensional noise are diminished

tear-drop waves.

decreasing the frequency of disturbances. The disturbances at an intermediate

. .
Imposmgdistances whentwo-dimensionality m longerWaves keep

two-dimensional disturbances of a single frequency on the film flow at the inlet. The

as small as possible, wave appear at a distance from the film inlet, and then soon

and very slight imperfection of a film inlet manifold imposes three-dimensional noise

capillary wave and saturated solitary tear-drop humps with capillary waves by

wave via transient double-peaked waves, i.e. two peaks forming a small depression

between them on a hump. They found very good agreement with the experimental

results of Uu and Gollub (1994) for the wave growth at different frequencies, the

disturbances into nearly sinusoidal saturated waves with gentle wave peaks and sharp

valleys, closely packed quasi-periodic tear-drop waves· with a front-running single

waves have extensively been examined in numerous experiments by Stainthorp and

develop into three-dimensional waves. These naturally occurring (or noise-driven)

determine the distance from inlet to the wave inception line, wave velocity and wave

variation of wave velocity in the downstream direction and wave profiles by detecting

saturated wave profiles, and the quasi-periodic behavior of the closely packed

two-dimensional waves forced to occur at the same frequency as the disturbances

intensity of a light beam passing through a dyed film.

number at the wave inception line. Stainthorp and Allen (1956) measured the

Allen (1965), and Portalski and Cleyg (1972), Pierson and Whitaker (1977) to

frequency develop into the closely packed tear-drop waves with a single capillary

It is very difficult to experimentally produce two-dimensional waves on a film

falling down a vertical wall since the waves are unstable to three-dimensional noise



have also been studied for vertically falling films by Kapitza and Kapitza (1949),

Krantz and Goren (1971), Alekseenko et a1. (1985) and Nosoko et a1. (1996) and for

slightly inclined films by Liu et al (1993) and Liu and Gollub (1993, 1994). Kapitza

and Kapitza (1949) and Alekseenko et a1. (1985) captured the profiles of steady

traveling waves at various frequencies at Re = -. Krantz and Goren (1971)

determined the wave velocity and the growth rate of exponentially growing waves as

functions of wave number at Re - 1 or less. Nosoko et a1. (1996) determined wave

velocity of steady traveling waves as a function of wave number and Re or of wave

peak height at Re =- . Liu et a1. (1993) and Liu and Gollub (1993, 1994) captured the

profiles of growing, steady traveling or quasi-periodic waves of films on slightly

inclined plane.

Recently Miyara (2002) developed the direct numerical simulation which is

applicable to two-dimensional flow of vertically falling films at larger Reynolds

numbers. Nosoko et a1. (1996) achieved two-dimensional waves in larger distances on

a vertically falling film at larger Reynolds numbers, and observed the waves by means

of shadowgraph. In the present work, we experimentally and numerically explored

evolution of two-dimensional waves on a water film falling down a vertical surface

when imposing two-dimensional disturbances of a single frequency on the water film

at the inlet.

2. Experimental apparatus and procedure

A cross-section or the test section is shown in Figs. 1 and 2, which consists of a

rectangular frame and a glass plate. Tap water from a head tank flows through a

silicone tube into the holding compartment where the water is distributed tra!1sversely.

The water passes through a 0.5 mm gap between the glass plate and the bar with a



sharp edge, and then forms a film falling down the vertical glass plate. The film flow

rate is perturbed at a constant frequency f with small amplitude by periodically

pressing the silicone tube with a thin plate which is derived by a speaker.

Light rays from a stroboscope deflect at the wavy surface of the film to form

shadows of waves on the screen. The shadows on the screen are captured by a still

camera synchronized with the stroboscope.

3. Numerical method

We performed direct numerical studies of the complete Navier-Stokes equations.

Please refer the following paper for the details.

Miyara, A., Nosoko, T. and Nagata, T., Enhancement of heat and mass transfer

by waves on falling liquid film, Proceedings of 1ih International Heat Transfer, Aug.

18-23, 2002, Grenoble France, in press

4. Results and Discussion

4.1. Overviews on the dynamics of evolving waves

Figures 3 and 5 show numerical constructions of two-dimensional wave profiles

for various forcing frequencies at Reynolds numbers of Re = 16.1 and 51.5, and

figures 4 and 6 do shadows of surface waves on the screen at the same frequencies

and Reynolds numbers. The numerical simulations always include the

two-dimensional noise arising from rounding numbers in computer calculations,

which may be much smaller than the real ambient noise. In addition, the real noise is

not two-dimensional, but three-dimensional. Therefore, the numerical simulations

construct the two-dimensional waves occurring only when the ambient noise is

two-dimensional and minimized. When disturbances at low forcing frequencies are



put into the numerically constructed film flow at the entrance, small waves appear

from the entrance, and then rapidly increase in their peak height to form steep fronts

and long gently sloping tails (often referred to as 'tear-drop shape') as the waves

travel downwards (the wave profiles of f =14.0 Hz at Re =16.1 and f =25.0 Hz at Re

= 51.5 in Figs. 3 and 5). As the fronts become steeper, small 'bow' waves with much

smaller wavelengths than those of the primary waves are generated immediately

downstream and increase the number of themselves. The growth of waves saturates in

3 or 4 wavelengths from the entrance, and then the saturated waves travels

down,words at almost constant phase velocities in near synchrony. The primary waves

are also often referred to as 'solitary humps' (e.g. by H. C. Chang, 1994) because of

nonstationary interaction among them. The front-running bow waves are often

referred to as 'capillary waves' or 'capillary ripples' (e.g. by Alekseenko, et aI., 1985)

since their wavelengths are smaller than the capillary constant and strongly depend on

the surface tension. As shown by Nosoko, et a1. (1996), a solitary hump with higher

peak and larger velocity has more number of the front-running bow ripples. When the

frequency is increased, the solitary humps are closer together and front-running

capillary ripples ride on the tails of the preceding humps (the wave profiles at f = 25.0

Hz and Re = 51.5).

As the forcing frequency is increased further, the waves show an interesting

transition behavior (the waves of f =22.5 Hz at Re = 16.1, and f = 35.1 Hz and 40.1

Hz at Re = 51.5). The waves quickly grow into 'single-peaked waves' with a steep

front and a gently sloping tail in 3 wavelengths from the entrance, and then a new

small peak appears on the tail of a primary wave and grows to form a 'double-peaked

waves' consisting of the newly occurring peak and the old peak. The new peak

continuously grows as the olel peak decays to disappear, resulting in transformation



into a single-peaked wave. Then a small peak agam appears on the tail of the

single-peaked waves. This event could happen once to three times in different

distances from the entrance, and the number of the events mainly depends on the

Reynolds number. In the last event, the decaying peak does not disappear, but forms a

steady single capillary ripple. After that, the tear-drop wave with a single capillary

ripple travels downstream in quasi-stationary state, i.e. they slightly change their

shapes near-periodically. Because of this transition behavior, the quasi-stationary state

is established in much larger distances from the entrance than the solitary humps with

several capillary ripples and the nearly sinusoidal waves mentioned below.

As the forcing frequency is increased much further, the transition behavior

vanishes and tear-drop waves with a gentle peak and a narrow trough per period

evolve (the wave profiles of f =30.0 Hz at Re = 16.1 and f =46.7 Hz at Re =51.5),

and then travel downstream in quasi-stationary state. The shape of waves becomes

nearly sinusoidal with increasing frequency, associating with a decrease in the growth

rate (the wave profiles of f =100.2 Hz at Re =51.5).

When the forcing frequencies larger than the neutral frequency, sinusoidal waves

of a small wavelength gradually decay to disappear, and then new waves with much

larger wavelengths rapidly grow into solitary waves (the wave profile of f = 85.3 Hz

at Re = 16.1 in Fig. 3).

The numerically constructed film surface is always smooth when the periodic

disturbances are not put into the film flow. This may be because the numerical noise

arising from rounding numbers is too small to develop into visible waves within the

numerically observed film length.

With the present optical set up each solitary hump with front-running capillary

waves and each single-peaked wave produce a train of dark and light stripes and a pair



of a dark strip and a light one on the screen, respectively as shown in Figs. 4 and 6

since the concave surfaces and convex ones of the film cause the light rays from the

stroboscope to diverge and converge. Deep troughs of waves cause darker stripes, and

therefore the deepest trough just in front of the solitary wave forms the darkest strip in

the train (the shadows of f =14.0 Hz at Re =16.1 and f =25.0 Hz at Re =51.5 in Figs.

4 and 6). The real ambient noise in the laboratory may be much larger than the

numerical noise and include three-dimensional components. When the periodic

disturbances are not applied to the experimental film flow, the film shows smooth

surface in a distance from the entrance, and then single-peaked waves originating

from the ambient noise grow (the shadows of f = 0 at Re = 16.1 and Re =51.5). The

length of the smooth surface and the frequency of the single-peaked waves at wave

inception are very sensitive to the noise, and therefore both of them vary with time to

an extent, resulting in that the single-peaked waves occur with different wavelengths

and then velocities and coalesce with a neighbor after traveling several wavelengths to

transform themselves into solitary waves with capillary ripples. The length of the

smooth surface monotonically increases with Re in the present experimental range of

Re when the ambient noise is suppressed as small as possible. According to the

experimental data obtained by Stainthorp and Allen (1953) and Tailby and Portalski

(1962), the smooth surface length decrease to the minimum at Re - 20 and the

monotonically increases with Re in the laminar flow range of Re < 400.

The experimentally generated periodic disturbances are primarily two-dimensional

and include slightly three-dimensional or transverse components. When the

experimental disturbances at low frequency are applied, the periodic disturbances

rapidly develop into two-dimensional solitary waves (trains of horizontal dark and

light stripes at f = 14.0 Hz in fig. 4 and at f =25.0 Hz in fig. 6) in two wavelengths



from the entrance, and then the solitary waves gradually develop transverse

disturbances due to the three-dimensional instability, resulting in deformed wavefronts

(the deformed stripes on the screen). The inception of the transverse disturbances does

not fluctuate in space and time, and this was observed at various forcing frequencies

and Reynolds numbers (the shadows of f = 14.0 Hz at Re = 16.1 and f = 25.0 - 46.7

Hz at Re = 51.5). Therefore, it is evident that the transverse disturbances originate

from imperfection of the entrance manifold.

At intermediate forcing frequencies, evolving waves show the transition behavior,

and then develop into solitary waves with a single capillary wave (the shadows of f =

22.5 Hz at Re = 16.1 and f = 40.1 Hz at Re = 51.5). The resultant solitary waves soon

interact with the neighbor(s) to develop transverse disturbances of spanwise

wavelengths which are approximately same as the streamwise wavelength (the

distance between the solitary waves) but much smaller than those of the transverse

disturbances originating from the imperfection of the entrance manifold. The former

are superimposed on the latter. Then, pairs of the three-dimensional waves coalesce

with each other to transform themselves into irregularly deformed three-dimensional

waves with larger streamwise wavelengths.

As the forcing frequency is increased further, the transition behavior disappear but

the two-dimensional single-peaked waves grow, saturate and then coalesce with

neighbor(s) to chang into two-dimensional solitary humps of larger wavelengths

associating with front-running capillary ripples (the shadows of f = 30.0 and 32.5 Hz

at Re = 16.1). It is observed that two single-peaked waves coalesce at once to change

into a solitary hump with capillary ripples at f= 30.0 Hz and Re = 16.1, and three

single-peaked waves do into a solitary hump with capillary ripples at f = 32.5 Hz. It is

very sensitive to the ambient noise and two, three or more single-peaked waves



coalesce at once. The distance from the entrance at which the wave coalesce also very

sensitive to the ambient noise, and the distance of coalescence in general decreases

with the increasing forcing frequency when the ambient noise is suppressed as small

as possible. The coalescence of waves occurs at larger distances from the entrance at

Re =51.5 (not seen in the shadows of low and intermediate forcing frequencies at Re

= 51.5), and the distance of coalescence also decreases with increasing forcing

frequency. The numerically constructed waves do not coalesce with each other within

the numerically observed film length at Re = 16.1 since the numerical noise is much

smaller than the real ambient noise.

When Re is large and the forcing frequency is close to the neutral frequency, the

two-dimensional single-peaked waves gradually grow and then transverse

disturbances start growing before the two-dimensional waves saturate (shadows of f =

100.2 Hz at Re =51.5). The resultant deformed waves have isolated depressions, and

then are disintegrating associating with a decrease in the wave amplitude to form a

rough film surface.

When the forcing frequency is larger than the neutral frequency, the waves

gradually decay to disappear, and then new waves with wavelengths much larger than

that of the decaying waves rapidly develop into solitary humps with front-running

capillary wave(s) (shadows of f = 85.3 Hz at Re = 16.1). The solitary humps have

slightly larger wavelengths than the naturally occurring waves. These new humps

appear at distances from the entrance much smaller than the numerically constructed

waves. This is also due to the real ambient noise much larger than the numerical noise.

In general, the experimental waves show the same dynamic characteristics as the

numerical waves, i.e. the evolution of solitary humps with capillary ripples at low

forcing frequencies, the occunence of double-peaked humps in the transition from



single-peaked waves to humps with a single capillary ripple at intermediate forcing

frequencies, the evolution of nearly sinusoidal waves at forcing frequencies close to

the neutral frequency, and the occurrence of new waves after the decaying of

sinusoidal waves at forcing frequencies larger than the neutral frequency. Some

differences are observed, i.e. the growth of the transverse disturbances on the solitary

humps, the tear-drop waves with a single capillary ripple and the single-peaked waves,

and the coalescence of waves are only observed for the real liquid films, and the

wave-inception distances from the entrance are much shorter for the real films than

the numerical films when the disturbances are not applied. These differences are all

due to the real ambient noise with larger amplitudes than the numerical ones, and the

periodic disturbances including there-dimensional components.

4.2. Acceleration and Deceleration of Evolving Waves

Figures 7 (a) and (b) shows the experimentally determined variations of

wavelength A with distance from the film inlet for various forcing frequency at Re =

51.5. The wave velocity approximately is equal to a multiple of A and the forcing

frequency, i.e. u = Af when the wave velocity does not changes rapidly, and therefore

figure 7 roughly shows the variations of wave velocity u. When the forcing frequency

f is low, waves rapidly accelerate within two wavelengths from the entrance, and then

the wave velocity reaches a gentle maximum (f = 15.1 and 25.0 Hz in Fig. 7 (a)).

After that, the wave velocity gradually decreases as the transverse disturbances grow

on the waves (the shadows at f = 25.0 Hz in Fig. 7). These indicate that the

two-dimensional disturbances grow much more rapidly than the three-dimensional

disturbances when the forcing frequency and wave number are low and that the

saturated two-dimensional waves have larger velocity than the three-dimensional



waves.

At intermediate forcing frequencies, the waves show the transition behavior in x =

0- 100 mm (f =37.5 and 43.1 Hz in Fig. 7 (a) and (b)), i.e. the waves experience three

times the transition from single-peaked waveform to double-peaked wave and vice

versa in the transition region x = 0 - 100 mm, and have the minima in wavelength

when the waves take single-peaked waveform. The waves have double-peaked

waveform between the minima, and then change into tear-drop waves with a single

capillary ripple (the numerical profiles of 40.1 Hz at Re = 51.5) just after the last

minimum. The resultant tear-drop waves with a single ripple have nearly constant

wavelengths and larger velocities than the double-peaked waves.

At large forcing frequencies, waves gradually decrease in velocity (f = 67.1 Hz and

100.2 Hz in Figs. 7 (a) and (b)), and then the measurements of wavelength become

scattered as the waves grow the transverse disturbances. As clearly seen at f = 100.2

Hz, the wave velocity does not saturate before the transverse disturbances become

intense (f = 100.2 Hz in Figs. 7 (b) and 6).

We determined the velocities of saturated waves using the relation u = Af by taking

A as the average of the maximum wavelengths, the wavelengths of tear-drop waves

with a single ripple and the minimum wavelengths just before the scattering of

measurements at the low, intermediate and high forcing frequencies, respectively. The

average wave velocities were also determined by taking A as the average over the

transition region. These measurements of velocity are shown in Fig. 7. The plate being

vibrated by the speaker produces pulse-like disturbances, and therefore t?e velocity of

small-amplitude sinusoidal waves evolving exponentially could not determined at low

and intermediate frequencies in the present experiments. When the forcing frequency

is near the neutral frequency or larger, it produces nearly sinusoidal disturbances.



We solved the Orr-Sommerfeld equation by means of the approximate solution

method developed by Anshus and Goren (1966). Table 1 shows comparison between

approximate solutions and the numerical solutions by Pierson and Whitaker (1977) to

the Orr-Sommerfeld equation for spatially growing waves. There are excellent

agreements in phase velocity em for the fastest growing wave, but discrepancies by

8-10% are observed in the wave number am for the fastest growing wave and in the

critical wave number a c when Reynolds number is small (Re = 10/3 and 20/3).

Discrepancies are very small when Reynolds number is in the range of the present

work (Re = 100/3 and 200/3), and therefore we can conclude that the approximate

solution method raises small errors in the present range of Reynolds number (Re = 15

- 60).

Figures 8 (a) and (b) show the nondimensional velocities of the exponentially

growing sinusoidal waves and of the saturated quasi-stationary two-dimensional

waves at Re = 16.1 and 51.5. In this paper we term the phase velocity of the

exponentially growing small waves 'the linear velocity' and the one of the saturated

quasi-stationary waves 'the nonlinear velocity' after Liu and Gollub (1994). The solid

line represents the approximate solution to the Orr-Sommerfeld equation, and the

dashed curve is the empirical correlation for solitary humps with capillary ripples by

Nosoko et a1. (1996). The linear and nonlinear velocities were determined at the same

forcing frequencies by the present numerical simulations, and the nonlinear velocity

was experimentally measured at various forcing frequencies by means of the method

described above.

The nondimensional linear velocity is 3 at the vanishing wave number, a, and it

decreases to the minimum and then increases with increasing a. The linear velocity

rapidly increases after the minimum at Re = 16.1 while it gradually increases at Re =



51.5. The wave number a III for the fastest growmg sinusoidal waves is near and

smaller than the wave number for the minimum linear velocity, and the neutral linear

velocity is smaller than 3 at both Re = 16.1 and 51.5. The nondimensional minimum

and neutral velocities are larger at Re = 16.1 than Re =51.5, and the wave number for

the minimum velocity and the neutral wave number are smaller at Re = 16.1.

The numerical simulation data for linear velocity are in good agreement with the

solutions to Orr-Sommerfeld equation for the various wave numbers at both Re = 16.1

and 51.5. The numerically determined nonlinear velocities are in good agreement with

the experimental measurements at both Reynolds numbers for various wave numbers,

except for wave numbers near and smaller than the neutral wave number, where the

experimentally excited two-dimensional waves start developing the transverse

disturbances before the two-dimensional waves reach saturation. Therefore the

experimentally determined nonlinear velocity is larger than the velocity of the

saturated two-dimensional waves near the neutral wave number since the evolving

waves decelerate.

The arrows from plots for linear velocity to plots for nonlinear velocity show that

numerical sinusoidal waves excited at the entrance accelerate or decelerate as the

waves grow to saturate, keeping the same frequencies as shown in figs. 3 and 5.

Nosoko et aI's correlation excellently fits the numerical and experimental nonlinear

velocity data, and is larger than the linear velocity curve at both Reynolds numbers

when the wave number is small. Nosoko et aI's correlation intersects the linear

velocity curve, showing that evolving waves accelerate when the wave number is

smaller than the intersection. The acceleration is larger at smaller wave number (or

larger forcing frequency). The wave number of the intersection is slightly smaller than

the wave number CXm for the fastest growing waves.



The numerical and experimental nonlinear velocity begins to deviate from Nosoko

et aI's correlation as the wave number a: increases from the intersection, and then

reaches the minimum where the nonlinear velocity is smaller and the wave number is

larger than the linear velocity and the corresponding wave number. After the

minimum, the nonlinear velocity increases more rapidly than the linear velocity, and

they merge at the neutral wave number. It is seen that the experimentally determined

nonlinear velocity merge with the linear velocity before the neutral point at Re = 16.1

since the excited waves start to coalesce with the neighbors before they saturate.

When the wave number is larger than the neutral wave number, the waves excited at

the entrance gradually decay to disappear. The numerically and experimentally

determined velocities of the decaying waves are in good agreement with the linear

velocities.

The transition from the double-peaked humps to tear-drop wave with a single

capillary ripple occurs between the intersection of the linear and nonlinear velocity

curves and the minimum point of the nonlinear velocity at both Reynolds numbers.

The velocity of the double-peaked waves is smaller than the linear velocity, and the

velocity of the saturated tear-drop waves with a single capillary ripple is larger than

the velocity of the double-peaked waves, showing that the sinusoidal waves with a

small amplitude decelerate as they grow into the transient double-peaked waves, and

then rapidly grow into the tear-drop waves with a single ripple with a larger velocity.

When the wave number is equal to the one for the minimum nonlinear velocity or

larger, the excited waves with a small amplitude monotonously decelerate as the grow

into the saturated waves with a single peak per period. The deceleration is largest at

the forcing frequency for the minimum nonlinear velocity, and decreases with an

increase in wave number. When the wave number is equal to the neutral one or larger,



the excited waves are neutral, i.e. neither grow nor decay, or decaying to disappear.

Therefore neither acceleration nor deceleration of waves occur.

4.3. Transition from single-peaked waves to tear-drop waves with a single

capillary ripple

Figure 9 shows the time variation of numerically constructed wave profiles of f =

40.1 Hz at Re = 51.5, demonstrating the transition behavior in detail. A small peak

newly appears on the tail of a single-peaked wave to form a small depression between

the small peak and the primary peak at xl () - 340. The depression moves toward the

primary peak and passes it as the newly occurring peak grows and the primary peak

decays, showing that the depression travels downstream faster than the primary peak.

This event occurs three times, i.e. the first one begins at xl() - 120 and the second one

does at xl () - 220. The depression is not clearly observed in the first event, but it is

emphasized in the second one and more emphasized in the third and last one. The

clearly observed depression passes the primary wave in the last event, and then stays

immediately downstream to form a steady single capillary ripple. During the course of

the events, double-peaked waves are only temporally observed. Therefore it is evident

that they are unstable.

The almost same transition behavior and double-peaked waves were observed on a

slightly inclined film of aqueous solution of glycerin by Liu and Gollub (1994). The

event occurred only once and much more slowly on their inclined film. The

inclination angle from a horizontal plane, the kinematic viscosity and the Reynolds

number were 6.4°, 6.3x10-6 m2/s and 29. Alekseenko (19 ) experimentally observed

the double-peaked waves on a film or aqueous solution of glycerin falling down a

vertical tube at Re = 8. He measured time variation of thickness of periodically forced



waves at a spot on the tube surface, which showed that transition from tear-drop

waves with a single capillary ripple to the double-peaked waves and vice versa occur

at the observation spot when the forcing frequency is between the frequencies for the

nearly sinusoidal waves and for the solitary humps.

Demekhim, Tokarev and Shkadov (1987) solved the integral boundary-layer

equation with the periodic boundary conditions, and their solutions predicted

stationary double-peak wave profiles at Re = 8 when the wave number was between

the wave numbers for the nearly sinusoidal waves and for the solitary humps. The

solution of the integral boundary-layer equation by Ramaswamy, Chippada and Joo

(1996) showed that there exsist two wave profiles, i.e. a double-peaked wave profile

and a closely packed tear-drop wave profile. Chang, Demekhim and Kopelevich

(1992) numerically solved the boundary-layer equation without the assumption of a

self-similar parabolic velocity profile in the film, and found two wave families, i.e. the

first family has lower velocities than the linear velocities, and the second family has

larger velocities. The profiles of waves in the first family of Q - Q o/2 resemble the

double-peaked wave profile.

Ramaswamy, Chippada and Joo (1996) numerically solved the complete

Navier-Stokes equations with the periodic boundary conditions for a film falling down

a vertical plane, and found that after the initial rapid growth, waves change with time

periodically between a closely packed tear-drop wave profile of the maximum energy

and a double-peaked wave profile of the minimum energy. They also performed direct

numerical simulations for a film falling down a slightly inclined plane imposing

periodic disturbances on the film flow at the entrance, and found that the simulated

profiles of evolving and saturated waves at various forcing frequendes are in good

agreement with the experimental observations by Liu and Gollub (1994). Their



simulations also show that the transition from single-peaked waves near the film inlet

via double-peaked waves to tear-drop waves with a single capillary ripple occurs on

the film falling down a slightly inclined plane at the same inclination angle, Re and

forcing frequency as the experiment of Liu and Gollub (1994). The present work

experimentally and theoretically revealed that the almost same transition phenomena

also occurs on water films of smaller viscosity and larger surface tension, falling

down a vertical plane at Reynolds numbers as large as Re - 50, and that the excited

waves decelerate as they grow into the double-peaked waves, and then they rapidly

accelerate when they grow into the nearly steady tear-drop waves with a single ripple.
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Table 1 Comparison between approximate solutions and direct numerical solutions to

the Orr-Sommerfeld equations.

Re am em a c

0.050 2.96 0.0734
10/3

0.054 2.96 0.0801

0.078 2.79 0.127
20/3

0.083 2.79 0.139

0.123 2.00 0.416
100/3 .

0.124 2.01 0.414

0.144 1.80 0.598
200/3

0.140 1.80 0.606
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