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Abstract

Reconciling the competition-density (C-D) effect observed at a particular moment

in time with the 3/2 power law of self-thinning observed over time, a model for

describing the time-trajectory of mean phytomass w and density p (briefly, the w-p

trajectory) during the course of self-thinning is theoretically derived. The model gives

a consistent, full explanation of the w-p trajectories of populations starting with any

initial density. The larger value of the relative mortality rate with respect to biological

time of a population, which is governed by the 3/2 power law of self-thinning, plays an

important role in relieving the C-D effect, so that the w-p trajectories asymptotically

approach the self-thinning line on logarithmic coordinates at the earlier stage of

growth. The survivorship curve is divided into three types owing to initial density:

logistic, exponential and cologistic types of decrease. All populations tend to decrease

exponentially in number at the same rate of relative mortality after a sufficient lapse of

time, irrespective of their initial density. The populations decreasing exponentially in

number follow the 3/2 power law of self-thinning. The carrying capacity of yield is

explicitly defined as a function of biological time, so that it is concluded that the

carrying capacity increases exponentially with increasing biological time. An

approximated expression of the model for the w-p trajectory is proposed and is

confirmed to mimic well the time-trajectories of mean stem volume and density during

the development of eastern white pine (Pinus strobus L.) plantations.

Introduction

The competition-density (C-D) effect refers to the relationship between mean phytomass and

density at a particular moment in time among a set of populations grown at a wide range of

densities. Self-thinning, on the other hand, refers to the time-trajectory of mean phytomass w

and density p (briefly, the w-p trajectory) of any given population over time. It is well-known

that overcrowded populations are governed by the 3/2 power law of self-thinning (Yoda et al.

1963). The w-p trajectories of populations starting with initial densities below the full density

asymptotically approach the self-thinning line on logarithmic coordinates and then travel along

this line as the populations grow with the progress of self-thinning (e.g. Tadaki and Shidei,

1959; Ando, 1962; Tadaki, 1963; Kays and Harper, 1974; Westoby, 1984; White, 1981;

Norberg, 1988). This process may be formulated in terms of mathematical equations (Minowa,

1982; Hara, 1984; Naito, 1984, 1992; Firbank and Watkinson, 1985; Smith and Hann, 1986;

Tangetal., 1994).

Received: June 30, 2000



100 Akio Hagihara

Merging the 3/2 power law of self-thinning into the logistic theory of the C-D effect

(Shinozaki and Kira, 1956) or the logistic theory of plant growth (Shinozaki, 1961), Hozumi

(1977, 1980) succeeded to a considerable extent in explaining the w-p trajectory over the

development of self-thinning populations. However, Minowa (1982) and Naito (1992) pointed

out that there would be a theoretical limit in reconciling the C-D effect and self-thinning within the

framework of the logistic theory, because density does not change in the populations considered

in the theory.

In a previous paper (Hagihara, 1999), a model for describing the C-D effect occurring in

self-thinning populations was reconstructed in line with the logistic theory of the C-D effect. On

the basis of that model and the 3/2 power law of self-thinning, the present paper firstly intends to

derive a model for describing the w-p trajectory of populations starting with any initial density.

The derivation is based on the ideas presented by Hozumi (1977, 1980). Secondly, the carrying

capacity of yield, which was an unknown function, is explicitly defined as a function of biological

time. Next, an approximated expression of the newly derived model is proposed as a convenient

and practical model for describing the w-p trajectory. Finally, the applicability of the

approximated model is examined with the data obtained by Spurr et al. (1956) in eastern white

pine (Pinus strobus L.) plantations.

The C-D effect and the 3/2 power law

The C-D effect in self-thinning populations

In a previous paper (Hagihara, 1999), a theory of the C-D effect in self-thinning populations

was reconstructed in line with the logistic theory (Shinozaki and Kira, 1956; Shinozaki, 1961),

which focuses on the C-D effect in nonself-thinning populations, on the basis of the following

assumptions:

1) The growth of yield y per unit area follows the general logistic equation proposed by

Shinozaki (1953a).

if* = /,_/! (i)
ydt \ Y)

where A is the growth coefficient and Y is the carrying capacity of y, and both A and Y are

allowed to be functions of time t.

2) The growth coefficient A is independent of initial density p i.

J^ = 0. (2)
dp,

3) The carrying capacity Y is independent of initial density p\, i. e. the law of constant final

yield is realized (Kira et al., 1953; Hozumi et al., 1956).

£-0. (3)

4) Initial mean phytomass Wo is constant irrespective of initial density p i.

yo=*oPi t>U=.>\>) (4)

^. = 0. (5)
dp,
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5) There exists a functional relationship between the density of survivors p and initial

density p \ at any given time (Shinozaki and Kira, 1956).

(6)

(7)
dPi I dp.

The five assumptions above lead to the equation describing the relationship between mean

phytomass w (= yip ) and density p being expressed as

\eT
- = \e )irdT e\P+—» (8)

where r is called biological time (Shinozaki, 1961) and is defined as (Shinozaki and Kira, 1956)

]l. (9)
o

If the value of e is zero, eqn (8) is synonymous with the equation theoretically reached by

Shinozaki and Kira (1956), which describes the relationship between w and p in nonself-

thinning populations.

With abbreviations of

Ai=e-r\—dT-—£ (10)
o Y wo

and

B =— , (ID

eqn (8) can be rewritten in the form,

- = Axp + B. (12)
w

The coefficients A and B are functions of time, but are independent of density p . Equation (12)

describes the OD effect at a particular moment in time among a set of populations grown at

different levels of density.

Equation (12) is considered a generalization of the reciprocal equation of the C-D effect

occurring in not only nonself-thinning, but also self-thinning populations (Shinozaki and Kira,

1956). The validity of eqn (12), i.e. eqn (8), is supported with a great deal of experimental

data (e.g. Shinozaki and Kira, 1956; Yoda et al., 1963; Ando, 1968, 1992; Drew and

Flewelling, 1977; Tadaki et al., 1979; Thoranisorn et al., 1990; Shibuya, 1994; Tadaki, 1996;

Shibuya et al., 1997) showing that the reciprocal relationship between mean phytomass (or stem

volume) w and density p is discernible in not only nonself-thinning populations, but also self-

thinning populations.

The 3/2 power law ofself-thinning
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Yoda et al. (1963) discovered that the mortality of overcrowded self-thinning populations

occurs in the following way,

w = Kp~\ (13)

where if is a constant that varies from species to species and a has a value of approximately 3/2

for a wide range of species (White, 1985). On the other hand, Tadaki and Shidei (1959), Ando

(1962) and Tadaki (1963) found that mortality can also occur in less crowded populations and the

w-p trajectory asymptotically approaches the self-thinning line given by eqn (13) on logarithmic

coordinates.

Although there has been considerable debate over the universality of the 3/2 power law of

self-thinning (e.g. Weller, 1987, 1990, 1991; Zeide, 1987," Osawa and Sugita, 1989," Lonsdale,

1990), what is clear is that eqn (13) can be used to describe the w-p trajectory of an

overcrowded self-thinning population (Hamilton et al., 1995; Watkinson, 1997).

The time-trajectory of mean phytomass and density

Unification of the C-D effect and the 3/2 power law

The time-trajectory of mean phytomass w and density p on logarithmic coordinates

(briefly, the w-p trajectory) moves upward on points on the C-D curves given by eqn (12) as

populations develop. A series of the points creates the w-p trajectory of any self-thinning

population starting with initial density p-, (e.g. White, 1981; Westoby, 1984; Norberg, 1988;

Osawa and Sugita, 1989). In other words, eqn (8), i.e. eqn (12), involves the relationship

between w (r) and p (r) of any population over biological time r .

Hozumi (1977) pointed out that the slope of the w-p trajectory takes the form,

1^
dlogw = w~d^

dlogp 1 dp

pdx

Therefore, considering eqns (11) and (14), the slope of the reciprocal equation of the C-D effect

in self-thinning populations, i. e. eqn (12), over time on logarithmic coordinates is expressed in

the form,

d\ogw _ \ p dr) p dx

+]
pA pdx)

On the other hand, the slope of the power equation, i.e. eqn (13), on logarithmic coordinates is

a. (16)
dlogp

The w-p trajectory approaches the self-thinning line with a slope of - a, i. e. eqn (13), and

then travels along this line. That is, the slope given by eqn (15) becomes the same as the slope

given by eqn (16 ) as biological time r tends to be finitely large. Therefore, the following

equality holds,

dAt B(\-am) . .
-T = — '—{a-^Ajn, (17)
dx p
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where

I dp

m^~p"di' (18)

Since both A\ and r are independent of density p , the term dAt/dr on the left-hand side of eqn

(17) is also independent of p , i. e.

0. (19)

Therefore, the derivative of the terms on the right-hand side of eqn (17) with respect to p must

be zero. This leads to the following relationship in consideration of eqn (6),

-cm)da \. ,. . aB^dm
■ + \{a-l)At+— — = 0.,. (20)

p\dp

If both

-JL = 0 (21)

and

^ = 0, (22)
dp

then the realization of eqn (20) is ensured. Equations (21) and (22) indicate respectively that

the initial density p> and the relative mortality rate m of any population become constant

irrespective of p as r tends to be finitely large, i. e.

A = Pi (23)

and

1 dp
*> = --£-»■ (24)

The solution to eqn (24) with the initial condition of eqn (23) is

PC=P#) = PiV'ir. (25)

Equation (25) denotes that the density p of any population tends to decrease exponentially

against biological time r irrespective of initial density p\ after a sufficient lapse of time. The p,*

is regarded as the initial density of a population which obeys the 3/2 power law of self-thinning

from the start of an experiment, i.e. r = 0 . Hozumi (1980) designated the population as pi *-

population and assumed eqn (25) for the survivorship curve of the pt*-population. The

derivation of eqn (25) gives a theoretical background to this assumption.

Survivorship curve
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All populations follow eqn (6). The p-, * -population is also governed by eqn (6), so that the

following relationship is concluded,

■■±~. (26)
P PJ P A

Considering eqns (25) and (26), the unknown function e is explicitly defined as a function of

biological time r as follows,

(27)

P A A"' ■ (28>
This equation is the same as what Hozumi (1980, 1983) presupposed in deriving the w-p

trajectory.

Pi > Pi

Inserting eqn (27) into eqn (6), the following equation is reached,

1
O.

Biological time x

Fig. 1. Survivorship curves relative to initial

density p\ on semi-logarithmic coordinates. The

curves are given by eqn (28), where pt =0.6. The

p\* is the initial density of the pi "-population

(see text). p\< p\*,a logistic type of decrease; p\

— p\*, an exponential type of decrease; p\>p\*,

a cologistic (Shinozaki, 1953b) type of decrease.

WO

Pi

Density p

Fig. 2. Interrelationship between the C-D curve and

the self-thinning line on logarithmic coordinates.

When density p becomes equal to p*, the C-D

curve given by eqn (12) intersects the self-thinning

line given by eqn (13). The pi* is the initial density

of the pi'"-population (see text) and wo is initial

mean phytomass.
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Equation (28) describes the survivorship curve of any population starting with initial density

pt. As shown in Fig. 1, in the case of p-, = p* , the survivorship curve displays an exponential

type of decrease. Up, >p,*, the survivorship curve displays a logistic type of decrease,

whereas if^oi < p\*, the survivorship curve displays a cologistic (Shinozaki, 1953b) type of

decrease. The survivorship curve of any population tends to the exponential type of decrease

irrespective of p\ after a sufficient lapse of time. Xue and Hagihara (1998) analyzed the data

obtained by Tadaki et al. (1979) in self-thinning stands of Japanese red pine (Pimts densiftora

Sieb. et Zucc.) and reported that the survivorship curve tended to converge to the same density

level after a sufficient lapse of time, even if the stands started with different initial densities.

Explicit form ofthe coefficient Ax

When density p becomes equal to density p* of the pi*-population, as depicted in Fig.

2, the C-D curve, i.e. eqn (12), intersects the self-thinning line, i.e. eqn (13). That is, the

following equality is concluded,

4p#+— = —7T« (29)
Wo Kp

where in consideration of eqn (13) the coefficient A" is expressed in terms of the initial density

pi* of the pi*-population and initial mean phytomass Wo, i.e.

(30)

Considering eqn (25), eqn (29) is arranged in the following way,

(31)

Since the value of the coefficient A\ is not negative because of the nature of the C-D curve created

by eqn (12) (Shinozaki and Kira, 1961), the value of the coefficient fi is restricted to the

following range,

0</i<-. (32)
a

As shown in Fig. 3, the value of At increases up to its maximum in the earlier stage of growth

and then decreases gradually with increasing biological time r . This trend is consistent with the

results obtained by Xue and Hagihara (1998) in analyzing the data of the Pinus densiflora stands.

As the value of fi becomes larger, A\ takes on a smaller value.

Thew-p trajectory

The w -p trajectory can be obtained basically by eliminating time from both of the equations

of mean phytomass w and density p as functions of time (Hozumi, 1977). Equation (12), i.e.

eqn (8), determines the growth pattern of w of a population starting with initial density pi over

time. The growth pattern has now been explicitly obtained as a function of biological time r

through the explicit forms of At, i.e. eqn. (31), and p , i.e. eqn (28), which in turn

determines the mortality pattern of the population over time. The r appears in the explicit forms

of the coefficients At and B (i.e. eqn (11)) in eqn (12) in the form of e'r . On the basis of eqn

(28), the e~r can be expressed as a function of p ,
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u=0.005

Fig. 3. Transitions of the value of

the coefficient Ax with biological

time t . The curves are given by

eqn (31), where a = 3/2. The value

of A\ decreases with increasing rate

of relative mortality jj. .

Biological time x

where

e ' =

J_ =

Po A

(33)

(34)

Eliminating rrfrom eqns (11) and (31) using eqn (33), and in consideration of eqn (30)

the reciprocal equation of the C-D effect, i. e. eqn (12), can be rewritten in the form,

Kp'a 1--^

w = (35)

Equation (35) describes the time-trajectory of mean phytomass to and density p during the

course of self-thinning in any population starting with initial density p \. In the case of p-, = p,* ,

eqn (35) is the same as the power equation of self-thinning, i.e. eqn (13). As p becomes

much smaller than p i, eqn (35) also becomes identical to eqn (13).

As illustrated in Fig. 4, eqn (35) gives a consistent, full explanation of the w-p trajectory

of any population starting with initial density p\. When the value of the relative mortality rate jx

of the p i*-population is low, the C-D effect occurs intensely from the earlier stage of growth and
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H-o

t=0

Density p
Density p

"0

D.6

VVt>=12

\
\

\\t-4

Pi*

Fig. 4. Relationships between the C-D

effect and the w-p trajectory on

logarithmic coordinates (in the case of a

= 3/2). The dotted curves represent the

C-D effect, i.e. eqn (12), and the solid

curves represents the w-p trajectory,

i.e. eqn (34). Ther, defined as eqn (9),

indicates successive biological times.

The pi* is the initial density of the p\*-

population (see text) and wo is initial

mean phytomass.

Density p

the w-p trajectory approaches the self-thinning line at the later stage of growth. On the other

hand, as the value of fi increases, the C-D effect occurs moderately in the earlier stage of

growth, gradually rising in intensity at the later stage of growth, and the w-p trajectory

approaches the self-thinning line at the earlier stage of growth. This means that the value of /a

plays an important role in relieving or intensifying intraspecific competition. It can be seen in

Fig. 4 that a population starting with pi higher than pi* decreases its mean phytomass at the
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initial stage of growth. This would explain the phenomenon observed by Yoda et al. (1963) in

the spacing experiment of buckwheat {Fagopyrum esculentum Moench), where the mean

phytomass of the highest initial density plot (5 x 104 seeds nr2) decreased at the first sampling

(21 days after sowing).

Discussion

Explicitform of the carrying capacity Y

Since the coefficients e and At have been defined respectively by eqns (27) and (31) as

functions of biological time r , the carrying capacity Y of yield y is the only unknown function left

in eqn (10). Differentiating both sides of eqn (10) with respect to r , Kis explicitly obtained as

a function of r , L e.

la-\)Mt
(36)

It is concluded from eqn (36) that Y increases exponentially with increasing r . This trend is

consistent with the result confirmed by Xue and Hagihara (1998) in the Pinus densiflora stands

that Ftended to increase gradually with increasing stand age.

Density-dependent mortality

In consideration of eqn (34), eqn (28) can be rewritten in the following differential form,

m- — = • (37)

If initial density p\ is equal to p\*, which is the initial density of the p\*-population, eqn (37)

Pi>Pi

Pi<Pi

Density p

Fig. 5. Linear relationships of relative

mortality rate m to density p , The

straight lines are given by eqn (37).

The p\ means the initial density of any

population and the p\* means the

initial density of the /^-population

(see text). The arrows stand for the

progress of i\me.p\<p\ *,a logistic type

of decrease;pi=pi\ an exponential

type of decrease;p\>p\*, a cologistic

(Shinozaki, 1953b) type of decrease.

is the same as eqn (24). Figure 5 shows the relationships of relative mortality rate m to density

p (so-called s-n diagram (Shinozaki, 1953b)) based on eqn (37). The m of populations starting

with pi* is constant at p throughout the mortality process, i.e. an exponential type of

decrease. The m of populations starting with p\ smaller than p\* is smaller than // and

increases linearly toward fx as p decreases, i.e. a logistic type of decrease. On the other hand,
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the m of populations starting with pi larger than p\* is larger than ju and decreases linearly

toward p as p decreases, i.e. a cologistic type of decrease.

Approximated expression ofthe w-p trajectory

The value of the coefficient p. in eqn (35) is in the range given by eqn (32). As the value of

H tends to the lower limit of zero, eqn (35) can be written in the form (Hagihara, 1998),

^-\ . (38)
Pj

On the other hand, as the value of « tends to the upper limit of I/a , eqn (35) can be written in

the form,

V PJ

(39)

To first approximation, therefore, the w-p trajectory given by eqn (35) may follow the equation,

( Y
w = Kp- 1-— (a-\<0<a). (40)

v pj

The results of fitting the data, which were obtained by Spurr et al. (1957) in eastern white

102r

-P 101

ioc

10
,-2

Fig. 6. Time-trajectories of mean phytomass (stem

volume) w and density p in eastern white pine

{Pinus strobus L.) plantations examined by Spurr et

al. (1957). Unit: 1 acre = 4047 m2; 1 ft3 = 28.32 dm3.

The curves are given by eqn (40), where the value

of a was assumed to be 3/2 and the other

parameters were determined on the basis of the

least square method with respect to the relative

error:

•,w =2.30X105 p "3/2(1 - />/4980)0703(/-2=0.992);

©,w =1.90X10V3/Z0- p/2240)0651 (r2=0.975).

I . . r . I

102 103

Density p (acre'1)
10"
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pine {Pinus strobus L.) plantations, to eqn (40) are shown in Fig. 6. It is apparent from the

figure that eqn (40) accurately mimics the time-trajectories of mean phytomass (stem volume)

w, which increases, and density p , which decreases, with the development of the plantations.

This provides evidence that eqn (40) can be a convenient and practical model for describing the

w-p trajectory during the course of self-thinning in even-aged populations.
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