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Abstract

As an interatomic potential of atoms, we propose a piecewise linear one which provides the best prediction

of crystal structure. The potential composed of plain parameters has an enormous advantage of limiting the

possible structures into a finite number of discrete ones. Its usefulness is shown by an example of two-

dimensional monoatomic crystals at an absolute-temperature of zero.

1. Introduction

It is one of the most important targets of

condensed matter physics to relate the structure of a

crystal to the microscopic feature of interatomic

potentials of constituent atomsfl]. However such

works are still a long way off. One obstacle may lie

in the fact that only analytical functions have been

chosen as interatomic potentials so far. Since most

of well-known potentials such as Lennard-Jones's or

Morse's one are too simple to draw various crystal

structures of, they must be modified by some

additional terms. The resultant potentials are

obscured with many incomprehensible parameters.

Then, if the sufficient use of a computer is taken

into consideration, we should abandon the analytical

nature of a potential and use the function which can

be handled more easily. The simplest function that

meets the above demand is a piecewise linear

function. The purpose of this paper is to show how

this function is useful.[2][3][4][5][6]

2. Potential

2.1 Piecewise Linear Interatomic Potentials

Let us consider what type of crystal appears
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when cohesive or attractive energy of the atoms is

given by a piecewise linear potential V(r). Its typical

shape is shown in Fig. 1. It is linear except at the

positions specified by r,, so it may have a locally

minimal or maximal value at rh Parameter r0 is

always the shortest distance between the atoms,

while the other r-, are arbitrarily chosen. As a simple

example in the 2-dimensional case, we choose them

in Fig. 1 as r,=1.5r0, r2=2r0, r3=2.5r0. Each of the

potential energy values at rs is set to V0,V,,V2 and V3.

V(r) is assumed to have a positive infinite value for

r<r0, and zero for r>r3. The latter assumption means

V3=0. For further simplicity, let us fix Vo=-1. Then

we have the simplest V(r) which contains only two

parameters V, and V2.

Fig. 1. A piecewise linear interatomic potential used in this work.

The present work was presented in several academic meetings. Main

reports were listed in References.
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2.2 Remarkable Advantage of Piecewise Linear

Potentials

Our work is to determine which configuration

of atoms has the minimal energy under the potential

given. Even if we assume the atoms make^a crystal,

possible structures are infinite.

Sum

xA xB xA xB

Fig. 2. Invariant positions of the potential.

However a piecewise linear potential has a

convenient feature that allows us to avoid this

difficulty. When any two piecewise linear potentials

are summed up, the positions of their inflection

points are conserved as in Fig.2. If we add any two

piecewise linear potentials, for example VA and VB,

the minimal value of VA + VB appears at xA or xB

which originally indicates the minimum value of VA

or VB respectively. Therefore, we need not look for

all domains of x to find the position of the minimal

value of VA + VB. We only have to compare its

values at xA and xB with each other. Similarly, when

we select more than two potentials,for exampe VA,

VB and Vc, '"., we can find the minimum value of

their sum only by comparing a finite number of

values with each other. This simplifies our work

tremendously.

3. Two dimensional crystals

3.1 Cohesive energy of a crystal

Let us concentrate on the problem using the

simplest case. The atoms are assumed to make a

crystal lattice. We only are concerned with the two-

dimensional monoatomic crystals which have one

atom per primitive cell. The energy of the entire

crystal is the sum of two-body potentials.

In Fig.3 for example, the atom at the origin

interacts on only the black atoms within the circle

having the radius r3. If the number of such lattice

Fig. 3. Lattice points contributing to the two-body

energy of the origin.

points is n, the energy per one atom is

where r(i,j) means the distance from the origin to

the lattice point (i,j) and summation is performed

over n lattice points. Our purpose is to figure out a

way where the structure to minimize Vatom.

3.2 Specification of two-dimensional crystals

A crystal for the present model is specified by

two primitive translation vectors a and b. We can

assume that a to lie on x-axis and its length is r0

without losing generality. Therefore the crystal is

described by the two components (x2, y2) of b as in

Fig. 4.

b(x2,y2)

->a(ro,o)

Fig. 4. Primitive translation vectors specifying the crystal.

3.3 Range of search

We do not need to scan the entire area spanned by

(x2, y2) • Firstly, V(r) is a periodic function of x2

with the period r0, for x2+r0 has the same lattice as

indicated by x2. Secondly, V(r) is an even function

with respect to x2, because the mirrored lattice

should have the same energy. It accompanies
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another mirror symmetry at x2=r0/2 which equalizes

a value of V at x2=r0/2- A x to that at x2=r0/2+ A x,

because the value at x2=r0/2+ A x is the same to that

at x2=-ro/2- A x by parity, and the latter is equivalent

to that at x2=-r0/2- A x by periodicity . Then V has

the shape as shown in Fig.5, which indicates that

the area 0^x2^r0/2 is sufficient.

V

Fig. 5. Symmetry of the potential.

Furthermore V (r) is invalid in the areas x22+y22<r02

and x22+y22>r32 by our assumption. Therefore only

the dotted area in Fig.6 is sufficient enough to

exhaust all the eligible lattices.

Fig. 6. Scanning area of (x2, y2).

3.4 Possible lattices

Fig. 7. Possible lattice points affecting the energy of the crystal.

When we scan x2 and y2 in the above region, 20

lattice points contained in the dotted areas in Fig.7

can affect the total energy of the crystal, for they

move in the interior of circle with the radius r3.

Only half of them are sufficient for calculation by

symmetry, which are numbered from 1 to 10 . The

following indices should be assigned to them.

®(-2,.l), @(-l,l), ®(0,1), ®(U), ©(2,1),

®(-2,2), ® (-1,2), ®(0,2), ®(1,2), ®(2,2).

The distance R (i, j) from the origin to lattice point

(i, j) is given as follows.

R(0,l)=SQR(x22+y22)

R(l,l)=SQR((x2+ro)2+y22)

R(-l,l)=SQR((x2-r0)2+y22)

R(0,2)=SQR((2x2)2+(2y2)2)

R(2,l)=SQR((x2+2r0)2+y22)

R(l,2)=SQR((2x2+r0)2+(2y2)2)

R(-l,2)=SQR((2x2-r0)2+(2y2)2)

R(-2,l)=SQR((x2-2r0)2+y22)

R(2,2)=SQR((2x2+2r0)2+(2y2)2)

R(-2,2)=SQR((2x2-2r0)2+(2y2)2)

Here SQR means square root.

As has been stated in 2.2, a minimal value of

the total energy is obtained at the position where

any individual two-body potential has a minimum

value. In other words, this means a minimal value

occurs whenever a lattice point lies on a circle with

the radius r0, r,, r2 or r3. In addition, it also occurs

where x2 is 0 or ro/2, as suggested in Fig. 5.

Therefore the energy of the crystal can have a

minimal value if it fulfills one of the following six

kinds of conditions.

(1) R(I,J)=r0

(2) R(I,J)=ri

(3) R(I,J)=r2

(4) R(I,J)=r3

(5) x2=0

(6) x2=ro/2

Since the ten lattice points must be tested, the

total number of conditions (1) to (4) is 40. Adding

conditions (5) and (6), we can see 42 conditions in

all. Let us use the following symbols to express

these conditions simply.

C(I,J;k): R(I,J)=rk

L0 : x2=0

LI : x2=r0/2
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Here the initials C and L have been adopted from

"circle" and "line" respectively.

Since we have two degrees of freedom x2 and

y2 , the energy of the crystal can have a minimal

value whenever any two of 42 conditions are

fulfilled at the same time. In the dotted area of Fig.3,

such intersections occur at the following 41 points

where r0 is taken to be 1. The result means that the

number of possible phases is 41 at most. The merit

stated in the last part of Section 2 works efficiently.

TABLE

STABLE

SPECIAL VECTORS FOR A CRYSTAL TO BE

Phase.: x2,y2; condition 1,condition 2

1:0, l;L0,C(0,l;0)

2:0, 1.11803; L0,C(l,l;l)

3:0, 1.14564; L0,C(l,2;3)

4: 0, 1.25; L0,C(0,2;3)

5:0, 1.5;L0,C(2,l;3)

6:0, 1.73205; L0,C(l,l;2)

7:0,2;L0,C(0,l;2)

8:0, 2.29129; L0,C(l,l;3)

9:0,2.5;L0,C(0,l;3)

10: 0.5, 0.866025; Ll,C(0,l;0)

11:0.5, 1;L1,C(-1,2;2)

12:0.5, 1.14564; LI,C(-2,2;3)

13:0.5, 1.25; L1,C(-1,2;3)

14:0.5, 1.32288; L1,C(1,1;2)

15:0.5, 1.41421; Ll,C(0,l;l)

16:0.5, 1.93649; LI,C(0,l;2)

17:O.5,2;L1,C(1,1;3)

18: 0.5, 2.44949; Ll,C(0,l;3)

19: 0.125, 0.992157; C(0,l;0),C(l,l;l)

20: 0.21875, 0.975781; C(0,l;0),C(-2,2;3)

21: 0.25, 0.968246; C(0,l;0),C(-l,2;2)

22: 0.3125, 0.949918; C(0,l;0),C(2,l;3)

23: 0.28125, 0.975781; C(-1,2;2),C(1,2;3)

24: 0.2625, 0.990502; C(-2,1;2),C(1,2;3)

25:0.25, 1; C(l,2;3),C(-2,2;3)

26: 0.3, 0.979796; C(2,1;3),C(-1,2;2)

27: 0.28125, 1.02269; C(2,1;3),C(-2,1;2)

28: 0.020833, 1.13632; C(-1,1;1),C(U;3)

29: 0.0625, 1.17094; C(-1,1;1),C(-1,2;3)

30: 0.390625, 1.1874; C(0,2;3),C(-2,l;2)

31: 0.4375, 1.24844; C(-1,2;3),C(-2,1;2)

32: 0.1875, 1.21031; C(2,1;3),C(-1,2;3)

33: 0.25, 1.22474; C(0,2;3),C(-l,2;3)

34: 0.15625, 1.2402; C(-l,l;l),C(0,2;3)

35: 0.166667, 1.24722; C(-1,1;1),C(2,1;3)

36: 0.171875, 1.23813; C(2,l;3),C(0,2;3)

37: 0.4375, 1.39054; C(-1,1;1),C(1,1;2)

38: 0.375, 1.45237; C(0,l;l),C(l,l;2)

39: 0.125, 1.65359; C(1,1;2),C(-2,1;3)

40:0.375, 1.89984; C(-1,1;2),C(-2,1;3)

41: 0.4375, 1.95156; C(0,l;2),C(-2,l;3)

3.5 Phase Diagram

Thereforewe can get the most probable lattice

immediately by comparing the 41 phases with each

other. The result in Fig.8 was obtained with the

program shown in the Appendix. Only seven phases

appeared, one of which (10) is hexagonal, three(( 3,

4 and 9 ) are rectangular, and the other three (29, 32

and 34) are oblique. As was expected, the close-

packed structure 10 is most prominent.

-1

Fig. 8. Phase diagram of the two-dimensional crystal.

4. Conclusion

A piecewise linear potential has proved its

usefulness in the simple example of two-

dimensional monoatomic crystals. The advantage of

conserving the inflection points exceeds the sacrifice

of losing the analyzability of potential.
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Appendix

The phase diagram in Fig. 8 was produced by

the following BASIC program. It was written for

N88BASIC by NEC and F-BASIC by Fujitsu, but

may be operated in any BASIC with slight

modulation.

1000 'SAVE MPDPWL2D.BAS",A

1010 =

1020 'PHASE DIAGRAM CALCULATED ON A

PIECEWISE

1030 'LINEAR INTERATOMIC POTENTIAL

ENERGY

1040 '(ENGLISH VERSION OF

"SOUZU2DF.BAS")

1050 =

1060 PROGRAM$="PDPWL2D.BAS"

1070 N88BASIC=0: FBASIC=l:LANGUAGE=0:

1080 FOR L=l TO 0:LANGUAGE=

LANGUAGE+L:NEXT

1090 R0=l! : R1=1.5 : R2=2! :R3=2.5 : V0=-l

:V3=0

1100 DEF FNV(R,Vl,V2)=-(R<R0-.01)*10

+(R>=RO-.O1)*(R<R1)*((V1-VO)/(R1-RO)*(R-

R0)+V0)

+(R>=R1)*(R<R2)*((V2-V1)/(R2-R1)*(R-

+(R>=R2)*(R<R3)*((V3-V2)/(R3-R2)*(R-

R2)+V2)

1110 'R0 IS CHANGED INTO (R0-0.01) TO

COUNTER ROUNDOFF ERRORS

1120 DIM SP(200,6),PHASE(50)

1130CLS

114OSS=.O1

1150 GOSUB *FILENAME

1160 =STARTING COLOR

1170C0=3

1180' = =READ DATA OF PHASES

1190KT=0: READ HEADERS

1200 KT=KT+1: READ SP$

1210 IF SP$="$" THEN 1270

1220 FOR A=l TO 3

1230SP(KT,A)=VAL(LEFT$(SP$,INSTR(SP$,";")-

D)

1240 SP$=RIGHT$(SP$,LEN(SP$)-

INSTR(SP$,";"))

1250 NEXT

1260 GOTO 1200

1270 CLS

1280 PRINT "THIS FILE IS";OD$;

1290 PRINT " PARENT PROGRAM

IS";PROGRAM$
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1300 PRINT "STARTING COLOR IS";C0

1310 IT=1 :PHASE(IT)=0

1320 IF LANGUAGE=N88BASIC THEN X0=300

:Y0=l 10 ELSE X0=400 :Y0=220

1330 IF LANGUAGE=N88BASIC THEN XB=100

:YB=-50 ELSE XB=200 :YB=-200

1340 IF LANGUAGE=N88BASIC THEN OPEN

OD$ FOR OUTPUT AS #1 ELSE OPEN OD$

FOR APPEND AS #1

1350 PRINT #1 /'OUTLINE OF ";OBJECT$

1360 PRINT #1 /'PARENT PROGRAM IS

";PROGRAM$;" ";

1370 IF LANGUAGE=N88BASIC THEN PRINT

#1,

11 N88BASIC" ELSE PRINT #1," F-BASIC"

1380 STARTTIME$=DATE$+" "+TIME$+"

STARTED"

1390 PRINT #1 ,STARTTIME$

1400 =MAIN

1410 FOR Vl=-1 TO 1 STEP SS : FOR V2=-l TO

1 STEP SS

1420 GOSUB *FINDMIN

1430 GOSUB *NEWPHASE

1440 VK=VK+C0

1450 IF LANGUAGE=N88BASIC THEN

C=(VK MOD 8)+l ELSE C=(VK MOD 16)+1

1460 PSET (Vl*XB+X0,V2*YB+Y0),C

1470 NEXT: NEXT

1480 PRINT #1,"ENDED ON ";DATE$;" ";TIME$

1490 CLOSE

1500 INPUT "END ";A$

1510 PRINT "SYSTEM"

1520 END

1530'

1540 *FINDMIN

1550 VMINT=100: VK=1

1560 FORK=1 TOKT

1570 X=SP(K,2) :Y=SP(K,3)

1580 VMIN=V0

1590 P=SQR(X*X+Y*Y): GOSUB *VSUM

1600 P=SQR((X+R0)A2+YA2): GOSUB *VSUM

1610 P=SQR((X-R0)A2+YA2): GOSUB *VSUM

1620 P=SQR((2*X)A2 +(2*Y)A2): GOSUB

*VSUM

1630 P=SQR((X+2*R0)A2 +YA2): GOSUB

*VSUM

1640 P=SQR((2*X+R0)A2 +(2*Y)A2): GOSUB

*VSUM

1650 P=SQR((2*X-R0)A2 +(2*Y)A2): GOSUB

*VSUM

1660 P=SQR((X-2*R0)A2 +YA2) : GOSUB

*VSUM

1670 P=SQR((2*X+2*R0)A2+(2*Y)A2): GOSUB

*VSUM

1680 P=SQR((2*X-2*R0)A2+(2*Y)A2): GOSUB

*VSUM

1690 IF VMIN<VMINT THEN VMINT=VMIN :

VK=K

1700 NEXT

1710 RETURN

1720 =

1730 *NEWPHASE

1740 NP=1

1750 FOR 1=1 TO IT

1760 IF VK=PHASE(I) THEN NP=0: I=IT

1770 NEXT

1780 IF NP=0 THEN 1820

1790 IT=IT+1: PHASE(IT)=VK

1800 PRINT "VK=";PHASE(IT)

1810 PRINT #l,VK;";";Vl;";n;V2;";";VMIN

1820 RETURN

1830'

1840*VSUM

1850 VMIN=VMIN + FNV(P,V1,V2)

1860 RETURN

1870'

1880*FILENAME

1890 DT$=RIGHT$(DATE$,8)

1900 DY$=LEFT$(DT$,2)

1910 DM$=HEX$(VAL(MID$(DT$,4,2)))

1920 DD=VAL(RIGHT$(DT$,2)):IF DD<10

THEN DD$=CHR$(DD+48) ELSE

DD$=CHR$(DD+55)

1930 TM$=RIGHT$(TIME$,8)

1940 TT=VAL(LEFT$(TM$,2))*3600

+VAL(MID$(TM$,4,2))*60

+VAL(RIGHT$(TM$,2))

1950 TT=TT*12*4096/86400!

1960 TT$=RIGHT$("000"+HEX$(TT),4)

1970 OBJECT$=DY$+DM$+DD$+TT$
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1980 OD$=OBJECT$+".DAT" 2430 DATA $

1990 RETURN

9000ZrWU

2010

2020

2030

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

2140

2150

2160

2170

2180

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

2190 DATA

2200

2210

2220

2230

2240

DATA

DATA

DATA

DATA

DATA

2250 DATA

2260

2270

2280

2290

2300

2310

2320

2330

2340

2350

2360

2370

2380

2390

2400

2410

2420

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

K; X

1

2

3

4

5

6

7

8

9

0 ;

0 ;

0 ;

0 ;

0 ;

0 ;

> 0 ;

, 0 ;

, 0 ;

10; .5

11; .5

12; .5

13; .5

14; .5

15; .5

16; .5

17; .5

18; .5

19; .125

; Y ;

l ;

1.11803;

1.14564;

1.25 ;

1.5 ;

1.73205;

2 ;

2.29129;

2.5 ;

; .866025;

; l ;

; 1.14564;

; 1-25 ;

; 1.32288;

; 1.41421 ;

; 1.93649;

; 2 ;

; 2.44949;

; .992157;

20; .21875; .975781;

21 ; .25

22; .312*

; .968246;

) ; .949918;

23 ; .28125 ; .975781 ;

24; .2625 ; .990502;

25; .25

26; .3

; l ;

; .979796;

27; .28125; 1.02269;

28; .020833; 1.13632

29; .0625 ; 1.17094;

30; .390625; 1.1874 ;

31 ; .4375 ; 1.24844;

32; .1875 ; 1.21031;

33 ; .25 ; 1.22474;

34; .15625; 1.2402 ;

35; .166667; 1.24722

36; .171875; 1.23813

37; .4375 ; 1.39054;

38; .375

39; .125

40; .375

41

; 1.45237;

; 1.65359;

; 1.89984;

; .4375 ; 1.95156;


