琉球大学学術リポジトリ

パーソナルコンピュータによる吸引型磁気浮上シス テムの安定化制御

メタデータ	言語:			
	出版者: 琉球大学工学部			
	公開日: 2009-12-18			
	キーワード (Ja):			
	キーワード (En): Modern Control theory, Regulator,			
	Observer, Stabilizing, Magnetic levitation system			
	作成者: 石田, 力, 長堂, 勤, 福村, 盛仁, 早川, 忠宏, 宇良, 健,			
	Ishida, Tsutomu, Nagado, Tsutomu, Fukumura,			
	Morihito, Hayakawa, Tadahiro, Ura, Ken			
メールアドレス:				
	所属:			
URL	http://hdl.handle.net/20.500.12000/14127			

パーソナルコンピュータによる 吸引型磁気浮上システムの安定化制御

石田 力* 長堂 勤** 福村盛仁*** 早川忠宏[†] 字良 健***

Stabilizing Control for a Magnetic Levitation System by a Personal Computer

Tsutomu ISHIDA*, Tsutomu NAGADO** Morihito FUKUMURA*** Tadahiro HAYAKAWA[†] and Ken URA***

Abstract

We constructed a magnetic levitation system and stabilized it by a personal computer using the theory of an optimal regulator with an observer. we used, as a control equipment, the personal computer PC -9801F2 with the numerical calculating processer 8087. It takes 1.6ms for calculating a loop of a program. Comparing the two kinds of behaviours of a magnetic levitation system stabilized by a personal computer and an analog computer, we learned that the system stabilized by a personal computer does not swing. We guess it comes from the delay for computation by a personal computer.

Key Words: Modern Control theory, Regulator, Observer, Stabilizing, Magnetic levitation system.

受付:1987年10月31日

*工学部電子·情報工学科

Dept. of Electronics and Information Engineering, Fac. of Eng.

**現在,富士通

Fujitsu Co., Ltd.

***現在,沖縄富士通システムエンジニアリング

Okinawa Fujitsu System Engineering Co., Ltd.

†現在,本田技研工業

Honda Co., Ltd.

1. はじめに

本報告では現代制御理論の代表的成果である オブザーバを用いたレギュレータの応用として、 一点支持吸引型磁気浮上系(図1参照)の安定 化制御システムを作製し安定化に成功したので その報告を行う。一点支持吸引型磁気浮上系の 作製に関しては電磁石,振子,全体フレームな どはすべて手作りで行った。制御装置としては パーソナルコンピュータ PC-9801F2(数値演算 プロセッサ8087内蔵)を用いた。プログラムの 1ループの演算時間は1.6msであった。筆者ら は昭和61年に同じ一点支持吸引型磁気浮上系を アナコンで安定化することに成功している。ア ナコンによる安定化とパソコンによる安定化を 比較するとアナコンによる安定化では振子はほ とんど振動しないが,パソコンによる安定化に おいては振子は多少フワフワ振動していること が解った。これはパソコンによる演算遅れの影 響と思われる。

図1 一点支持吸引型磁気浮上系の概略図

2. 一点支持吸引型磁気浮上システム

2.1 数式モデルの導出

この節においては一点支持吸引型磁気浮上シ ステムの数式モデルの導出を行う。

図2のように変数を設定すると回転軸に関す る回転方程式は

 $J\ddot{\theta} + \overline{C}\theta = Mgl_1\cos\theta - f_m l_2\cos\theta \qquad (2.1)$

となる。ただし、各変数の定義は以下のようで ある。

θ:振子の傾き [rad]

- 4:回転軸から磁力の重心までの長さ [m]
- ん:回転軸から磁力の作用点までの長さ [m]
- J:振子からみた慣性負荷 [kg・m²]
- \overline{C} :振子からみた摩擦負荷 $[kg \cdot m^2]$

M:振子質量 [kg]

fm:振子に働く磁力 [N]

また,図3より電磁力 *f*_m及び電圧平衡式に関 しては

$$f_{\rm m} = \alpha \left(\frac{i}{x}\right)^2, \qquad \alpha = \frac{n^2 \mu_0 S_{\rm F}}{4} \qquad (2.2)$$

$$Ge = Ri + \frac{d\phi}{dt}, \qquad \phi = Li$$
 (2.3)

となる。ただし,各変数の定義は以下のようで ある。

- e:入力電圧 [V] *i*:電磁石に流れる電流 [A]
- *R*:電磁石の抵抗 [Ω]
- L:電磁石のコイルインダクタンス [H]

n:電磁石のコイル巻数 [回]

- S_F:電磁石の鉄片接触面積 [m²]
- μ₀:空気の透磁率 [H/m]

x₀:平衡時のギャップ長 [m]

図2 磁気浮上系の変数

図3 電磁石回りの変数

x:鉄片と電磁石とのギャップ長 [m]
 G:アンプのゲイン
 ここで、ギャップ長xは

 $x = x_0 + l_2 sin\theta$

となり,うず電流とヒステリシスを無視すれば 電磁石のインダクタンス*L*は

 $L = L_{a} + \frac{L_{b}}{x}$

で近似できる。 L_a は漏れ磁束に相当する項である。よって、式(2.2)、式(2.3)は

$$f_{\rm m} = \alpha \left(\frac{i}{x_0 + l_2 \sin\theta}\right)^2 \tag{2.4}$$

$$Ge = Ri + \frac{d}{dt} \left[\left(\frac{L_{\rm b}}{x_0 + l_2 \sin\theta} + L_{\rm a} \right) i \right] \quad (2.5)$$

となる。式(2.1)に,式(2.4)を代入してθにつ いてまとめると

$$\ddot{\theta} = -\frac{\overline{C}}{J} \dot{\theta}$$
$$-\frac{1}{J} \left[\alpha l_2 \left(\frac{i}{x_0 + l_2 \sin \theta} \right)^2 - l_1 Mg \right] \cos \theta$$
(2.6)

となる。式(2.5)において時間微分を実行すると

$$Ge = Ri + \left(\frac{L_{\rm b}}{x_{\rm o} + l_{\rm s} sin\theta} + L_{\rm a}\right) i$$
$$-\frac{L_{\rm b} l_{\rm s} cos\theta \cdot \dot{\theta}}{(x_{\rm o} + l_{\rm s} sin\theta)^2} i \qquad (2.7)$$

となる。式
$$(2.7)$$
を i について解くと

$$i = \frac{1}{\frac{L_{\rm b}}{x_0 + l_2 \sin\theta} + L_{\rm a}}$$

×
$$\left[-\left(R - \frac{L_{\rm b} l_2 \cos\theta \cdot \theta}{(x_0 + l_2 \sin\theta)^2}\right)i + Ge\right]$$
 (2.8)

となる。式(2.6),(2.8)より,一点支持吸引型 磁気浮上システムの状態方程式(非線形)は

$$\begin{bmatrix} \dot{\theta} \\ \dot{\theta}$$

となる。式(2.9)の非線形の状態方程式を平衡点 (振子が水平の状態)のまわりで線形近似し

 $r(t) \triangleq (\theta(t), \dot{\theta}(t), \Delta i(t))$

と定義すると次式が得られる。ただし、 *Δi(t)* は平衡点に振子を浮かせるための基準電流から の変化電流である。

$$\dot{x}(t) = Ax(t) + bu(t)$$
 (2.10)

ただし, 各係数行列は

 $b = \begin{bmatrix} 0 & 0 & \frac{x_0 G}{(L_b + L_a x_0) i_T} \end{bmatrix}$

となる。ただし、 $_{i}$ は電流の基準値である。状態 変数のうち、 θ は直接測定可能なので、出力変数 として θ に比例した電圧をとると、システムの 出力方程式は

$$y(t) = Cx(t), \quad C = [c_1 \ 0 \ 0] \quad (2.11)$$

となる。ただし、c,は角度の電圧への変換係数で ある。以上、式(2.10)、(2.11)より一点支持吸 引型磁気浮上系システムの平衡点近傍での挙動 の数式モデルが得られた。

2.2 パラメータの決定

ー点支持吸引型磁気浮上系の数式モデルに含 まれるパラメータの値は,各種の予備実験の結 果,表1のように得られた。単位はすべて MKS 単位で表示してある。表1より式(2.10)の係数 行列 *A*, *b* は

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1560 & -3.56 & -2310 \\ 0 & 0.76 & -5.68 \end{bmatrix}$$
(2.12)
$$b = \begin{bmatrix} 0 & 0 & 2.50 \end{bmatrix}$$
(2.13)

となる。また, C 行列は

表1 システムパラメータの測定値

パラメータ	測定値	パラメータ	測定値
<i>M</i> [kg]	0.106050	$R [\Omega]$	14.780
l_1 [m]	0.330	α	0.0000845
<i>l</i> ₂ [m]	0.780	$J [kg \cdot m^2]$	0.0234672
<i>x</i> ₀ [m]	0.0110	\overline{C} [kg•m²/s]	0.0835191
$\theta_{\rm T}$ [rad]	$\pi/180$	$L_{\rm a}$ [H]	0.7549942
<i>i</i> _T [A]	1.00	L_{b} [H]	0.0202983

 $C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$

とする。

2.3 システムの特性解析

式(2.12)の行列 A (一点支持吸引型磁気浮上 系の開ループシステム)の特性多項式及び特性 根は

$$|\lambda I - A| = \lambda^{3} + a_{3}\lambda^{2} + a_{2}\lambda + a_{1}$$
$$= \lambda^{3} + 9.24\lambda^{2} + 213.91\lambda - 8852.45$$
$$(2.14)$$

$$\lambda_1 = 15.04$$

 $\lambda_2 = -12.10 + 20.83j$
 $\lambda_3 = -12.10 + 20.83j$

となり, 非負の固有値を持つので不安定なシス テムである。次に可制御性を考える。可制御行 列 *U*。

$$U_{\rm c} = \begin{bmatrix} B & AB & A^2B \end{bmatrix}$$

において U.の行列式が

| U_c | =83027461.8≠0 となり,システムは可制御であることがわかる。 次に可観測性を考える。可観測行列 U₆

$$U_0 = \begin{bmatrix} C \\ CA \\ CA^2 \end{bmatrix}$$

において Uの行列式が

 $| U_0 | = -2305.55 \neq 0$

となるのでシステムは可観測であることがわか る。

3. 制御系の設計

3.1 レギュレータの設計

レギュレータについては(3.1)式の評価関数を もつ最適レギュレータを構成し,状態フィード バックによって磁気浮上系を安定化する。

$$J = \int_{0}^{\infty} \{x^{\mathrm{T}}(t) Qx(t) + u^{\mathrm{T}}(t) Ru(t)\} dt$$

$$Q \ge 0, R > 0$$
(3.1)

重み行列 Q, R の選び方については現在のと ころ体系的な方法はなく、本研究では R = 1 と 固定し Q のみを適当に変化させ CAD によるシ ミュレーションおよび実験を繰り返し、最適だ と思われる Qを採用した。そのときの Q は、

$$diagQ = [20 \quad 0.1 \quad 0.1]$$

となり,フィードバック行列Fは

$$F = [-23.1 - 0.4 24.9]$$

となった。また最適閉ループシステムの固有値 は

となった。

3.2 オブザーバの設計

ー点支持吸引型磁気浮上システムでは状態変数のうち、振子の角速度 $\dot{\theta}$ と変化電流 Δi は直接測定することができず、このままでは状態フィードバック制御を実現することができない。そこで次の(3.2)、(3.3)式で表わされるオブザーバを用いて測定不能な状態変数を推定する。

$$\dot{\boldsymbol{\omega}}(t) = \hat{\boldsymbol{A}}\boldsymbol{\omega}(t) + K\boldsymbol{y}(t) + \hat{\boldsymbol{B}}\boldsymbol{u}(t) \qquad (3.2)$$

$$\hat{x}(t) = D\omega(t) + Hy(t)$$
(3.3)

最小次元オブザーバではゴピナスの正準形式を 用い,(3.4)式のように設計パラメータであるオ ブザーバゲイン L により Â を安定行列にする。

$$\hat{A} = A_{22} - LA_{12} \tag{3.4}$$

オブザーバゲイン *L* は CAD によるシミュレー ションを繰り返して決定した。決定した *L* およ びその他の係数行列は以下のようになった。

$$L = \begin{bmatrix} 407.9 \\ -83.15 \end{bmatrix}, \quad \hat{A} = \begin{bmatrix} -2391 & -11530 \\ 477.3 & 2300 \end{bmatrix}$$

$$\hat{B} = \begin{bmatrix} 0 \\ 2.5 \end{bmatrix}$$
, $K = \begin{bmatrix} -20370 \\ 4186 \end{bmatrix}$

$$D = \begin{bmatrix} 0 & 0 \\ 0.2 & 0 \\ 0.2 & 1.0 \end{bmatrix}, \quad H = \begin{bmatrix} 1.0 \\ 81.58 \\ -0.57 \end{bmatrix}$$

4. 実験装置

4.1 装置の構成

実験装置の概略図を図1に示す。またシステ ム及び各装置の写真を図4〜図8に示す。振子 の傾き θ はポテンショメータにより検出され A/ D変換器を通してパソコンに入力される。計算 結果は D/A 変換器を通してパワーアンプに入力 されコイルに流れる電流量を制御する。以下に 各部について説明する。

(1) 電磁石

電磁石は鉄心内での渦電流の発生を防ぐ ため積層鉄心を用いている。その鉄心に直 径0.8mmのエナメル線を1745回巻いている。 この電磁石は約2Aまで流せる。

図4 一点支持吸引型磁気浮上システム

図5 電磁石および振子

図6 パワーアンプ

図7 振子の角度検出用ポテンショメータ

図8 パーソナルコンピュータ9801F2

(2) 振 子

振子は電磁石の最大磁力を考慮して比較 的軽い松材(14×14×1000mm)を使用して いる。その先端にステンレス片(40×30× 0.4mm)を取り付けている。振子の支持は軸 の両端にボールベアリングを使用し,振子 が自由に回転できるようになっている。

- (3) パワーアンプ
 パワーアンプはサンケンの SI-5200C(プ
 リアンプは SI-5000)を使用している。
 最大出力電圧:±42 [V]
 - 最大出力電流:±5 [A] 電 圧 利 得:23 [db] 最 大 出 力:100 [W]
- (4) 角度の検出
 角度 θ を検出するためにエンドレス360度

回転の高分解能,低摩擦,耐久性のあるポ テンショメータを使用している。それは, 振子の回転軸と直結させている。

(5) A/D, D/A 変換器

A/D 変換器は、8 チャンネルのアナログ 入力電圧-9.998~+9.998 [V] をマルチ プレクサにより切り換えて12ビットのデジ タル信号に変換する。変換時間は約24[μ s] である。 D/A 変換器は4 チャンネルの12 ビットデジタル信号をユニポーラ出力で出 力電圧0~12 [V] に変換している。変換 時間は約1 [μ s] である。

(6) 計算機

レギュレータ及びオブザーバを構成する 計算機には数値演算プロセッサ8087を登載 した NEC のパーソナルコンピュータ PC-

図9 振子を下から上へたたいた時の応答

101

図11 振子に重りを載せた時の応答

9801F2を用いている。

4.2 制御プログラム

(3.2)式のオブザーバを解くには次のオイラー 法

 $\boldsymbol{\omega} \left(t + \Delta t \right) = \boldsymbol{\omega} \left(t \right) + \Delta t \cdot \boldsymbol{\omega} \left(t \right)$

を用いている。サンプリングインターバル Δt は 約1.6 [ms] で ω の初期値は 0 としている。数 値演算には8087数値演算プロセッサを用い浮動 小数点方式を採用している。プログラムはすべ てアセンブリ言語で書かれていて,アセンブリ ングにはマイクロソフト社のマクロアセンブラ を用いている。

図12 振子から重りを取り除いた時の応答

4.3 実験結果

図9に安定化している振子を下から上へ軽く たたいた時の応答例を示す。また図10には上か ら下へ軽くたたいた時の応答例を示す。図11に は振子のパラメータを変動させる意味で振子に 重りを載せた時の応答を,また図12にはその重 りを取り除いた時の応答を示す。

5. おわりに

現代制御理論の代表的成果であるオブザーバ を用いたレギュレータの応用実験として,一点 支持吸引型磁気浮上系の安定化制御システムを 作製し,パーソナルコンピュータによるオンラ インリアルタイム制御を行って安定化を行った。 安定化には成功したが安定状態において振子が 多少フワフワ揺れる現象が見られた。これはパ ソコンによる演算遅れのためと思われる。

謝辞

本研究を進めるにあたり種々の御支援をいた だいた工学共通講座の山本哲彦助教授に深く感 謝致します。また、多くの技術的な御助言をい ただいた電気工学科の新垣秀雄氏に感謝致しま す。さらに本論文をまとめるにあたり種々の手 伝いをいただいた大城卓君(琉球大学工学研究 科)、国吉丘君(沖縄日本電気ソフトウエア)、 仲眞勝夫君(リウコム)、喜屋武謙次君(沖縄日 本電気ソフトウエア)に感謝致します。

参考文献

- (1) 小郷,美多:システム制御入門,実教出版, 1979.
- (2) 早川:パーソナルコンピュータによる磁気
 吸引安定化制御,琉球大学工学部卒業研究
 論文,1986.
- (3) 山村,阿部,林:車両の吸引電磁石形磁気
 浮上方式について,電気学会論文誌,B32, pp.255-262,1974.
- (4) 大西,山村,林:吸引電磁石形磁気浮上方式の最適制御,電気学会論文誌,B48,pp. 387-394,1978.
- (5) 近田,古田:磁気吸引浮上系の計算機制御, 計測自動制御学会論文集,第17巻,第7号, pp.713-720,1981.