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Abstract

A mathematical model for describing the density effect occurring in self-thinning

populations is developed on the basis of the following three basic assumptions: (1)

the growth of yield follows the general logistic equation; (2) final yield becomes

constant irrespective of initial density; and (3) there exists a functional relationship

between actual and initial densities. The resultant equation takes the same recipro

cal form as the reciprocal equation derived from Shinozaki-Kira's theory, i.e., the

logistic theory of the C-D effect, which deals with the density effect occurring in

nonself-thinning populations. It is, however, recognized that one of the two coeffi

cients is quite different in mathematical interpretation between the two reciprocal

equations based on the present theory and the logistic theory of the C-D effect, re

spectively. The present conclusion is consistent with the empirical facts that the re

ciprocal relationship between yield (or mean phytomass) and density is discernible

in not only nonself-thinning populations, but also self-thinning populations. The

present model is expected to systematically interpret underlying mechanisms be

tween the density effect, which is observed at a time constant among populations

varying in initial density, and self-thinning, which is observed along a time contin

uum in any given population.

Introduction

The density effect refers to the relationship at a particular moment in time between yield

per unit area (or mean phytomass per plant) and plant density in populations grown at dif

ferent levels of density holding growth factors, other than space, the same. On the other

hand, self-thinning refers to the time-trajectory of yield (or mean phytomass) and density,

i.e., how yield (or mean phytomass) increases as density decreases in a population over

time. It is well-known that overcrowded populations are governed by the 3/2 power law of

self-thinning, which had been first formulated by Yoda et al. (1963). Figure 1 diagrams the

relationship between the competition-density (C-D) effect and self-thinning, whereas Fig. 2

diagrams the relationship between the yield-density (Y-D) effect and self-thinning.

The reciprocal equations for describing the density effect (Bleasdale and Nelder, 1960;

Nelder 1962; Shinozaki and Kira, 1961; Bleasdale 1967, Farazdaghi and Harris, 1968;

Watkinson, 1980; Vandermeer, 1984) originate in the logistic theory of the C-D effect, which

had been first established by Shinozaki and Kira (1956). Since the logistic theory is con-
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Actual density p

Fig. 1. Diagram showing the relationship

between the C-D effect and self-

thinning on logarithmic coordi

nates. The dotted curves and the

solid curves stand for the C-D ef

fect and self-thinning, respectively.

The solid line represents the 3/2

power law of self-thinning. The ar

rows show the progress of time.

The w0 stands for initial mean

phytomass.

Actual density p

Fig. 2. Diagram showing the relationship

between the Y-D effect and self-

thinning on logarithmic coordi

nates. The dotted curves and the

solid curves stands for the Y-D ef

fect and self-thinning, respectively.

The solid line represents the 3/2

power law of self-thinning. The ar

rows show the progress of time.

The y0 stands for initial yield.

cerned with nonself-thinning populations, there exist difficulties to reasonably relate the den

sity effect with self-thinning within the scheme of the logistic theory of the C-D effect. This

problem has been so far left unsolved (Hozumi, 1977, 1980, 1983; Minowa, 1982; Naito, 1992).

In this paper, a theory applicable to the density effect occurring in self-thinning popula

tions is constructed in line with the logistic theory of the C-D effect. The model derived from

the present theory is expected to reasonably link the density effect to self-thinning.

Interrelationships among yield, mean phytomass and density in self-

thinning populations

Let us now consider a series of populations grown over a wide range of densities holding

growth factors, other than space, the same. Successive decreases in density, i.e., self-

thinning, occur owing to competitive interactions among individual plants in populations

over time. At any given time, mean phytomass per plant w is related to yield per unit area

y and the number of plants per unit area p, i.e., actual density:

(1)



Density Effect in Self-thinning Populations 73

Differentiating both sides of Eq. (1) logarithmically with respect to time t gives the fol

lowing equation (Hozumi 1980):

±duL=zJ_dy__(_±dp\
w dt y dt \ p dt} '

Equation (2) implies that the relative growth rate of yield ( \/y X dy/dt) is never equal to

the relative growth rate of mean phytomass ( \/w X dw/dt) in self-thinning populations. If

the relative mortality rate (-\/p)(dp/dt) is zero, i.e., no self-thinning occurs in popula

tions, the relative growth rate of yield is equal to the relative growth rate of mean

phytomass.

The logistic theory of the C-D effect (Shinozaki and Kira, 1956) is based on the following

two basic assumptions: (1) the growth of mean phytomass follows the general logistic equa

tion (Shinozaki, 1953); and (2) the law of constant final yield (Kira et al., 1953; Hozumi et

al.t 1956) holds. In light of Eq. (2), the former assumption for the growth of mean

phytomass, prior to the growth of yield, causes a conflict to the latter assumption, as far as

self-thinning populations are concerned (Hagihara, 1997). Therefore, we can not apply the lo

gistic theory of the C-D effect to the density effect occurring in self-thinning populations.

Conspecific individual plants are integrated into a higher level of biotic components, i.e.,

plant populations, which grow in a similar manner to a whole plant. Realization of the con

stant final yield regardless of density in a population after a sufficient lapse of time

(Donald, 1951; Kira et al., 1953) characterizes the growing behavior of plant populations. In

this context, it is reasonable to assume that the growth of yield y follows the general logis

tic equation:

y dt

where Y(t) is the asymptote of y and A(0 is the growth coefficient. Although the general lo

gistic equation never gives a specifically determined curve, we can assume that it offers the

most promise for describing population growth. Any change in actual population growth

could be reasonably traced with the general logistic equation, where the two arbitrary pa

rameters Y(O and A(O are allowed to be functions of time t (Shinozaki, 1953). Figure 3

diagrams the growth of yield y according to the general logistic equation.

Density-dependent mortality

In the time frame of self-thinning, plant populations can not be denser than an asymptote

of density, whose level becomes lower over time (Yoda et al., 1983; Ando, 1968; Watkinson,

1980, 1986; Firbank and Watkinson, 1990). Figure 4 depicts the relationships between actual

density p and initial density px at any given time t in Pinus densiflora stands. The relation

ship can be described with the following equation proposed by Shinozaki and Kira (1956):

-L^-L + eCO. (4)
P Pi
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Fig. 3. Diagram showing the growth of Fig. 4. Relationships between actual density

yield y according to the general

logistic equation, i.e., Eq. (3),

where the growth coefficient A and

the asymptote Y are respectively

changeable step by step from A,

and Yx to Xt and YA as time t pro

gresses. The solid line stands for

the actual growth of y .

p and initial density pK in Pinus

densiflora stands (data from Tadaki
et al. (1979)). The curves are given
by Eq. (4).

where e(t) is the reciprocal of the asymptote of p at / as p{ tends to infinity, and is appar

ently independent of both p and p{, but is a function of t alone.

Mathematical formulation of the density effect in self-thinning

populations

A theory applicable to the density effect occurring in self-thinning populations is con

structed in line with the logistic theory of the C-D effect. In the present theory, Eqs. (3) and

(4) are adopted in the following assumptions:

(i) The growth of yield y follows the general logistic equation given by Eq. (3).

y dt

(ii) The growth coefficient A(0 is independent of initial density px .

(5)

Under the assumption of logistic growth, growth is largely free from the inhibitory influence

of pi in the early period of growth,

(iii) The law of constant final yield (Kira et al., 1953; Hozumi et al., 1956) holds.

dp-t
= 0 . (6)
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(iv) Initial mean phytomass w0, defined as initial yield y0 divided by initial density pt, is

constant regardless of px .

P\

■^ = 0. (8)
dpi

This assumption is supported with the fact that seeds are sown simultaneously at t = 0 irre

spective of pi .

(v) The relationship between actual density p and initial density pK at any given time t is

described with Eq. (4).

-L--L+ .(,).
P Pi

). (9)
, \ dp J

In the logistic theory of the C-D effect (Shinozaki and Kira, 1956), mean phytomass w , in

stead of yield y, was assumed to follow the general logistic equation:

where Wit) is the asymptote of w . As far as nonself-thinning populations are concerned,

Eq. (3) is equivalent to Eq. (10), as might be expected from Eq. (2). Assumptions (ii) to (iv)

are essentially the same as the assumptions adopted in the logistic theory of the C-D effect.

In the logistic theory of the C-D effect, the final yield Yit) was defined as:

HO = Wit)p . (11)

However, Eq. (11) does not hold in self-thinning populations (Hagihara, 1997), so that Eq.

(11) is necessarily excluded from the present theory. Assumption (v) is newly incorporated

into the present theory.

Using Eq. (7), the solution of Eq. (3) is written in the form:

(12)
y Jo Yit) w0 Pi

Here, r is called biological time (Shinozaki 1961) and is defined as (Shinozaki and Kira,

1956):

t= f Xit)dt . (13)
J 0

With abbreviations of

and

B = ^~, (15)

Eq. (12) can be rewritten in the form:
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-±- = A+—. (16)
y Pi

Both the coefficients A and B in Eq. (16) are apparently independent of initial density px

from Eqs. (5), (6) and (8), but are functions of time t alone. Equation (16) describes the Y-

D effect realized between yield y and initial density p( at any given time in populations. It

should be noted that Eq. (16) is essentially synonymous with the reciprocal equation of the

Y-D effect based on the logistic theory of the C-D effect, as pointed out by Hagihara (1996).

Conclusively speaking, Eq. (16) holds in not only self-thinning populations, but also nonself-

thinning populations.

Substituting Eq. (4) into Eq. (16), we have

y p

where

$'^^ (18)

The coefficients Ax and B in Eq. (17) are of course independent of actual density p (see

Appendix), but are functions of time / alone. Equation (17) describes the Y-D effect realized

between yield y and actual density p at any given time in populations. It should be noted

that the coefficient AK in Eq. (17) is quite different in mathematical interpretation from the

coefficient A in Eq. (16). If no self-thinning occurs in populations (i.e., since p = P\ ,

e(0 =0 from Eq. (4), so that AK = A from Eq. (18)), Eq. (17) is identical to Eq. (16).

Equation (17) can, therefore, describe the Y-D effect at any given time in not only self-

thinning populations, but also nonself-thinning populations.

Considering Eq. (1), Eq. (17) is transformed to the following equation:

— = At p+B . (19)
w

Equation (19) describes the C-D effect realized between mean phytomass w and actual density

p at any given time in populations. If no self-thinning occurs in populations, Eq. (19) is

identical to the reciprocal equation of the C-D effect based on the logistic theory of the C-D

effect. It, therefore, follows that Eq. (19) is also applicable to the C-D effect in not only self-

thinning populations, but also nonself-thinning populations.

Conclusion

The density effect in self-thinning populations can be described with the same formed re

ciprocal equation as the reciprocal equation derived from the logistic theory of the C-D effect

established by Shinozaki and Kira (1956), the theory which is confined to nonself-thinning

populations. However, it should be noted that the coefficient A in Eq. (16), which is essen

tially the same as the reciprocal equation of the Y-D effect derived from the logistic theory

of the C-D effect, is quite different in mathematical interpretation from the coefficient At in

Eq. (17) (see Eq. (18)). The present conclusion is consistent with the empirical facts (e.g.,



Density Effect in Self-thinning Populations 77

Yoda et al., 1963; Ando, 1968, 1992; Drew and Flewelling, 1977; Tadaki et al., 1979;

Thoranisorn et al., 1990; Shibuya, 1994; Tadaki, 1996; Shibuya et al., 1997) showing that the

reciprocal relationship between yield (or mean phytomass) and density is discernible in not

only nonself-thinning populations, but also self-thinning populations.

It has been so far impossible to systematically interpret the interrelationships between the

density effect observed at a time constant and the self-thinning observed along a time contin

uum (see Figs. 1 and 2) within the scheme of the logistic theory of the C-D effect (Hozumi,

1977, 1980, 1983; Minowa, 1982; Naito, 1992). The present model, applicable to the density ef

fect occurring in self-thinning populations, is expected to give us a clue for solving the prob

lem. A detailed account of the systematic interpretation will be published elsewhere.
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Appendix

Differentiating both sides of Eq. (4), i.e.,

with respect to initial density p, gives

Considering Eq. (Al), Eqs. (5), (6) and (8) can be rewritten respectively in the forms,

mi.sm.4.0, (A2)
dp, dp Pi

iico=^o)4 = 0 (A3)
dPi dp Pi

and

dw0 _ dwa p1 _ f..

dp{ dp pi

Here, it is apparent that pVpf =£ 0 , so that the following are concluded from Eqs. (A2), (A3)

and (A4), respectively,

dXit)

dp

arq)

dp

and

dw(

= 0 , (A5)

= 0 (A6)

= 0 . (A7)
op

The A(f) has been verified to be independent of actual density p, which in turn means that

the biological time r defined as Eq. (13), i.e.,

r = f l(t)dt .
J a

is independent of p. Since r , Y(f) and w0 have been known to be independent of actual den

sity p and in addition e(t) is also known to be independent of p from Eq. (9), the coeffi

cients Ax and B are demonstrated to be independent of p.


