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2.2 Three-Dimensional Wave Dynamics on a

Falling Film and Associated Mass Transfer

The evolution of solitary waves into three-dimensional (3-D) waves was experimentally

observed on a vertically falling water film at mainly Re = 10-100. At Re greater than 40, 2-D

solitary waves are very unstable in the face of spanwise perturbations of approximately 2-cm

wavelengths and disintegrate into isolated horseshoe-shaped solitary waves and clusters of

dimples between the horseshoes, whereas wavefront modulations are limited to low levels at Re

below 40. Horseshoes of larger velocities have larger curvature heads, and extend longer

oblique legs upward. Curving capillary ripples preceding each horseshoe widen their

wavelengths with an increase in the wavefront inclination, showing that the ripples possess the

characteristics of the shallow-water capillary waves. The horseshoes may hold vortices inside,

and they have similarities in shape and size to hairpin vortices observed in laminar-turbulent

transition regions of boundary layers on walls. The disintegration of waves into dimples is

caused by a capillary instability similar to the one for breakup of a cylindrical soap film. This

transition ofwave dynamics at Re - 40 is associated with a drastic change in the mass transfer

from the surface into the film.

Introduction

Liquid films falling down inclined or vertical walls are frequently encountered in natural and

industrial processes. The falling films are unstable and surface waves occur on the films when

the Reynolds number Re (defined in the subsection on mass transfer coefficient and

dimensionless groups) exceeds a critical value. Instabilities of the film flow are convective (Liu

et aI., 1993; 100 and Davis, 1992a; Cheng and Chang, 1995), and upstream noise perturbations

selectively develop into surface waves as they flow downstream (Chang et aI., 1996a, b; 2002).

Typical wave evolution when a uniform film is formed on a vertical wall can be seen in

Figure 1. Two-dimensional (2-D) deformations become visible on a smooth film surface at

some distances from the film inlet, and then rapidly develop into saturated 2-D waves that

travel distances of several wavelengths in a quasi-stationary state. During the quasistationary

motion, separations between these waves gradually become uneven, associated with increases
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Fig. 1. Shadow image of waves naturally occurring on a falling film at
Re=32.7 without controlled perturbations imposed on film flow.
Refer to the subsection on surface structures of waves and their shadows, and
Figure 2 for the relationship between wave structures and their shadows.
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Fig. 2. Teardrop-hump/capillary-ripple structure and vortex in the
hump constructed by numerical simulation for a vertically falling
water film at Re=36.6.
The isoconcentration contours show a vortex in the hump. [A reprint of
Figure 5-d by Nagasaki et al (2002).]



in transverse deformation of their wavefronts. Then adjacent waves interact with each other and

coalesce to distort the wavefronts significantly. The resulting distorted waves with large

separations increase their distortions further to split the wavefronts.

Except for the periods of inception and interactions, these 2-D and 3-D waves have surface

structures consisting of a single large teardrop hump and several small capillary ripples, as

shown in Figure 2. Each teardrop hump has a steep front to form capillary ripples that

exponentially decrease in amplitude with the downstream distance from the front of the hump.

Such wave structures are often referred to as "solitary waves" or "solitary humps" (Chang,

1994; Ramaswamy et aI., 1996; Uu and Gollub, 1994), because the humps that dominate the

dynamics of the wave structures are essentially separated from each other. Whether wavefronts

are horizontal, slanting, or curving, the waves retain such teardrop-hump/capillary-ripple

structures. Here we mainly review relevant reports on solitary or nearly solitary waves, though

close-packed waves also have been extensively studied theoretically and experimentally.

The primary instability causing the inception of 2-D waves on a smooth film surface has

been extensively studied through linear analyses of the Navier-Stokes equations by Yih (1963),

Benjamin (1957) and other researchers. The instability occurs when the wave number, a, is

smaller than a critical value or the cutoff wave number Cle, and with increasing wave number

the growth rate of the instability increases to the maximum and then decreases to vanish at Cle.

The wave numbers observed experimentally at the wave inceptions on smooth surfaces scatter

to some extent, and are about or are smaller than the theoretical wave number for the maximum

growth rate or the fastest growing wave number am (pierson and Whitaker, 1977).

The steady traveling 2-D waves were constructed at small Re (Re ... 15 or less for vertical

water films) and at larger Re through nonlinear long-wave evolution equations reduced from the

Navier-Stokes equations, by Pumir et aI. (1983), Joo et aI. (1991), Ooshida (1999) among others,

and through the full Navier-Stokes equations or boundary-layer formulas of the Navier-Stokes

equations by Nagasaki et aI. (2002), Nagasaki and Hijikata (1989), Miyara (2000), Ramaswamy

et aI. (1996), Salamon et al. (1994), Ho and Patera (1990), Tsvelodub and Trifonov (1992) and

Chang et al. (1993a, b). Such waves and their dynamics also have been experimentally captured

by Kapitza and Kapitza (1965), Alekseenko et al. (1985, 1994), and Nosoko et al. (1996) by

imposing pulses at constant frequencies on the inlet film flow. These techniques of controlling

temporal upstream perturbations cause 2-D waves to travel in a quasi- stationary state over

distances of about ten or more wavelengths. When compared, the results of these theoretical



and numerical studies showed good agreements with the experimental observations.

The 3-D secondary instability leading to wavefront deformation has been studied through

long-wave evolution equations by Joo and Davis (1992a, b), and through the boundary-layer

formulas of the Navier-Stokes equations by Trifonov (1991) and Chang et aI. (1994). Their

constructions of 3-D waves are limited to small Reynolds numbers (Re .... 10 or less). The 3-D

instability has a cutoff transverse wave number, and the instability grows when its wave number

is smaller than the cutoff value. The instability grows much more slowly than the primary one,

and gradually increases transverse distortions on saturated 2-D waves (Chang et aI., 1994). The

nearly solitary waves hold surface structures similar to the original 2-D wave structures, even

after the transverse distortion has developed (Trifonov, 1991; Chang et aI., 1994). Recently

Chang and Demekhin (2002) performed a preliminary analysis of 3-D waves at small to large

Re through the generalized Kuramoto- Sivashinsky equation, one of the long-wave evolution

equations, and showed that the wave structures holding 2-D cross sections with transversely

modulated wavefronts are stable at a certain Re range, whereas the wave structures begin to

disintegrate into several disconnected 3-D humps at Re beyond that range.

Wave structures analogous to the teardrop-hump/ capillary-ripple cross sections, along with

their 3-D distributions and time variations, were experimentally observed on films falling down

a plane inclined slightly from the horizontal (Liu et aI., 1995). It was observed that waves

evolve much more slowly on the slightly inclined film than on vertical ones. They showed that

when 2-D waves with large constant spacings are excited, transverse modulations of the

wavefronts slowly develop and then level off at small transverse amplitudes with about 3-cm

transverse wavelengths. When close spaced 2-D waves are excited, the waves coalesce with

their neighbors, and eventually teardrop-hump/capillary-ripple structures with rather irregular

wavefront modulations become dominant far downstream.

When the waves are restricted to the 2-D, wave coalescence events have been numerically

constructed on a long film by Chang et aI. (1996a, b; 2002). They showed that solitary humps

irreversibly coalesce to form a single large teardrop hump, with associated rapid acceleration

and widening of hump separations. The resulting large teardrop humps coalesce several times

with front-running smaller teardrop humps in a cascading fashion as they travel downstream.

Mass transfer from the surface into a falling liquid film is strongly dependent on the flow

structures in the film, since diffusivities in liquid are very low (Himmelblau, 1964). Surface

waves have been found experimentally to cause severalfold increases in the mass-transfer



coefficient in falling films (Emmert and Pigford, 1954; Kamei and Oishi, 1956; Seban and

Faghri, 1978). The mass-transfer coefficient increases with Re and experimental curves of the

coefficient have a break on the log-log scale at Re = 40-75 where the slope of the curve sharply

decreases (Bakopoulos, 1980; Hikita et aI., 1959; Nakoryakov et aI., 1983). The break evidently

shows that some changes in the dynamics of surface waves occur at the break. Although some

have tried to explain such breaks (Nakoryakov et aI., 1983; Hikita et aI., 1959), the relationship

between the mass transfer and the wave dynamics has remained unclear.

Yoshimura et ai. (1996) experimentally determined the mass-transfer enhancement caused by

2-D teardrop-hump/capillary-ripple structures on a short vertical water film that was 24 cm high,

using the technique of controlling temporal perturbations. With the aid of numerical simulations

of 2-D waves by Nagasaki and Hijikata (1989), Yoshimura et ai. showed that flow circulation or

vortices in the teardrop humps renew the film surface to allow concentration boundary layers to

develop along short distances between the teardrop humps, and to be much thinner than the film

thickness. The 2-D waves monotonously increase these renewal effects with increasing heights

and speeds of the humps. The vortices are so weak that they are visualized with

isoconcentration contours in gas-absorbing wave structures, as shown in Figure 2 (Nagasaki et

aI., 2002) and with streamlines in the coordinates translating with the wave speed (Miyara,

2000). Roberts and Chang (2000) constructed a theoretical model of the mass-transfer

enhancement of such vortices in 2-D humps, and explained the experimental observations of a

sharp rise in the mass- transfer enhancement with Re increasing from 10 to 40. Recently,

Vazquez-Una et ai. (2000) found a similar mass transfer enhancement by surface waves on

films flowing on a horizontal plane, and reported that the mass-transfer coefficient

monotonously increases with wave amplitude.

Experimental techniques controlling upstream perturbations have often been successfully

used in explorations of transitions of boundary-layer flow on walls or in channels, and in the

vortex developments in free shear layers (Nishioka et aI., 1981; Acardar and Smith, 1987;

Lasheras and Choi, 1988). In this work, we employed similar techniques where time-periodic

perturbations of constant frequencies and spanwise perturbations of constant intervals were

imposed on the inlet film flow on a vertical plane. When such spatiotemporal perturbations of

relatively low frequencies are imposed, 2-D waves evolve into 3-D waves with regular

behaviors by skipping complicated wave interactions and coalescence. The resulting wavefront

patterns were observed by shadowgraphy. Our efforts were mostly confined to observations of



such waves at 10 < Re < 100 to capture the possible changes of the wave dynamics at the break

of mass transfer coefficient curve.

Experimental Methods

Apparatus and procedure

We used two experimental apparatuses to observe surface waves on a film falling down a

vertical plane and to determine the mass-transfer coefficient of a film falling inside a vertical

tube. For the wave observations, tap water is made to flow through a silicone tube from a head

tank into a water-holding compartment at the top of the glass plate where water is horizontally

distributed along the plate (Figure 3a). Then water is passed through a uniform-width channel

between the glass plate and a stainless steel bar to form a film on the plate. Either a short or a

long glass plate is used to form a film on a 20.5-cm-wide and 24.5-cm-Iong area or on a

20.5-cm x 49- cm area of the plate. Controlled spatiotemporal perturbations can be imposed on

the film flow by beating the silicone tube with a speaker-driven thin plate at constant

frequencies j, and by putting fine needles in contact with the film along the inlet at constant

spanwise intervals, Az,ndl. Two types of spatial perturbations are imposed on the film flow by

changing the contact angle of the needle surfaces to water. When the contact angle of water on

the needle surface is small, the needles pull up the water surface to locally increase the flow rate

which results in positive perturbations. Conversely, negative perturbations occur when the

contact angle is wide and locally decrease the flow rate. Water temperature and volumetric flow

rate are measured at the bottom exit of the apparatus using a T-type thermocouple, a flask,

electric balance and a stopwatch. A flash from a stroboscope passes horizontally through the

film and the glass plate, forming shadows of the waves on a screen right behind the plate. A

digital camera synchronized with the stroboscope captures the shadows.

Films falling inside a tube eliminate side-wall effects, which a film on a plane always has.

Tap water flows into a two-story compartment, where it is evenly distributed through 17

capillary tubes arranged along the inner wall of the glass tube, which then forms a 95-cm-high

film falling inside the glass tube of 9.6 mm inner diameter (Figure 3b). Oxygen gas from a

cylinder is fed into the water in a bottle to cause bubbling and then made to flow into the glass

tube from its base, leaving the tube from its top. With oxygen gas flowing through the core

space of the glass tube, oxygen rich water and its accompanying oxygen bubbles flow from the

bottom of the tube into a bubble-separating bottle, after which bubble-free water flows into the
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Fig. 3. Experimental apparatuses a for a film falling down
a vertical plane and b for a gas-absorbing film falling
inside a vertical tube.



container, where dissolved oxygen concentration COul is measured. Water temperature is

measured at the top and the bottom of the tube. The dissolved concentration of oxygen in the

water that enters the container directly from the faucet is also measured prior to and

immediately after each series of experimental runs. The film temperature, T, and the

concentration en at the film inlet are assumed to be averages of these temperature and

concentration measurements, respectively. The experiments of mass transfer were performed at

a range of T = 15-24 °c and Re = 20-900.

Mass transfer coefficient and dimensionless groups

Assuming that the local mass-transfer coefficient is constant along the film, the mean

mass-transfer coefficient, kL " formulated in terms of the logarithmic mean concentration

difference, may be given as

(1)

where Q, d, e>, L, and Cs are the volumetric flow rate in the film, the inner diameter of the glass

tube, the mean film thickness, the film height, and the saturated concentration of oxygen,

respectively. The increase in surface area due to waves is slight (Fulford, 1964), and therefore

the surface area of the film is assumed to be :rrf...d-2e>)L within the acceptable range. The mean

film thickness e> for laminar and turbulent flow can be calculated by the correlation for the

Nusselt film and by Brauer's (1956) empirical formula, respectively

(
2 )113D = 3v Re
g

for laminar flow (2)

~ -0.302(~' f'Re"" for turbulent flow (3)

where g and v are the gravitational acceleration and the kinematic viscosity of liquid,

respectively.

The Reynolds number Re, the Sherwood number Sh, and the Schmidt number Sc are defined

as Re =nv, Sh =kLe>/D, and Sc =v/D, respectively, where rand D are the volumetric flow rate

per unit length of wetted perimeter and mass diffusivity, respectively. The physical properties v,

D, and Cs are functions of the film temperature T. Values for v are available from the Data Book

(JSME, 1986), and values for D and Cs were derived from the Stokes-Einstein equation



(referred to in Bird et aI., 1960), with D =2.341xlO-9 m2/s at T =25°C (Himmelblau, 1964),

and from the correlation by Truesdale et aI. (1955), respectively. The saturated vapor pressure

of water reduces the partial pressure of oxygen at the film surface and Cs, and this reduction is

calculated from Henry's law to determine the Cs•

Surface structures ofwaves and their shadows

When light rays pass through wave valleys and ridges, the rays diverge and converge onto

the screen behind the film, respectively. Hence, a teardrop-hump/capillary -ripple structure

forms a set of dark and bright strips on the screen, as shown in all snapshots in this article. The

valleys have larger curvatures on bottoms than those on the neighboring ridges (see Figure 2),

and therefore darker strips are more noticeable than the bright ones. While the deepest valley in

front of the teardrop hump distinctly forms the darkest strip among the set of strips, the valleys

of capillary ripples farther from the teardrop hump form less dark strips with decreasing

amplitudes. Likewise, higher peak teardrop humps form deeper valleys in front of them,

resulting in darker strips on the screen. These distinctive dark strips of the deepest valleys may

represent the wavefronts of teardrop humps. As a result, the shadows of waves may show

transverse variations of wavefronts; separations between teardrop humps, ).."mp; the number of

capillary ripples preceding each teardrop hump; the wavelengths of the capillary ripples;

qualitatively the peak heights of the teardrop humps and the amplitudes of the capillary ripples.

Results and Discussion

Mass transfer enhancement by surface waves

A measured variation of the Sherwood number Sh with the Reynolds number Re is compared

in Figure 4 with the empirical correlations by Bakopoulos (1980) and with a solution to the

equation of diffusion into a smooth surface film of a semiparabolic velocity profile by Tamir

and Taitel (1971). Bakopoulos constructed the correlations to fit the data measured with vertical

long water films (mostly film heights of 1 m or higher) by Emmert and Pigford (1954), Kamei

and Oishi (1956), Hikita et aI. (1959), and Lamourelle and Sandall (1972). Tamir and Taitel's

solution changes the relationship between Sh and Sc with the ratio of film height to film

thickness, and here an average value of the present measurements, Sc = 479, was employed to

draw the curve of the solution in Figure 4 for comparison.
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The experimental data show that the increase in Sh is rapid in Re :$ 40, gentle in 40 :$ Re :$

400, and then rapid in Re ~ 400, showing two breaks at Re = 40 and 400. The slopes of the data

are approximately 1.0, 0.5, and 1.4 in Re :$ 40, 40 :$ Re :$ 400 and Re ~ 400, respectively.

Since the mean film thickness <5 increases with Re, as described by Eqs. 2 and 3, the

mass-transfer coefficient kr is in proportion to Re2
/
3

, Re1l6
, and Re4

/
5 in Re :$ 40,40 :$ Re :$ 400,

and Re ~ 400, respectively, showing very weak dependence of kL on Re in 40 :$ Re :$ 400. The

present data are in good agreement with the correlations by Bakopoulos in Re ~ 75, but are a

little larger in Re :$ 75. The experimental data, which he collected for the correlations, scatter to

some extent, and the present measurements fall within the scattering.

A break occurs at Re ... 400 on both the present data and the correlations by Bakopoulos, and

it may represent a transition from wavy laminar flow to turbulent flow. Brauer (1956), Feind

(1960), and Emmert and Pigford (1954) determined that the transition occurs at Re ... 400, based

on their measurements of variations of film thickness, wall shear stress, and mass-transfer

coefficient with Re, respectively. The present measurements are in good agreement with their

findings.

Another break occurs at Re = 40 and 75 on the present data and on the correlations by

Bakopoulos, respectively. Likewise, Emmert and Pigford (1954), Hikita et ai. (1959), and

Nakoryakov et ai. (1983) reported such breaks in 40 :$ Re :$ 75. Jackson (1955) proposed the

"turbulent wave" concept, where turbulence is localized within peak regions of solitary waves,

which travel downstream on a laminar substrate film. Hikita et ai. tried to explain the break of

the mass-transfer curve with the aid of the turbulent-wave concept. Recent numerical

simulations have denied such localized turbulence at low Re (Nagasaki et aI., 2002; Miyara,

2000).

Comparison of the present Sh data with the solution by Tamir and Taitel (1971) shows that

surface waves rapidly increase the mass-transfer coefficient, kL , with Re up to 2.6 times the

solution at Re =40, associated with large differences in the slope, and then gently increase kL

with a small slope to 2.2 times the solution at Re = 400. Emmert and Pigford (1954), Kamei and

Oishi (1956), Hikita et ai. (1959), Seban and Faghri (1978), and Nakoryakov et ai. (1983) also

reported similar increases in mass-transfer coefficients caused by surface waves.

Figure 5 shows the shadows of the waves on a water film falling inside the vertical tube. As

flashlight rays pass horizontally through the vertical circular tube, the shadows of waves on two

narrow areas of the film are enlarged due to the curvature of the tube wall and projected





together on the screen. Because these shadows cause some difficulties in observing the wave

dynamics, we provide a brief overview of the wave dynamics in this section.

2-D waves appear on a smooth surface at distance x "'" 6 cm at Re = 20.4 from the film inlet

(Figure 5). These waves then demonstrate increasing distortions of their wavefronts, associated

with wave interactions and coalescence, which cause drastically increasing wave separations

and much more wavefront distortion (an increase in wave separation due to such coalescence

and adjacent waves in interaction are observed at x "'" 19 em and 30 cm at Re = 20.4 in Figure 5).

At larger Re, wave inception occurs further downstream, and the first wave interaction event

occurs at a shorter distance from the inception (at Re = 40.2, 64.2, and 200 in Figure 5). The

wave interactions appear to become more complex with increasing Re, and highly 3-D waves

holding continuous wavefronts become dominant downstream after the wave interactions at Re

:::; 200. At 200 :::; Re :::; 400, nearly isolated depressions appear on the smooth surface (Figure

5), and 3-D waves with distorted wavefronts seem to eventually become dominant far

downstream. Waves never appear at Re above 400, but isolated depressions are dominant

throughout the film surface downstream from their inception. With increasing Re, from 400 to

700 depressions appear more upstream on the smooth surface, and the smooth surface becomes

rougher. The smooth surface area disappears and the whole film surface is covered with

depressions at Re above 700. This rapid upstream shift of the depression inception and the

dominant depressions on the downstream surfaces seem to be caused by the transition to

turbulent flow in the film, along with the break of the mass transfer curve at Re ... 400 (Figure

4).

Evolution ofwaves into 3-D waves

The dynamics of waves can be observed in detail from shadows of films falling down a

vertical plane. Shadows of surface waves on a downstream region after their inception are

shown in Figure 6, where wavefront patterns at Re below 40 are compared with those at Re

above 40. Since 2-D solitary waves occur with random wave numbers and random velocities

around the fastest growing wave number, am, and velocity, respectively, they gradually change

separations between them, growing transverse modulations of their wavefronts, after which

interactions of adjacent waves occur at some distance from their inception (a typical wave

interaction is seen between the third and the fourth waves from the top in Figure 6b). When two

solitary waves come close, they either almost merge along their wavefronts, or they rapidly



a Re=30.3 b Re=61.7

Fig. 6. Shadow images of waves without controlled perturbations imposed on film flow.

The images capture the films atx=14-48 em, and the bar is 2 em long.



increase the transverse modulations of their wavefronts and partially merge at several points. In

the latter case, the upper wave weakens and decelerates to detach its wavefront from the

merging parts and to leave its partner (see the sixth wave from the top in Figure 6a). The next

upstream wave catches up to absorb these disconnected waves, which greatly distorts its

wavefront. After such wave interactions, including wave coalescence, 3-D wavefront patterns

with large wave separations appear downstream.

The 3-D wavefront patterns are different between Re below 40 and Re above 40, that is, the

wavefront patterns at Re above 40 are distinct from those at Re below 40 by a large number of

horseshoe-shapes, each consisting of a large curvature head and two oblique legs extending

upward from the head and by dimples at the ends of the legs. Several shapes similar to those

horseshoes appear on the wavefronts at Re below 40, but they do not develop into fully

developed horseshoes nor accompanying dimples.

Although at Re under 40 isolated single depressions similar to the dimples appear in the

course of the wave interactions, they may have development scenarios different from those of

the dimples at the ends of the horseshoe legs. Partial coalescence of adjacent humps causes

sharp bends in the wavefronts, and the deep valleys in front of the humps deepen at the ends of

the sharp bends and disintegrate into isolated depressions. Liu et al. (1995) observed similar

birth scenarios of such depressions on films falling down a plane inclined slightly from the

horizontal. The birth scenarios of the dimples at the ends of horseshoe legs will be described in

the subsection on the structure of horseshoe and partial wave disintegration.

When the controlled spatiotemporal perturbations are imposed on the inlet film flow at

constant low frequencies and at constant spanwise intervals, solitary 2-D waves develop into

3-D waves with regular behaviors (Figure 7), skipping the complex interactions of waves.

These waves may demonstrate the differences of the wave dynamics between Re below 40 and

above 40. At Re "" 20, solitary waves are unstable to 3-D perturbations of spanwise intervals of

Az,ndl "'" 3 em or larger. Wavefronts gradually increase their modulation amplitudes of transverse

wavelengths Az "" 3 em or larger, and then saturate the modulations to have nearly sinusoidal

shapes, that is, the shapes of the wavefronts are asymmetrical with upward curvatures smaller

than downward curvatures (Figure 7b). The waves are not unstable to the perturbations of Az,ndl

"" 1 em or smaller. When transverse perturbations of Az,ndl "" 1 em or smaller are imposed, the

waves decrease the perturbations but gradually increase the amplitudes of transverse

modulations of Az "'" 3 em and larger wavelengths (Figure 7a). The cutoff transverse wavelength
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Fig. 7. Shadow images of waves excited with controlled spatio-temporal perturbations of
constant frequencies f and constant spanwise intervals Az,ndl' The spatial perturbations are
positive.


