琉球大学学術リポジトリ

不完全合成桁の挙動に関する研究

メタデータ	言語:
	出版者:有住康則
	公開日: 2021-12-15
	キーワード (Ja):
	キーワード (En):
	作成者: 有住, 康則, Arizumi, Yasunori
	メールアドレス:
	所属:
URL	http://hdl.handle.net/20.500.12000/14311

第1章序 論

1.1 はじめに

土木および建築の分野において、コンクリートと鋼材を合成した構造物が広く用いられている。合成 構造はそれぞれの材料の特性を生かし短所をそれぞれで相補う形式の構造系であり、鋼構造とコンク リート構造の中間領域に属すると考えられているが、現在、合成桁(単純および連続形式)、合成床版、 合成シェル、合成柱(鋼埋込み式、コンクリート充填式)および合成杭など各方面において用いられて おり、このように広範囲に使用されている現状を見ると、合成構造も一つの独立した構造系であると考 えることができる。合成構造は鋼とコンクリートの材料の特性を十分に活用しており、また、コンクリー ト構造と比較すると、軽量化が可能であり、部材に靱性を持たせることができ大型構造物にも適用でき るなどの利点を有しており、一方、鋼構造と比較すると振動、騒音および火災対策上優れており、今後 の発展がさらに期待されている。

現在の各国における合成構造の規準を見ると、わが国においては許容応力度設計法(Allowable Stress Design Method)が用いられており¹⁾、アメリカでは許容応力度設計法および荷重係数設計法 (Load Factor Design Method)が併記する形で用いられている²⁾。また、イギリス、西ドイツおよびヨーロッパの国際統一規準では限界状態設計法(Limit States Design Method)が用いられている^{3)~6)}。世 界的に見ると合成構造設計法は、許容応力度設計法から荷重係数設計法あるいは限界状態設計法に移行 される機運にある。一方、合成構造に関する研究成果が規準に取り入れられ、設計規準が整備されつつ あるが、合成構造の適用範囲は広く、多くの問題点も残されている^{7)~10)}。合成構造における問題点と しては、(1)合成構造のより詳細な解明(コンクリートと鋼材の接合面にずれが生じた場合の力の伝達 機構、合成桁における圧縮フランジの固定度の問題および接合面の付着および摩擦の影響)、(2)荷重係 数設計法および限界状態設計法の確立(材料強度、初期不整および疲労等に関するデータの蓄積、耐震 構造安定問題)、(3) コンクリートにひび割れが生じた場合の合成構造の有効性と挙動解明(コンクリート中の鉄筋の有効性および鉄筋量)、(4) 柱ー梁、柱ースラブ等の合成部材の接合部の挙動解明、(5) ね じれを受ける合成部材の挙動解明、(6) 合成箱桁橋および曲線合成桁の挙動解明、(7) 合成床版、合成柱 および合成壁の挙動解明および設計法の確立、(8) ずれ止めの統一された試験法の確立(押し抜き試験 および引き抜き試験、薄板に溶植されたずれ止めの試験法の確立)等があり、今後の研究が望まれている。

本論文は、上記問題点の内、コンクリートスラブと鋼桁の接合面にずれの生じる不完全合成桁、連続 合成桁の負の曲げモーメント区間にずれ止めを配置しない断続合成桁および曲線合成桁について、それ らの力学的挙動に関する諸問題を理論的および実験的に調べ、合成桁設計のための基礎的資料を得るこ とを目的としている。合成桁はコンクリートスラブ、鋼桁およびずれ止めの異種材料から成り立ってお り、それぞれの構造部材の相互作用を明確にすることによって初めて合成桁構造全体の挙動をより明ら

-1 -

かにすることが可能である。そこで本論文では、不完全合成桁について有限要素法による新しい解析モ デルを示し、そのモデルを用いた連続合成桁の解析手法および合成桁の弾塑性解析手法を示し、特に、 ずれ止めの配置が合成桁の挙動に及ぼす影響について論じ、さらに接合面のずれを考慮した不完全合成 桁の有効幅についても示してある。また、アメリカのAASHTOの示方書に採用されている断続合成桁 について静的および疲労試験を行い、その結果より、負の曲げを受ける断続合成桁の挙動について論じ ており、また、負の曲げを受ける断続合成桁の応力に関する簡易計算法を示している。一方、曲線合成 桁については、有限帯板法を用いた解析手法を示し、また、箱桁断面を有する曲線合成桁について弾性 試験を行い、実験結果および有限帯板法による解析結果を比較検討しながら箱桁断面を有する曲線合成 桁の弾性挙動について論じている。なお、本論文では、コンクリートスラブと鋼桁がずれ止めによって 結合された合成桁の桁としての挙動についてのみ取り扱っており、コンクリートスラブ独自の床版作用、 合成桁橋の荷重分配あるいは横桁等の影響については言及されていない。

本章では、合成構造の歴史を概説した後、不完全合成桁の解析、不完全合成桁の有効幅、連続合成桁 および曲線合成桁に関する既往の研究を展望することにより、本研究の位置づけを行い、最終節におい て本論文の内容と構成を述べる。

合成桁はその用途および形式により種々の分類が行われているが、ここでは合成桁を次のように分類 定義する。

合成桁 (Composite Beams)

コンクリートスラブと鋼桁が一体となって働くように、コンクリートスラブと鋼桁をずれ止めに よって合成した桁をいう。

完全合成桁(Composite Beams with Complete Interaction)

コンクリートスラブと鋼桁の接合面においてずれが生じないで、コンクリートスラブと鋼桁が完全 に一体となって働く合成桁をいう。なお、設計において考えられているのは完全合成桁のことであ る。

不完全合成桁(Composite Beams with Incomplete Interaction)

コンクリートスラブと鋼桁の接合面においてずれの生じる合成桁のことをいう。なお、建築の分野 においては、合成ばり全体として曲げ崩壊が生じる以前に、ずれ止めが降伏するような合成ばりを 不完全合成ばりと定義している¹¹⁾。

単純合成桁 (Simply Supported Composite Beams)

単純支持形式の合成桁をいう。

連続合成桁(Continuous Composite Beams)

連続形式の合成桁をいう。

曲線合成桁(Curved Composite Beams)

曲線形式の合成桁をいう。

プレストレス連続合成桁(Prestress Continuous Composite Beams)

連続合成桁の負の曲げを受ける区間のコンクリートスラブにプレストレスを導入し、ずれ止めをス パン全域に配置した桁をいう。

プレストレスしない連続合成桁(Non-prestress Continuous Composite Beams) 連続合成桁の負の曲げを受ける区間のコンクリートスラブにプレストレスを導入せず負の曲げを受 ける区間にも、正の曲げを受ける区間同様にずれ止めを配置した桁をいう。

断続合成桁(Partial Composite Beams)

連続合成桁において負の曲げを受ける区間にずれ止めを配置せず非合成とするが、コンクリートス

ラブは正負曲げモーメント区間の境界に目地を設けず連続的に打設した形式の桁をいう。

部分断続合成桁 (Partial Composite Beams with Partly Spaced Shear Connector at Negative Moment Region)

断続合成桁の一種であるが、負の曲げを受ける区間の一部にずれ止めを配置した形式の桁をいう。 部分合成桁 (Partial Composite Beams with Structural Joints in Concrete Slab)

連続合成桁において合成区間と非合成区間を完全に区別し、コンクリートスラブにはそれらの境界 に目地を設けた形式の桁をいう。

弾性合成桁 (Continuous Composite Beams with Flexible Shear Connectors)

連続合成桁の負の曲げを受ける区間に柔軟性のあるずれ止めを配置した形式の桁をいう。

1.2 合成構造の歴史

合成構造の発展は、鉄筋コンクリートのそれと密接な関係がある。1824年に Aspdin によって高強度 のポルトランドセメントが開発され、合成構造出現の先駆けとなり、1850年以後鉄筋コンクリートが実 用化されるに至る。しかし、1900年代初めまでは合成構造は鋼構造の耐火性向上の目的で使用されてい たにすぎなかった¹²⁾。

1879年イギリスの Severn 鉄道橋の橋脚に初めて鋼管コンクリート柱が使用され¹³⁾、さらに、1901年 に Sewell によって合成柱に関する研究が行われ¹⁴⁾、それ以後合成柱に関する実験が多く行われるよう になった。一方、合成桁については、1922年カナダの Dominion Bridge Company が I 型鋼をコンクリー ト中に埋め込み実験を行ったのが最初であり¹⁵⁾、それ以後付着により合成作用をもつ合成桁の実験が 多く行われた。しかし、付着により信頼性のある合成作用を得るためには完全埋め込み以外ないことが 知れるに至り、機械的なずれ止めの開発へと進んでいくことになる。1933年スイスの Voellmy らは初め てずれ止め(Spiral Connector)の押し抜き試験を行った¹⁶⁾。また、Channel Shear Connector につい ては1940年代 Siess らを中心に実験が行われており¹⁷⁾、Stud Shear Connector については1954年以後 に Illinois 大学¹⁸⁾⁻²¹⁾および Lehigh 大学²²⁾²³⁾を中心に実験が行われ、それ以後多くの実験的研究が行 われている。また、それと平行してずれ止めを有する合成桁についても数多くの実験が行われた。1950 年代ドイツにおいて多数の単純および連続合成桁が架設され、合成構造の基礎的な考え方が確立された と考えられる。

合成桁の理論的研究は、1912年に Andrews によりコンクリート断面を弾性係数を用いて鋼桁断面に 換算する方法が提案された²⁴⁾。また、接合面のずれを考慮した解析は最初 Stüssi によって行われたが 未知数が多いため実際の計算にはほとんど用いられなかった²⁵⁾。接合面のずれを考慮した実用的解析 は Newmark によって軸力に関する微分方程式の形で示された²⁶⁾。一方、合成桁の終局耐力については、 1953年 Viest ら²⁷⁾によって曲げ耐力を求める式が提案されて以来多くの理論的および実験的研究が行わ れている。

一方、わが国においては1952年に建設省土木研究所が合成桁の研究を始めて以来多くの研究が行われている。わが国において最初に架設された合成桁は大坂の神崎橋(1953年)である⁸⁾。わが国における合成桁の規準の変革を見ると、1959年に「鋼道路橋合成桁設計施工指針」が制定され、1965年にプレストレス連続合成桁が採用された。また、1972年に「道路橋示方書、II 鋼橋編、第9章 合成げた」が作成され、プレストレスしない連続合成桁が新しく規定されている⁹⁾。

合成構造に関する文献調査は、Viest が1960年までの合成桁について報告しており²⁸⁾、1960年から 1970年までの合成桁に関する研究については Johnson の報告がある²⁹⁾。また、合成柱については Stevens³⁰⁾ および Gardner³¹⁾ らの論文にそれを見ることができる。また、ASCEの鋼・コンクリート 合成構造小委員会では1973年までの文献を調査し合成構造の現状報告を行い、あわせて設計上の問題点 について概説している⁷⁾。わが国における合成桁の研究については、前田ら³²⁾ および建設コンサルタ ント協会近畿支部S. -C. 構造研究委員会の報告がある³³⁾³⁴⁾。

1.3 合成桁に関する既往の研究の展望

ここでは、不完全合成桁、断続合成桁および曲線合成桁に関する既往の研究について述べ本研究の位 置づけを行う。

(a) 不完全合成桁の解析

コンクリートスラブと鋼桁の接合面にずれが生じる不完全合成桁の最初の実用的解析は Newmark²⁶⁾ によって行われ、その後 Hoischen³⁵⁾、Heiling³⁶⁾、Homberg³⁷⁾、Plum³⁸⁾、山本³⁹⁾および橘ら⁴⁰⁾が同じ 考えでこの問題を取り扱っている。Newmark の解析は、コンクリートおよび鋼材の応力ーひずみ関係 を線形とし、ずれ止めを等問隔配置として軸力に関する微分方程式を誘導したものであり、コンクリー トスラブにひび割れが生じた場合やずれ止めが不等間隔配置された場合を解析することはできない。一 方、有限要素法による合成桁の弾性解析についても多くの研究報告が行われている。Matlock⁴¹⁾はコン クリートスラブと鋼桁をはり要素で、ずれ止めをばね要素でモデル化し各節点でつり合い式を誘導し解 析を行っており、Gustafson⁴²⁾は斜板要素を用いて斜合成桁橋について、佐藤ら⁴³⁾は有限帯板法を用い 横桁等を考慮した解析を行っている。また、Moffatt⁴⁴⁾は長方形矩形平板要素を用いずれ止めをばね要 素で仮定して合成箱桁橋の解析を行っており、一方、Ansourian⁴⁵⁾はシェル要素を用いて合成床板の解 析を行っている。 不完全合成桁の弾塑性解析については、Dai⁴⁶⁾、Hamada⁴⁷⁾および前田ら⁴⁸⁾⁴⁹⁾が接合面のずれを考慮 し差分法を用いて解析を行っており、また、Yam ら⁵⁰⁾⁵¹⁾は、基礎的には Newmark と同じ方程式を用 い予測子-修正子法により単純および連続合成桁の解析を行っている。また、Ansourian ら⁵²⁾はずれ止 めのカーずれ関係を多項式で仮定し、断面でのつり合いを求めこれにより解析を行っている。一方、有 限要素法を用いた解析については、佐藤⁵³⁾、Wegmuller⁵⁴⁾⁵⁵⁾および Hirst⁵⁶⁾らの研究がある。佐藤らは ずれ止めの変形による合成桁の剛度の低下をコンクリートスラブの弾性係数を低減したものに置き換え て平面三角形要素を用いて解析しており、Wegmuller らは積層要素を用いコンクリートスラブのひび 割れを考慮して多主桁橋の解析を行っている。しかし、Wegmuller の解析では接合面のずれは考慮さ れていない。一方、Hirst はアイソパラメトリック平面要素を用い解析を行っている。また、栖原らは 平面三角形要素を用い複合構造物の弾塑性解析を行っている^{57)~59)}。

以上示したように、不完全合成桁の弾性および弾塑性挙動については多くの解析的研究が行われてい るが、二次元および三次元的有限要素解析では、腹板の応力状態を忠実に表すことができるとか、多主 桁橋あるいは Floor System 等に適用できるなどの利点はあるが、単純に一本の合成桁を対象としてそ の弾性および弾塑性挙動を得ようとする場合については、それらのモデルはかならずしもその手法や計 算時間に対して最適なモデルとは考えられない。

(b) 不完全合成桁の有効幅

現行の合成桁の設計においては、コンクリートスラブと鋼桁の接合面においてずれが生じないもの、 すなわち完全合成桁として構造計算を行っている。しかし、実際の合成桁においては接合面においてず れが生じ、接合面における応力分布は完全合成桁のそれと異なることがすでに知られている。そこで、 接合面のずれを考慮して簡単に設計を行うためには、接合面のずれを考慮した有効幅を定義する必要が ある。不完全合成桁の有効幅に関する研究は山本⁶⁰⁾および Adekola^{61)~63)}によって行われている。山本 および Adekola は不完全合成桁とあるスラブ幅を有する完全合成桁と曲率が一致するように完全合成 桁のスラブ幅すなわち有効幅を定義している。そして、山本の研究では無限の並列ばりおよび一定幅の 単純T形ばりについて言及されている。しかし、不完全合成桁の有効幅は、コンクリートスラブの支持 状態、断面形状、荷重状態およびずれ止めの剛度による影響があると考えられるが、これまでの研究で は十分に解明されていないのが現状である。一方、Heins は接合面のずれは考慮していないが終局状態 の有効幅について論じており⁶⁴⁾、また、小松らは不完全合成格子桁橋の荷重分配の近似計算法を示し ている⁶⁵⁾。

(c) 連続合成桁

連続合成桁では中間支点付近において負の曲げが作用し、コンクリートスラブに引張り力が生じるため、このコンクリートスラブに生じる引張り力に対していかに対処するかが重要な問題となる。現在、 連続合成桁の形式としては、プレストレス連続合成桁、プレストレスしない連続合成桁、断続合成桁お よび部分合成桁がある。

プレストレス連続合成桁は1950年代ドイツを中心に研究が行われ、構造計算についても、Sattler⁶⁶⁾、

Fritz⁶⁷⁾、Blaszkowiak⁶⁸⁾、Walter⁶⁹⁾および橘⁷⁰⁾らにより提案された解析法がある。しかし、わが国に おいては昭和30年代を中心にプレストレス連続合成桁が多く架設されたが、1970年の毛斯倫大橋を最後 にほとんど架設例がなく⁸⁾、アメリカにおいても経済的でないという理由でほとんど用いられていない⁷⁾。

プレストレスしない連続合成桁についても多くの研究が行われており^{72)~90)}、これらの研究により負 の曲げを受ける区間において橋軸方向鉄筋が十分に定着されているならば、負の曲げを受ける区間にお いても橋軸方向鉄筋を考慮した単純塑性理論の適用が可能であることが示され、また、負の曲げを受け る区間において圧縮フランジの局部座屈に注意する必要があることが指適されており、桁によっては横 倒れ座屈が生じることもあることが示されている。アメリカにおいてはAASHTOの示方書にプレスト レスしない合成桁は規定されてはいるが、引張り側フランジのずれ止めを溶植することによる疲労強度 の低下をさけるためほとんど用いられておらず、むしろ負の曲げを受ける区間にずれ止めを配置しない 断続合成桁が一般的である。

断続合成桁については Hoischen³⁵⁾、前田ら^{48)91/~94)}および Fisher⁹⁵⁾らの研究報告がある。Hoischen は断続区間のコンクリートスラブに作用する軸力について解析法を示しており、断続区間の軸力の大き さはずれ止めを連続的に配置した桁のそれの平均値になることを示している。また、前田らは差分法に よる断続合成桁の解析および実験を行っており、断続合成桁のコンクリートスラブに作用する軸力はず れ止めを連続的に配置した合成桁のそれの最大値と比較すると小さく、また、合成区間と非合成区間の 境界付近でずれ止めに大きな水平せん断力が作用することを報告している。一方、Fisher らの研究に よれば、ずれ止めを配置しない区間の橋軸方向鉄筋に作用する力に抵抗するだけのずれ止めを合成区間 と非合成区間の反曲点に配置することが望ましいことが示され、AASHTOの示方書ではこの提案通り の設計法が採用されている。しかし、AASHTOの示方書では負の曲げを受ける区間の橋軸方向鉄筋は 応力計算において無視されている。なお、わが国においては断続合成桁に関する研究が十分でないとの 理由で道路橋示方書には規定されていない。断続合成桁については、断続区間の鉄筋の有効性、コンク リートスラブのひび割れの問題および繰返し荷重を受けた場合の疲労性状等十分に解明されていないの が現状である。

なお、部分合成桁については橘ら⁹⁶⁾の実験的研究がある。

(d) 曲線合成桁

近年、道路橋において曲線合成桁が用いられるようになってきた。曲線合成桁は、曲率面外の荷重を 受けると曲げモーメントのみならず、ねじりモーメントおよび曲げねじりモーメントが作用し、設計に おいてはそれらを考慮して構造計算を行う必要がある。特に、接合面に配置されたずれ止めには橋軸方 向および半径方向に水平せん断力が作用し、設計ではそれらを考慮してずれ止めの配置法を決定しなけ ればならない。

曲線合成桁ではねじれも重要な問題となるが、ねじれを受ける直線合成ばりについては、山本97)、

McManus⁹⁸⁾および Heins⁹⁹⁾¹⁰⁰⁾の理論的および実験的研究が報告されている。

曲線合成桁に関する研究としては、Colville¹⁰¹⁾が単純支持曲線合成桁について、前田ら¹⁰²⁾¹⁰³⁾が2 径間連続曲線合成桁について実験を行っており、Colville はずれ止めに作用する力について簡易計算法 を示している。また、ASCE-AASHTO の合同委員会では Heins および Colville らの研究をもとに、 合成Ⅰ型断面を有する合成桁のねじり剛性および曲げねじり剛性の計算法およびずれ止めに作用する力 の計算法について勧告を行っている^{104)。}しかし、それらは「型断面を有する曲線合成桁についてであり、 曲線箱桁橋については何ら触れられていない。アメリカにおいては十年以上も前から箱桁橋の大部分は合 成箱桁橋となっており曲線桁についても同様である¹⁰⁵⁾。しかし、箱桁断面を有する曲線合成桁に関す る実験および解析の例は少なく、曲線合成桁への曲げねじり理論の適用を示した小西らの研究¹⁰⁶⁾およ び韓国のインターチェンジの実橋に対して行われた実験例が Heins¹⁰⁷⁾らによって報告されているにす ぎない。しかも、Heins の実験ではひずみの測定箇所も少なく、また、載荷ケースもそりの影響のほと んど出ない場合について行われており、曲線合成桁の特性が十分に示されておらず、曲率半径が50mで あるにもかかわらずウェブの応力分布について論じられていない。このように箱桁断面を有する曲線合 成桁に関する実験的および解析的研究は極めて少なく、AASHTO および BSI の示方書でも十分規定 されていないのが現状である。したがって、箱桁断面を有する曲線合成桁についても曲げ挙動、ねじり 挙動および断面の変形による影響を明らかにし、特に、合成桁特有の問題である接合面に配置されたず れ止めに作用する力の分布性状を明らかにしなければならない。

なお、箱桁断面を有する直線合成桁については Mattock らの研究があり¹⁰⁸⁾¹⁰⁹⁾、AASHTOの示方書 の合成箱桁に関する規定は Mattock らの研究にもとづいている。また、Moffatt らは箱桁断面を有する 直線合成桁の上フランジに配置されたずれ止めの剛性が合成桁の曲げ挙動に与える影響について研究 し、上フランジに配置されたずれ止めに作用する力について設計式を提案し¹¹⁰⁾¹¹¹⁾、それがBSIの示方 書に採用されている。

1. 4 本論文の構成と概要

本論文は不完全合成桁、断続合成桁および曲線合成桁の力学的挙動に関する基礎的諸問題を理論的な らびに実験的に研究したものであり、各章で扱われている内容を概説すると次の通りである。

第2章はコンクリートスラブと鋼桁の接合面にずれが生じる不完全合成桁の有限要素法による解析法 について述べたものである。ここでは、コンクリートスラブと鋼桁をはり要素で、ずれ止めを水平せん 断力のみに抵抗するばね要素でモデル化した合成桁要素を示し、その要素を用いたコンクリートスラブ のひび割れの影響を考慮した連続合成桁の解析法およびコンクリート、鋼材およびずれ止めの材料非線 形を考慮した弾塑性解析法について示し、他で行われた実験結果および数値解析結果との比較を行い本 解析法の妥当性について検討を行っている。

第3章は不完全合成桁の有効幅について述べたものである。従来、合成桁は完全合成桁として設計が 行われているが、実際には、コンクリートスラブと鋼桁の接合面に配置されたずれ止めの変形によるず れが生じ、コンクリートスラブに作用する力が緩和されコンクリートスラブの応力が減少する。そこで、 ここでは接合面のずれを考慮した有効幅を定義し、単純T形ばり、無限並列ばりおよび張り出し部がな いπ形ばり(対称および逆対称荷重が作用した場合)について応力関数を用いた有効幅を求めるための 解式を誘導し、さらに、ずれ止めの剛性を種々変化させた場合の有効幅比を示してある。

第4章は連続合成桁の中間支点付近にずれ止めを配置せず非合成とした断続合成桁の静的および疲労 性状を実験的に調べたものである。静的試験に6本および疲労試験に7本、計13本の供試体を用いて負 の曲げを受ける合成桁の実験を行い、たわみ性状、ずれ性状、ひび割れ性状、橋軸方向鉄筋の応力およ び終局耐力について、負の曲げを受ける区間にずれ止めを配置した桁と断続合成桁と比較検討を行いな がら負の曲げを受ける断続合成桁の静的および疲労性状について考察を加えてある。

第5章は断続合成桁の断続区間の桁剛性および応力に関する計算法を示してある。連続合成桁の中間 支点付近の曲げモーメント分布(対称荷重載荷の場合)は、曲げモーメントが零となる点の内側区間を スパンとした単純合成桁に集中荷重が作用した場合の曲げモーメント分布と類似した結果を与えるの で、ここでは、断続合成桁の負の曲げモーメント区間を合成片持ばりの自由端に集中荷重を作用させて 理想化しつり合い式を誘導し、完全合成桁と比較しながら断続合成桁の断続区間のたわみおよび応力の 計算法について示してある。また、負の曲げを受ける区間の一部にずれ止めを配置した部分断続合成桁 についても解式が示されている。

第6章は曲線合成桁の有限帯板法(Finite Strip Method)による解析法について述べたものである。 曲線合成桁のコンクリートスラブと鋼桁をそれぞれ曲線帯板要素で、ずれ止めを橋軸方向および半径方 向の二次元のばね要素でモデル化し解析を行うための定式化が示されている。

第7章は箱桁断面を有する曲線合成桁の弾性挙動について述べたものである。同一スパンを有し単純 支持され、断面形状、曲率半径およびずれ止めの配置法の異なる箱桁断面を有する曲線合成桁3体につ いて静的載荷試験を行い、さらに、第6章で示した有限帯板法による解析法を用いて数値解析を行い、 実験結果と数値解析結果との比較を行いながら箱桁断面を有する曲線合成桁の弾性挙動について考察を 加えてある。また、有限帯板法による解析法を用いパラメーター解析を行っている。パラメーター解析 では鋼桁部の桁高と幅の比を変化させた場合および同一スパンを有する桁の中心角を変化させた場合に ついて解析を行い、たわみおよび橋軸方向ずれ分布に着目し考察を加えてある。

第8章は結語であり、各章で得られた結論をもとに本論文の総括を行っている。

第2章 不完全合成桁の有限要素解析

2.1 緒 言

実際の合成桁においてはずれ止めとしてスタッドが多く用いられているが、その場合、コンクリート スラブと鋼桁の接合面においてずれ止めの変形によるずれが生じ、そのようにずれが生じる合成桁を不 完全合成桁と呼んでいる。本章では、不完全合成桁要素の新しい解析モデルを示し、その要素を用いた 連続合成桁の解析手法¹¹²⁾およびコンクリート、鋼材およびずれ止めの材料非線形を考慮した単純な有 限要素解析手法¹¹³⁾について示す。ここで考えた不完全合成桁のモデル化は、コンクリートスラブと鋼 桁をそれぞれ軸力と曲げを受ける独立のはり要素とし、ずれ止めはコンクリートスラブと鋼桁の間の水 平せん断力のみに抵抗するばね要素とするものである。従来、軸力を受けるはり要素では軸方向変位は 一次式で仮定しているが、一次式で仮定した変位を用いると要素内で一定応力すなわちコンクリートス ラブおよび鋼桁に作用する軸力が一定となり、合成桁のようにずれ止めによって複雑に分布する水平せ ん断力が伝達される場合には適してないと考えられるので、ここでは軸方向変位も曲げの場合と同様に 三次式で仮定する。また、ずれ止めの配置も要素内で連続的に分布したものと要素端に集中した場合の 両方の剛性マトリックスを求める。

このモデルを連続合成桁の解析および合成桁の弾塑性解析に用いるわけであるが、連続合成桁では、 コンクリートスラブに負の曲げモーメントが作用することにより引張り力が生ずるため、それを考慮し た解析が必要となる。ここでは、引張り力の作用する区間のコンクリートスラブを無視し、その影響を 等価な力に置き換え、引張り力の作用する区間を変化させながら変位が収束するまで繰り返し計算を行 う。また、合成桁の弾塑性解析では、コンクリートスラブのひび割れおよび塑性進展、鋼桁の塑性進展、 およびずれ止めの力ーずれ関係の非線形性の影響をすべて初期ひずみの項として取り扱い、反復初期ひ ずみ法を用いて解析を行う。

2.2 合成桁要素の剛性マトリックス

Fig. 2.1 に示すように、合成桁のコンクリートスラブと鋼桁をそれぞれ軸力と曲げを受けるはり要素 で、ずれ止めを接合面に働く水平せん断力のみに抵抗するばね要素でモデル化し解析を行う。ここで、 コンクリートスラブと鋼桁の接合面において浮き上がりはないものとし、コンクリートスラブと鋼桁の 同一鉛直線上のたわみおよびたわみ角は等しいものとする。また、接合面における付着および摩擦の影 響は無視する。

不完全合成桁の解析では、軸方向変位も重要な要素であるので曲げの場合と同様に三次式で仮定し、 各節点で軸方向変位(w)と軸ひずみ(w)およびたわみ(v)とたわみ角(v)を自由度にとる。こ こで、コンクリートスラブと鋼桁のたわみおよびたわみ角が等しいので、合成桁要素全体で自由度は12 個となり、変位ベクトル {ū} は次のように示される。

また、一般的にそれぞれの方向の変位は次のように示される114)。

 $w_c = w_2 g_1 + w_2' g_2 + w_4 g_3 + w_4' g_4 \cdots (2.2)$

 $w_s = w_1 g_1 + w_1' g_2 + w_3 g_3 + w_3' g_4 \cdots (2.3)$

$$v = v_1 g_1 + v_1' g_2 + v_3 g_3 + v_3' g_4 \cdots (2.4)$$

ここで、g1~g4 は次に示すような形状関数である。

$$g_{1} = 2\beta^{3} - 3\beta^{2} + 1, \qquad g_{2} = (\beta^{3} - 2\beta^{2} + \beta)l \\g_{3} = -2\beta^{3} + 3\beta^{2}, \qquad g_{4} = (\beta^{3} - \beta^{2})l \end{cases}$$

$$(2.5)$$

仮想仕事の原理によれば、応力テンソルを σ_{ij} 、ひずみテンソルを ε_{ij} 、変位を u_i 、単位面積あたりの力を X_i とすると、力のつり合い式は次式で与えられる。

$$\int_{V} \sigma_{ij} \delta \epsilon_{ij} dV = \int_{S} X_i \delta u_i dS \cdots (2.6)$$

はり要素では応力およびひずみは Fig. 2.1 の z方向のみ、変位は yおよび z方向のみであるので、はり 要素のひずみ ϵ_z および応力 σ_z は次のように表される。

$$\boldsymbol{\varepsilon}_{z} = (dw/dz) - (d^{2}v/dz^{2})y = w' - v''y \cdots (2.7)$$

$$\sigma_z = E \cdot \varepsilon_z = E(w' - v''y) \cdots (2.8)$$

ここで、Eは弾性係数である。一方、ずれ止めの力とずれの関係は押し抜き試験の結果を用いることに する¹¹⁵⁾。押し抜き試験結果では力ーずれ関係の線形性が必ずしも成立しないが、Fig. 2.2に示すように、 ずれ止めに働く力がかなり小さい間は線形と仮定してさしつかえないと考えられる。したがって、ずれ 止めに働く力 Fとずれ Δ_s との関係は、ずれ止めの剛性をQとすれば、

となる。ここで、ずれ Δ_sは次のように決定できる。すなわち、Fig. 2.3に示すように、コンクリート スラブおよび鋼桁のそれぞれのはり要素の変形は、変形前ABおよびCDにあった平面が変形後A'B'お よびC'D'平面となる。合成桁にずれが生じる限り重心軸はコンクリートスラブ断面と鋼桁断面に別々 に存在し、接合面の浮き上がりがないものと仮定すれば、それらの曲率は等しので、ずれΔ_sは次のよ うに示される。

ここで、yはコンクリートスラブと鋼桁の重心軸間の距離である。式(2.10)を式(2.9)に代入すると 次式が得られる。

$$F = O\left(w_{c} - w_{c} + v'\bar{v}\right) \dots (2.11)$$

合成桁の内部仮想仕事は、式(2.7)、(2.8)、(2.11)を式(2.6)の左辺に代入すると次のように示される。

$$\int_{V} \sigma_{ij} \delta \varepsilon_{ij} dV = E \int_{V} (w' - v'' y) (\delta w' - \delta v'' y) dV + \int_{V} q_s (w_s - w_c + v' \bar{y}) (\delta w_s - \delta w_c + \delta v' \bar{y}) dz$$

$$= E_s A_s \int_{V} w_s' \delta w_s' dz + E_c A_c \int_{V} w_c' \delta w_c' dz + (E_s I_s + E_c I_c) \int_{V} v'' \delta v'' dz$$

$$+ \int_{V} q_s (w_s - w_c + v' \bar{y}) (\delta w_s - \delta w_c + \delta v' \bar{y}) dz \cdots (2.12)$$

ここで、q_sは単位長さ当たりのずれ止めの剛性である。また、Fig. 2.1に示すようにコンクリートスラ ブおよび鋼桁要素ともに重心軸に節点を取るので、

$$\int_{A} y dA = 0 \cdots (2.13)$$

となる。式(2.12)に式(2.2)、(2.3)、(2.4)を代入すると、それぞれの要素の剛性マトリックスは 次のように求めることができる。

$$E_{s}A_{s}\int_{I}w_{s}'\delta w_{s}'dz + E_{c}A_{c}\int_{I}w_{c}'\delta w_{c}'dz + \Sigma EI\int_{I}v''\delta v''dz = |\delta \bar{u}|^{T}[K_{b}]|\bar{u}| \qquad (2.14)$$

$$\int_{U} q_s(w_s - w_c + v'\bar{y}) (\delta w_s - \delta w_c + \delta v'\bar{y}) dz = |\delta u|^T [K_{sc}] |u| \qquad (2.15)$$

したがって、不完全合成桁の内部仮想仕事は、

$$\int_{\mathbb{T}} \sigma_{ij} \delta \epsilon_{ij} dV = |\delta u|^T ([K_b] + [K_{sc}]) |u| \qquad (2.16)$$

となる。ここで、 $\{u\}$ は変位ベクトルであって式 (2.1) で与えられ、 $[K_b]$ はコンクリートスラブと鋼桁のはり要素の剛性マトリックスであり、また、 $[K_{sc}]$ はずれ止め要素の剛性マトリックスである。 $[K_b]$ および $[K_{sc}]$ は付録に示されている。なお、式 (2.12) を部分積分すれば Newmark が求めた軸力に関する微分方程式を誘導することができる。その誘導を付録に示す。

一方、ずれ止めの剛性が要素内において直線的に変化する場合は式(2.15)のq,は、

$$q_s = q_1 + (q_2 - q_1)\beta$$
 (2.17)

で表される。ここで、 q_1 および q_2 は要素両端における単位長さ当たりのずれ止めの剛性である。式 (2.17) を式 (2.15) に代入すると、ずれ止めの剛性が要素内で一定の場合 ($q_1 = q_2 = q_s$)、および直線的に分布 した場合に対する剛性マトリックスを求めることができる。一方、ずれ止めが要素内の任意の点に配置 されている場合は、式 (2.15) の積分の代わりに Summation を用いることによって剛性マトリックス を求めることができる。いま、 β_i (i=1,2,3,....,n)点に Q_i の剛性を持ったずれ止めが配置されているも のとすると、ずれ止め要素の内部仮想仕事 δU_{sc} は次のように示される。

ここで、 $w_s(\beta_i)$ 、 $w_c(\beta_i)$ 、 $v'(\beta_i)$ は β *l*点における式 (2.2)、(2.3)、(2.4) で与えられた変位である。 なお、要素の両端のみにずれ止めが集中的に配置されている場合は、 $\beta_i=0 \ge \beta_i=1$ のときの和となり、 δ *U*_sは次のようになる。

 $\delta U_{sc} = Q_1(w_1 - w_2 + v_1'\bar{y})(\delta w_1 - \delta w_2 + \delta v_1'\bar{y})$

 $+ Q_2(w_3 - w_4 + v_3'\bar{y})(\delta w_3 - \delta w_4 + \delta v_3'\bar{y}) \cdots (2.19)$

ここで、w1, w2, w3, w4, v1', v3' はそれぞれの節点における変位である。

外力による仮想仕事は式 (2.6)の右辺で与えられる。ここで、y方向に分布荷重 q_y および $\beta_i l$ (*i*= 1,...,*n*)点に集中荷重 P_{yi} が作用し、z方向に分布荷重 q_s および $\beta_i l$ (*i*=1,....,*n*)点に集中荷重 P_{si} が鋼桁に、分布荷重 q_c および $\beta_i l$ (*i*=1,....,*n*)点に集中荷重 P_{ci} がコンクリートスラブに作用している場合、外力による仮想仕事 δ Wは次のように示される。

 $\delta W = \int_{I} q_{s} \delta w_{s} dz + \int_{I} q_{c} \delta w_{c} dz + \int_{I} q_{y} \delta v dz + \Sigma P_{si} \delta w_{si} + \Sigma P_{ci} \delta w_{ci} + \Sigma P_{yi} \delta v_{yi} = |\delta \vec{u}|^{T} |\vec{P}| (2.20)$ ここで、 {P} は {u} に対応する荷重ベクトルであり次のように示される。

1	$\int_{l} q_{s} g_{1} dz + \sum P_{si} g_{1}(\beta_{i})$	
	$\int_{l} q_{s} g_{2} dz + \sum P_{si} g_{2}(\beta_{i})$	
	$\int_{l} q_{y} g_{1} dz + \sum P_{yi} g_{1}(\beta_{i})$	
	$\int_{l} q_{y} g_{2} dz + \sum P_{yi} g_{2}(\beta_{i})$	
	$\int_{l} q_{c} g_{1} dz + \sum P_{ci} g_{1}(\beta_{i})$	
	$\int_{l} q_{c} g_{2} dz + \sum P_{ci} g_{2}(\beta_{i})$	
\overline{P} = \langle	$\int_{l} q_{s} g_{3} dz + \sum P_{si} g_{3}(\beta_{i})$	
	$\int_{1} q_{s} g_{4} dz + \sum P_{si} g_{4}(\beta_{i})$	

-12 -

$$\int_{I} q_{y}g_{3}dz + \sum P_{vi}g_{3}(\beta_{i})$$
$$\int_{I} q_{y}g_{4}dz + \sum P_{vi}g_{4}(\beta_{i})$$
$$\int_{I} q_{i}g_{3}dz + \sum P_{ci}g_{3}(\beta_{i})$$
$$\int_{I} q_{i}g_{4}dz + \sum P_{ci}g_{4}(\beta_{i})$$

2.3 不完全連続合成桁の解析

連続合成桁では、中間支点近傍で負の曲げを受けコンクリートスラブに引張り力が作用しひび割れが 生じる。連続合成桁の解析では、ひび割れの発生による剛性の低下をいかに考慮するかが重要な問題と なる。有限要素法を用いた鉄筋コンクリートばりのひび割れ解析については、Scordelis¹¹⁶⁾の研究以来 多くの研究報告^{117)~121)}がある。しかし、それらの研究の多くは二次元の平面要素を用いて解析を行っ ている。ここでは、引張り力を受けているコンクリートスラブは橋軸方向鉄筋のみ有効とし、剛性の低 下を等価な力に置き換え遂次代入法によって解析を行う手法について示す。

2.3.1 解析法

連続合成桁のコンクリートスラブには正と負の曲げを受ける要素があり、コンクリートスラブの応力 状態によって Fig. 2.4 に示すように四つのタイプに分けることができる。すなわち、コンクリートス ラブ要素が橋軸方向にわたって、

(a) 圧縮応力を受ける

- (b) 圧縮から引張りに変化する応力を受ける
- (c) 引張りから圧縮に変化する応力を受ける
- (d) 引張り応力のみを受ける

場合である。コンクリートスラブの内部仮想仕事はそれぞれの場合について次のように与えられる。 (a) の場合

(b) の場合

$$\delta \ U_{cb} = \delta \ \overline{U_c} - \int_a^l \delta \ U_c' dz = \delta \ \overline{U_c} - \delta \ \overline{U_c}^* \tag{2.23}$$

(c) の場合

(d) の場合

$$\delta U_{cd} = \delta \overline{U_c} - \int_0^1 \delta U_c' dz = \delta \overline{U_c} - \delta \overline{U_c}^*$$
(2.25)

ここで

$$\delta U_{c}' = E_{c} | (A_{c} - nA_{r}) w_{c}' \delta w_{c}' + I_{c} v'' \delta v'' | \qquad (2.26)$$

である。 A_c には鉄筋の断面積 A_r をコンクリートの換算断面積として含めるので、 $(A_c - nA_r)$ はコンクリートのみの断面積となる。また、状態(b)と(c)において軸ひずみの符号が変化する点までの距離 a は次のように求められる。すなわち、要素内のコンクリートスラブの軸ひずみ分布は、軸変位を三次式で仮定しているので実際は二次曲線分布となるが、ここでは直線分布と仮定し、部材端2、4の軸ひずみを ε_2 、 ε_4 とすると、

 $q = \epsilon_2 l/(\epsilon_2 - \epsilon_4) \qquad (2.27)$

で与えられる。

一般の仮想仕事のつり合い式は式(2.6)からわかるように、

$$\delta U = \int_{1} X_i \,\delta \, u_i dz \cdots (2.28)$$

で与えられる。一方、式(2.22)から式(2.25)の $\delta \overline{U_c}$ はコンクリート断面が有効に作用するときの 内部仮想仕事であり、 $\delta \overline{U_c}$ なコンクリート断面が作用しない部分の内部仮想仕事である。したがって、 どの要素もコンクリート断面が有効であるとの仮定から出発すれば、式(2.28)は式(2.22)から式(2.25) を考え合わせて、

 $\delta U = \int_{U} X_i \delta u_i dz + \delta \overline{U}_c^* \dots \qquad (2.29)$

となる。これは負の曲げを受ける区間の剛性の低下の影響を外力項に付け加えることを示している。なお、 $\delta \overline{U}^*_c$ は次のようにして求めることができる。

(b) の場合
$$\delta \overline{U}_c^* = \int_a^l \delta U_c' dz = \int_0^l \delta U_c' dz - \int_0^a \delta U_c' dz$$
 (2.31)

- (c) の場合 $\delta \overline{U}_{c}^{*} = \int_{0}^{a} \delta U_{c}' dz$ (3.32)
- (d) の場合 $\delta \overline{U}_{c}^{*} = \int_{0}^{l} \delta U_{c}' dz$ (2.33)

いずれの場合も $\delta \overline{U}_c^*$ は $\int_0^l \delta U_c' dz \ge \int_0^a \delta U_c' dz \ge c$ で与えられ、 $\int_0^l \delta U_c' dz$ は式 (2.14)の 一部として、また、 $\int_0^a \delta U_c' dz$ は次のように与えられる。 $\int_{a}^{a} \delta U_{c}' dz = |\delta u|^{T} [K_{crack}^{1}] |u| \qquad (2.34)$

ここで、|u| はコンクリートスラブ要素の変位ベクトルであり、

 $\{u\} = \langle v_1, v_1', w_2, w_2', v_3, v_3', w_4, w_4' \rangle^T$ (2.35)

となる $[K^{1}_{crack}]$ を付録に示す。

軸ひずみの符号が変化する点までの距離 a は式 (2.27)で求められるが、この式中のひずみは変位で 与えられるので、式 (2.29)を解くにあたって繰返し計算を用いる必要がある。式 (2.29)で $\delta \overline{U_c}^*$ を 外力のなす仮想仕事の項に加えると繰返し計算のときに、[K]の前進消去を一度行っておけば、後は右 辺の項が変わるごとに後退代入を行えばよい。したがって、式 (2.29)を繰返し計算に用いる表現にな おすと *i*番目の計算については、

となる。

以上の結果にもとづいて連続合成桁の計算手順を示すと次のようになる。

(1) 桁全長にわたってコンクリートスラブは有効に作用するものとして計算する。ここで、 $|u|^0 = |0|$ として $|u|^1$ を求める。

(2) コンクリートスラブのひずみを算出し、a、 $[K^{1}_{crack}]$ を求める。

(3) 式 (2.36) から新しい $[u]^i$ を求め、 $v \ge v^{i-1}$ からノルムで誤差を計算する。つまり、誤差eは、

 $e = \| v^{(i)} - v^{(i-1)} \| \neq \| v^{(i)} \|$ (2.37)

であり、この誤差が許容値より小さくなったとき計算を打ち切る。

(4) 誤差が許容値より大きいときは(2)に戻る。

以上の計算によって連続合成桁の解析を行うことができる。

2.3.2 解析結果および考察

ここで示した連続合成桁の解析法の妥当性を検討するため、他で行われた実験結果および解析結果と の比較を行い、さらに連続合成桁の挙動について一考察を行う。

Table 2.1 に解析に用いた桁の剛度および諸量を示す。ここで、MODEL A を単純および連続合成 桁の解析に、MODEL B を負の曲げを受ける単純合成桁の解析に、また MODEL C を連続合成桁の解 析に用いた。

ずれ止めの剛性は押し抜き試験結果から得られるものであり、直径19mmのスタッドジベルでは、 Mainstone¹¹⁵⁾の研究を参考にし、最終耐力の1/5のところの曲線の勾配の値を取るとおよそ1本当り 450~500 ton/cmとなるで、ここでは500 ton/cmを用いることにする。道路橋示方書では、スタッドジ ベルの許容せん断力は破壊に対して 6 以上の安全率をもつものとしているので、上記の値はそう不合理 ではないと考える。負の曲げを受ける部分のずれ止めの挙動に関する研究はあまり行われていないが、 赤尾¹²²⁾は引き抜き試験からずれ止めの剛性を求めている。それによると、19mm径スタッドジベルでは、 最終耐力の1/2までは押し抜き試験の場合と差のないことを示しているので、ここでは、負の曲げを受 ける部分の剛性は正の曲げを受ける部分と同様に500 ton/cmを用いることにする。なお、MODEL C については3/8 in. 径スタッドジベルを用いているので、ずれ止めの剛性は文献(44)にあるとおりに 0.784×10⁶ lb/in.(140 ton/cm)を用いる。

解析の際の要素分割は単純ばりで16分割としたが、荷重の対称性を考慮しはり中央から半分のみについて計算を行った。一方、連続合成桁の解析では各スパン8分割とした。ただし、断続合成桁ではずれ止めを集中配置した付近をさらに分割し12分割とした。

Table 2.2 に、集中荷重および等分布荷重を受ける単純合成桁(MODEL A-1)の軸方向力、ず れ止めに作用する力およびたわみについて、Newmarkの式より求めた値と本解析法より得られた結果 との比較を示す。本解析法により得られた結果はNewmarkの微分方程式より得られた結果とよく一致 している。

負の曲げに対する解析結果を検討するため、Maeda¹²³⁾らおよび Teraszkiewicz (Moffatt⁴⁴⁾による) の実験結果と本解析結果の比較を行う。単純合成析 (MODEL B) を上下逆に設置し二点載荷した場 合のひずみ分布とたわみについて Maeda らの実験結果と本解析結果との比較を Fig. 2.5 に示す。また、 連続合成桁 (MODEL C) に集中荷重を載荷した場合のたわみおよび接合面のずれについて Teraszkiewicz による実験結果と本解析結果との比較を Fig. 2.6 に示す。同図には、ずれについて Moffatt による計算結果を併示する。なお、たわみについては本解析結果と Moffatt の解析結果はほぼ 一致していた。以上の結果より、本解析結果は実験結果による挙動をよく示していると考える。

連続合成桁には、桁全長にわたってずれ止めを連続的に配置する形式(プレストレスしない連続合成 桁、MODEL A-2-1)と負の曲げモーメント全域あるいは一部にずれ止めを配置しないいわゆる断 続合成桁(MODEL A-2-2)とがある。AASHTOの示方書では、断続合成桁はプレストレスしな い連続合成桁同様に規定されており、その場合負の曲げモーメント区間のコンクリートスラブ中の橋軸 方向鉄筋は合成断面に算入せず無視し、曲げモーメントの反曲点付近にずれ止めの補強を行う様規定さ れている。本解析法は、ずれ止めを不等間隔配置した場合にも適用できるので、一例としてそれらの連 続合成桁の曲げ性状について比較計算を行う。等分布荷重(1.5 ton/m)を載荷した場合のスパン中 央のたわみおよび曲げモーメントおよび中間支点上の曲げモーメントに関して MODEL A-2-1と MODEL A-2-2の比較を Table 2.3に示す。次に、コンクリートスラブに作用する軸力図、水平せ ん断力図、鉄筋および下フランジのひずみ図を Fig. 2.7に示す。ここで、MODEL A-2-1 と MODEL A-2-2 で差を示すのは、断続合成桁でずれ止めを配置していない負の曲げモーメント域の みであるのでその部分についてのみ示してある。Table 2.3 から明らかなように、断続合成桁におい て負の曲げモーメント区間のおよそ半分程度非合成にしたぐらいでは桁の剛性はずれ止めを連続的に配

-16 -

置した桁と比較してそれほど顕著な差は見られない。また、Fig. 2.7から明らかなように、軸力は MODEL A-2-2の場合には MODEL A-2-1と比較して中間支点上で約20%減少している。一方、 水平せん断力は、MODEL A-2-2の場合断続点に大きな値が出ており、断続点のずれ止めの補強方 法について検討を行う必要があると考える。下フランジの応力は、中間支点で MODEL A-2-2の場 合 MODEL A-2-1と比較して5%大きい。

Fig. 2.8にずれ止めを等間隔配置した3スパン連続合成桁に等分布荷重を載荷した場合の軸力図を示 す。本解析法では、軸方向変位を三次式で仮定しているので、軸力は要素内において二次式で表現され ており、これは軸方向変位を一次式で仮定した場合に要素内の軸力が一定となるのと異なる点である。 本解析法では、Fig. 2.8に示すような複雑な軸力の分布を少ない分割数で表現することが可能である。

2.4 合成桁の弾塑性解析

近年、アメリカ、イギリスおよび西ドイツ等において、合成桁の設計法が許容応力度設計法から荷重 係数設計法あるいは限界状態設計法に移行されつつある^{124)~126)}。荷重係数設計法、限界状態設計法あ るいは塑性設計法を構造設計に導入する場合は終局状態の構造物の安全性および安定性等力学的挙動を 明らかにする必要がある。特に、合成桁のようにコンクリートスラブ、鋼桁およびずれ止めのような異 種材料からなる複合構造物においては、それぞれの材料の性質が構造物の終局状態におよぼす影響を明 らかにしなければならない。ここでは、2.2節で示した合成桁の新しい要素を用いた簡単な弾塑性解 析手法について示す。

2.4.1 仮定

弾塑性解析に用いた基礎的仮定は次に示すとおりである。

- (1) ひずみは、要素内の厚さ方向に線形に変化しているものとし、塑性進展あるいはひび割れが生じて もなお平面保持の法則が成立するものとする。
- (2) 鋼材の応力一ひずみ関係は、Fig. 2.9(a)に示すように、引張りおよび圧縮側ともに完全弾塑性体 とし、ひずみ硬化はないものとする。
- (3) コンクリートの応力一ひずみ関係は、Fig. 2.9(b)に示すように、圧縮側は完全弾塑性体とする。 引張り側は引張り限度までは弾性とし、それ以後の荷重の増分に対してはひび割れが生じ、その領域 のコンクリートは引張りに低抗できないものとする。
- (4) ずれ止めの力―ずれ関係は、Fig. 2.9(c)に示すように bilinear で仮定する。
- (5) コンクリートスラブと鋼桁の間の浮き上がりはないものとし、接合面の付着および摩擦の影響は無 視する。

2.4.2 はり要素の塑性進展による初期ひずみマトリックス

ここでは、2.2節で示した合成桁要素を用い、また、はりの降伏後の挙動については、Armen ら

によって示されたはりの塑性進展を考慮した解析法を合成桁要素に応用して用いる¹²⁷⁾。

塑性理論では、応力が弾性限度を越え、塑性状態に達した後の全ひずみ ϵ_z^T は、弾性成分のひずみ ϵ_z^s と塑性成分のひずみ ϵ_z^p から成り次のように示される。

はり要素では、全ひずみ ϵ_z^T は、軸方向変位 (w) および曲げによる変位 (v) を用いて次のように与えられる。

$$\epsilon_{z}^{T} = (dw/dz) - (d^{2}v/dz^{2}) \quad y = w' - v'' y \dots (2.39)$$

ー方、要素の一部が塑性に達した場合、塑性領域内の塑性ひずみの分布は要素内において線形に変化しているものと仮定する。つまり、Fig. 2.10に示すように、はり要素の上下面の塑性領域内において塑性ひずみ ϵ_b^{μ} 、 ϵ_b^{l} は次のように示される。

$$\boldsymbol{\epsilon}_{p}^{u} = \left(\frac{d^{u} - t - y}{d^{u}}\right) \left\{ \boldsymbol{\epsilon}_{pi}^{u} \left(1 - \beta\right) + \boldsymbol{\epsilon}_{pj}^{u} \beta \right\} \quad \dots \qquad (2.40)$$

ここで、 $\beta = z/l$ であり、 ϵ_{pi}^{u} 、 ϵ_{pi}^{l} 、 ϵ_{pj}^{u} および ϵ_{pj}^{l} は、節点 *i*、*j*における上下面の塑性ひずみの値で あり、また、 d^{u} および d^{l} はそれぞれ上面から弾塑性の境界面までの距離であり次のように与えられる。

$$d^{u}(z) = d_{i}^{u} (1 - \beta) + d_{i}^{u} \beta \dots (2.42)$$

$$d^{l}(z) = d_{i}^{l} (1 - \beta) + d_{i}^{l} \beta$$
 (2.43)

また、はり要素の塑性ひずみベクトル { €, } は次のように示される。

$$|\epsilon_{p}| = \langle \epsilon_{pi}^{u}, \epsilon_{pj}^{u}, \epsilon_{pi}^{l}, \epsilon_{pj}^{l} \rangle^{T} \dots (2.44)$$

ここで、2.2節で示したように、はりを軸力と曲げを受ける要素でモデル化し、それぞれの方向の変位を式(2.2)、(2.4)で仮定すると、はり要素の一部が降伏した後のはり要素の内部仮想仕事 δU_b は次のようになる。

ここで、 $[K_b]$ ははり要素の剛性マトリックスであり、 $[K_b^*]$ ははり要素の塑性進展による初期ひずみ マトリックスである。 $[K_b^*]$ を付録に示す。

はり要素の場合と同様に鉄筋の塑性状態も考慮することができる。Fig. 2.11に示すように、鉄筋コン クリート要素の重心軸から d_i (i=1...,n)の深さに断面積 A_i^r の鉄筋が集中的に配置されているものと する。鉄筋要素の一部が降伏に入った後の鉄筋の塑性ひずみの分布をはり要素の場合と同様につぎのよ うに仮定する。

 $(\boldsymbol{\epsilon}_{p}^{r})_{i} = (\boldsymbol{\epsilon}_{pi}^{r})_{i} (1-\beta) + (\boldsymbol{\epsilon}_{pj}^{r})_{i} \beta \dots (2.46)$

したがって、鉄筋要素の内部仮想仕事は、

となる。ここで、 $[K_r]$ 、 $[K_r^*]$ は、それぞれ鉄筋要素の剛性マトリックスおよび塑性進展による初期ひずみマトリックスである。また、 $\{\epsilon_r^*\}$ は鉄筋の塑性ひずみベクトルであり次のように示される。

$$|\epsilon_{p}^{r}| = \langle (\epsilon_{bi}^{r})_{1}, (\epsilon_{bi}^{r})_{1}, \cdots, \langle (\epsilon_{bi}^{r})_{n}, (\epsilon_{bi}^{r})_{n} \rangle^{T} \cdots \langle (2.48)$$

2. 4. 3 コンクリートスラブのひび割れによる剛性の低下

コンクリートはある引張り限度以上の外力には抵抗できずひび割れが生じる。コンクリートスラブに ひび割れが生じると、要素内に不つり合い力が生じひび割れは急激に進展すると考えられる。2.3節 において、連続合成桁の負の曲げを受ける区間のコンクリートスラブ要素の剛性を低下させる解析法を 示したが、ここでは、コンクリートスラブの厚さ方向にひび割れの影響を考慮できる解析法について示 す。すなわち、要素内において引張り限度以上のひずみが生じている領域はすべてひび割れが発生して いるものと見なしその領域の剛性を低下させ、この剛性の低下を初期ひずみの項として取り扱う。なお、 ここで考慮したひび割れとは曲げによるひび割れであり、せん断による斜めひび割れについては考慮し ていない。

Fig. 2.12に示すように、コンクリートスラブ要素の節点 i、jに深さ h_i 、 h_j の曲げひび割れが生じ、 要素内の任意点におけるひび割れの深さを要素内で線形に変化していると仮定すると、任意点のひび割 れ深さ h(z) は次のように示される。

 $h(z) = h_i (1 - \beta) + h_i \beta$ (2.49)

ひび割れの発生している領域において、コンクリートは引張りに抵抗できないものとすると、コンクリートスラブ要素の内部仮想仕事*る U_c*は、

となる。ここで、 $\delta \overline{U}_c$ はコンクリートスラブが全断面有効とした場合の内部仮想仕事である。また、 $\delta \overline{U}_c^*$ はひび割れの発生による低減内部仮想仕事であり、次のように示される。

ここで、 $[K^2_{crack}]$ はコンクリートスラブ要素のひび割れによる初期ひずみマトリックスであり、A(z)、G(z)、I(z)は次のように定義される。

$$A(z) = \int_{0}^{b} \int_{t-h(z)}^{t} dy dx = b | \{h_i (1-\beta) + h_j \}$$
 (2.52)

$$G(z) = \int_{0}^{b} \int_{t-h(z)}^{t} y dy dx = b (t^{2} - (t-h(z))^{2}) / 2 \qquad (2.53)$$

$$I(z) = \int_{0}^{b} \int_{t-h(z)}^{t} y^{2} dy dx = b ||t|^{3} - (t-h(z))^{3}||/3$$
 (2.54)

なお、[K²crack] を付録に示す。ここで示したひび割れの解析法は、厚さ方向のひび割れの進展を考慮しているので鉄筋コンクリートばりの解析にも適用することができる。

2. 4. 4 ずれ止め要素の初期ひずみマトリックス

ずれ止めの荷重とずれの関係は、一般的にコンクリートの強度とずれ止めの寸法および材料の機械的 性質によって影響を受ける¹²⁸⁾。従来の合成桁の弾塑性解析では、ずれ止めの荷重-ずれ曲線を指数関 数⁵⁰⁾あるいは折線で近似⁴⁸⁾⁴⁹⁾しているが、ここでは、Fig. 2.9(c)に示すように完全弾塑性体として 簡単に仮定する。

ずれ止め要素においてずれが弾性限度を越えた場合、ずれ Δ_s は弾性成分のずれ Δ_s^{ρ} と塑性成分のず れ Δ_s^{ρ} を用いて次のように示される。

$$\Delta_{e} = \Delta_{e}^{e} + \Delta_{p}^{p} \qquad (2.55)$$

塑性成分のずれ Δ? は要素内において線形に変化していると仮定すると、

 $\Delta_s^p = \Delta_i^p \ (1 - \beta) \ + \Delta_i^p \ \beta \ \dots \ (2.56)$

となり、ここで、 Δ_i^{ρ} 、 Δ_j^{ρ} は*i*、*j*、節点における塑性成分のずれ量である。また、ずれ Δ_s は式(2.10) で定義されているので、ずれ止め要素の内部仮想仕事 δU_s は、

$$\delta U_{sc} = \int_{0}^{l} F \delta \Delta_{s} dz = \int_{0}^{l} q_{s} \Delta_{s} \delta \Delta_{s} dz - \int_{0}^{l} q_{s} \Delta_{s}^{p} \delta \Delta_{s} dz$$
$$= |\delta u|^{T} [K_{sc}] |u| - |\delta u|^{T} [K_{sc}^{*}] |\Delta_{s}^{p}| \dots (2.57)$$

となる。ここで、 q_s は単位長さ当たりのずれ止めの剛性であり、 $[K_{sc}]$ 、 $[K_{sc}^*]$ はずれ止め要素の剛性 マトリックスおよび塑性による初期ひずみマトリックスである。 $[K_{sc}^*]$ を付録に示す。また、 $|\Delta_{s}^{\rho}|$ はずれ止め要素の塑性ずれベクトルであり次のように示される。

 $\left|\Delta_{s}^{p}\right| = \left[\Delta_{i}^{p}, \Delta_{j}^{p}\right]^{T} \dots (2.58)$

2. 4. 5 計算手順

以上示したように、コンクリートスラブおよび鋼桁の塑性進展、鉄筋の塑性進展、ずれ止めのカーず れ関係の非線形性およびコンクリートスラブのひび割れによる剛性の低下の影響を初期ひずみの項とし て取り扱い反復法により計算を行う。反復初期ひずみ法におけるつり合い方程式は次のように示される。

 $\begin{bmatrix} K \end{bmatrix} | u |^{i} = | P_{0} | + | P |^{i-1}$ (2.59)

ここで、|P|⁻¹は初期ひずみによる修正荷重項であり、不完全合成桁の解析では次のように示される。

$$|P|^{i-1} = [K_b^*]^{i-1} |\epsilon_b|^{i-1} + [K_{crack}^2]^{i-1} |u|^{i-1} + [K_r^*]^{i-1} |\epsilon_b|^{i-1}$$

計算手順を Fig. 2.13 のフローチャートに示す。なお、収束の判定は式(2.37)を用いて行った。

2. 4. 6 解析結果および考察

ここでは、鉄筋コンクリート単純ばり、単純合成桁および連続合成桁について解析を行う。解析の際の分割数は単純ばりについては15分割、連続ばりについては20~24分割とし、ひび割れおよび塑性の進展が予測される付近を細かく分割した。なお、荷重および桁の対称性を考慮して桁の半分について計算を行っている。一方、反復計算における収束の判定は式(2.37)を用いて行うが、誤差の許容値として1.0×10⁻⁴を用いた。また、収束に際しては各部材力を計算しつり合いが満足されていることを確認した。計算における反復回数は桁の種類および各荷重段階により異なるが、鉄筋コンクリートばりの場合20回前後、合成桁の場合は100回前後であった。また、反復回数が300回を越えても収束条件が満足されない場合は計算を打ち切った。その場合の合成桁のコンクリートスラブの圧縮ひずみは0.003を越え

ており、ACI で提案されているように破壊と見なした¹²⁹⁾。

(1) 実験結果との比較

本弾塑性解析法の妥当性を検討するため、鉄筋コンクリート単純ばり、単純合成桁および2スパン連 続合成桁について、他で行われた実験結果および本解析結果との比較を行う。計算に用いた桁の断面お よび材料の諸量を Table 2.4 に示す。

Losh¹³⁰⁾らによって行われた鉄筋コンクリート単純ばりの曲げ試験結果と本解析結果との比較を荷重 ーたわみ曲線について Fig. 2.14 に示す。図には、鉄筋の断面積が0.4 in.² (*p*=1.25%) と0.2 in.² (*p* =0.625%)の二通りの場合について示してある。曲げひび割れを考慮した本解析結果は鉄筋の断面積 が0.4 in.²の場合は実験結果と比較的よく一致している。しかし、鉄筋量が少ない場合は計算結果は桁 の剛性の評価が低い。これは本解析法では、ひび割れの発生している領域の応力をすべて解除している ため、桁の剛性の評価が小さくなったものと考えられる。したがって、鉄筋量が少ない場合は引張り領 域の応力を除々に逓減させることも必要であると思われる。しかし、鉄筋量が比較的多い場合や合成桁 の一部としてのコンクリートスラブのひび割れの解析としては本解析法は有効であると考えられる。

Chapman¹³¹⁾らによって行われた単純合成桁の実験結果と本解析結果の比較を荷重一たわみ曲線について Fig. 2.15 に、ずれ分布について Fig. 2.16 に示す。なお、ずれ分布については Yam⁵⁰⁾らの解析結 果も併記してある。荷重一たわみ曲線については、本解析結果は実験結果と比較的よく一致しており、 ずれ分布についても極限状態に近い荷重段階においては実験結果をよく把握している。しかし、荷重が 小さい場合は多少ずれ止めの剛性が低くずれが大きく現れている。これは本解析においてずれ止めの力 一ずれ関係を bilinear で仮定したことによると考えられる。

Fig. 2.17に Teraszkiewicz (Yam⁵¹⁾による)による2スパン連続合成桁の実験結果と本解析結果との比較を示す。図には、終局荷重(P_u =14 ton)に近い荷重段階 P=12.2 ton について、たわみ、接合面のずれおよび鋼桁下フランジのひずみ分布が示されている。また、同図には Yam らによる解析結果も併記されている。図から明らかなように、本解析結果は比較的よく実験結果と一致している。

以上の結果より、本解析法は、単純および連続合成桁の弾塑性挙動をよく把握できるものと考えられ る。

(2) 合成桁の弾塑性挙動

ずれ止めの配置法が異なる合成桁の弾塑性挙動を調べる目的で単純および連続合成桁の解析を行う。 単純合成桁では、ずれ止めを桁全長にわたって等間隔に配置した桁(MODEL G-1-1)とずれ止め を支点上に多くスパン中央に少なく配置した桁(MODEL G-1-2)について、集中荷重および等分 布荷重を載荷させ解析を行った。また、連続合成桁についてはずれ止めを等間隔配置した桁(MODEL G-2-1)と断続合成桁(MODEL G-2-2)について集中荷重が作用した場合について解析を行った。 Table 2.5 に解析に用いた桁の断面および材料の諸量を示す。 Figs. 2.19、2.20に集中荷重および等分布荷重が作用した場合の単純合成桁の荷重一たわみ曲線を示 す。ずれ止めの配置法の違いによる差はほとんど見られない。MODEL G-1-1 について塑性域の進 展状況を Fig. 2.21に示す。Fig. 2.21から明らかなように、載荷した荷重の違いによって塑性域の広が りに差が見られる。なお、MODEL G-1-2 についても MODEL G-1-1 と同様な結果であった。 Fig. 2.22および Fig. 2.23に集中荷重(P=60、80、100 ton)および等分布荷重(q=48、60 kg/cm) が作用した場合の軸力の分布を示す。軸力についてもたわみ同様ずれ止めの配置法の違いによる差はほ とんど見られない。Figs. 2.24、2.25にそれぞれの荷重が載荷された場合のずれ分布を示す。それらの 図から明らかなように、スパン中央において塑性域が進展するとその付近の接合面のずれが大きくなり、 その影響はスパン中央より多少離れた場所において顕著に現れている。また、最大ずれ量に着目すれば、 塑性域の進展にかかわらずせん断力に比例してずれ止めを配置した方が有利であると考えられるが、 MODEL G-1-2 ではずれ止めの配置量が少ない箇所において、塑性域の進展によりずれの局部的増 加があり注意する必要がある。

Fig. 2.26に連続合成桁の中間支点上のモーメントと曲率の関係を示す。図から明らかなように、ず れ止めを連続的に配置した桁の方が断続合成桁より桁剛性が多少高い。Fig. 2. 27にひび割れおよび塑 性進展の状況を示す。本解析モデルでは、まず最初に中間支点付近の負の曲げモーメント域のコンクリー トスラブにひび割れが生じ、荷重の増加とともにスパン中央および中間支点上の鋼桁下フランジより塑 性域が進展する。なお、MODEL G-2-1と MODEL G-2-2では、中間支点付近における鋼桁下 フランジの塑性域の進展に違いが見られる。Fig. 2.28 に鋼桁下フランジのひずみ分布を、Fig. 2.29に コンクリートスラブ中の橋軸方向鉄筋のひずみ分布を示す。これらの図から明らかなように、鋼桁下フ ランジのひずみ分布についてはずれ止めの配置法の違いによる差はさほど見られないが、橋軸方向鉄筋 のひずみ分布については、中間支点上において断続合成桁(MODEL G-2-2)の鉄筋のひずみはず れ止めを連続的に配置した合成桁(MODEL G-2-1)のそれのおよそ40%減となっている。Fig. 2.30に軸力の分布を示す。断続合成桁の軸力の分布は非合成区間において一定となっており、その値は MODEL G-2-1のその区間の最大値と比較すると小さい。Fig. 2.31に接合面のずれ分布を示す。ず れ止めを配置した区間においてはずれ止めの配置法の違いによる差は見られないが、負の曲げモーメン ト区間において差が見られる。断続合成桁では断続点において大きなずれ、すなわちずれ止めに大きな 力が作用しており、その傾向は荷重の増加により顕著に現れる。以上の結果より、断続合成桁はずれ止 めを連続的に配置した連続合成桁と比較して、桁の剛性が多少低下するが、負の曲げモーメント域の橋 軸方向鉄筋の応力を低減するという点で有利であると考えられる。しかし、断続合成桁では合成区間と 非合成区間の境界付近においてずれ止めに大きな力が作用し、その傾向は塑性域の進展によって顕著に 現れており、断続点のずれ止めの補強および非合成区間長等において十分に配慮する必要がある。

2.5 結 論

本章では、不完全合成桁のコンクリートスラブと鋼桁を軸力と曲げを受けるはり要素で、接合面に配

置されたずれ止めをばね要素でモデル化した新しい合成桁解析モデルを示し、その合成桁要素を用いた 連続合成桁のひび割れを考慮できる解析法およびコンクリートスラブ、鋼桁の塑性進展およびずれ止め の力—ずれ関係の非線形性を考慮できる解析法をそれぞれ示した。また、本解析法による結果と他で行 われた実験結果および他の解析結果との比較を行い、本解析結果が実験結果および他の解析結果と比較 的よく一致していることを示した。

連続合成桁の解析では、コンクリートスラブのひび割れの影響を等価な力に置き換え反復計算を行う ため、また、合成桁の弾塑性解析では、コンクリートおよび鋼材の応力—ひずみ関係およびずれ止めの 力—ずれ関係を簡単な仮定を用いて表し、それらの材料非線形の影響をすべて初期ひずみの項として考 え反復計算を行うため、他の非線形解析法と比較して短い計算時間で不完全合成桁の非線形挙動が得ら れるものと考えられる。また、本解析法では、種々のずれ止めの配置が可能であり、断続合成桁などの ずれ止めの配置法を考慮した合成桁の挙動解析に適している。

付録 A-1 合成桁要素およびずれ止め要素の剛性マトリックス

式(2.16)で示した合成桁要素の剛性マトリックスおよびずれ止め要素の剛性マトリックスは次の ように与えられる。

$$[K_{b}] = \begin{bmatrix} \frac{6E_{c}A_{s}}{5I} & \frac{E_{c}A_{s}}{10} & 0 & 0 & 0 & 0 & \frac{-6E_{c}A_{s}}{5I} & \frac{E_{c}A_{s}}{10} & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{2IE_{c}A_{s}}{15} & 0 & 0 & 0 & 0 & 0 & -\frac{E_{c}A_{s}}{10} & \frac{IE_{c}A_{s}}{30} & 0 & 0 & 0 & 0 & 0 \\ \frac{12\Sigma EI}{I^{3}} & \frac{6\Sigma EI}{I^{2}} & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{12\Sigma EI}{I^{3}} & \frac{6\Sigma EI}{I^{2}} & 0 & 0 \\ \frac{4\Sigma EI}{I} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{6\Sigma EI}{I^{2}} & \frac{2\Sigma EI}{I} & 0 & 0 \\ \frac{6E_{c}A_{s}}{5I} & \frac{E_{c}A_{c}}{10} & 0 & 0 & 0 & 0 & 0 & -\frac{6E_{c}A_{c}}{5I} & \frac{E_{c}A_{c}}{10} \\ \frac{2IE_{c}A_{c}}{15} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{6E_{c}A_{c}}{5I} & \frac{E_{c}A_{c}}{10} \\ \frac{6E_{c}A_{s}}{5I} & -\frac{E_{c}A_{s}}{10} & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{2IE_{c}A_{c}}{15} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{2IE_{c}A_{c}}{15} & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{2IE_{c}A_{c}}{15} & 0 & 0 & 0 & 0 & 0 \\ \frac{4\Sigma EI}{I^{3}} & -\frac{6\Sigma EI}{I^{2}} & 0 & 0 \\ \frac{4\Sigma EI}{I^{3}} & -\frac{6\Sigma EI}{I^{2}} & 0 & 0 \\ \frac{2IE_{c}A_{c}}{5I} & -\frac{E_{c}A_{c}}{10} \\ \frac{2IE_{c}A_{c}}{15} & 0 & 0 & 0 \\ \frac{2IE_{c}A_{c}}{15} & 0 & 0 & 0 \\ \frac{2IE_{c}A_{c}}{15} & 0 & 0 & 0 \\ \frac{2IE_{c}A_{c}}{15} & 0 & 0 \\ \frac{12\Sigma EI}{I} & \frac{12\Sigma EI}{I} \\ \frac{12\Sigma EI}{I} & 0 & 0 \\ \frac{12\Sigma EI}{I} & 0 & 0 \\ \frac{12\Sigma EI}{I} & 0 & 0 \\ \frac{12\Sigma EI}{I} & \frac{12\Sigma EI}{I} \\ \frac{12\Sigma EI}{I} & 0 & 0 \\ \frac{12\Sigma EI}{I} & \frac{12\Sigma EI}{I} \\ \frac{12\Sigma EI}{I} \\ \frac{12\Sigma EI}{I} \\ \frac{12\Sigma EI}{I}$$

$$[K_{s_{t}}] =$$

付録 A-2 仮想仕事の原理から Newmark の式の誘導

式(2.12)に示されているように仮想仕事の原理より、不完全合成桁のつり合い方程式は外力とし て等分布荷重 qのみが作用している場合について考えると次のように示される。

$$E_{s} \int_{I} A_{s} w'_{s} \delta w'_{s} dz + E_{c} \int_{I} A_{c} w'_{c} \delta w'_{c} dz + \int_{I} (\Sigma EI) v'' \delta v'' dz$$

+
$$\int_{I} q_{s} (w_{s} - w_{c} + v' \bar{y}) (\delta w_{s} - \delta w_{c} + \delta v' \bar{y}) dz - \int_{I} q \delta v dz = 0 \cdots (A2.3)$$

式 (A2.3) において、 $\delta v'$ 、 $\delta w'_{c}$ および $\delta w'_{s}$ を持つ項では1回、 $\delta v''$ を持つ項では2回部分積分を 行う。すなわち、

$$\int_{I} v'' \,\delta \,v'' \,dz = v'' \,\delta \,v' \,|_{I} - v''' \,\delta \,v \,|_{I} + \int_{I} v^{(4)} \,\delta \,v dz \,\cdots \,(A2.4)$$

$$\int_{I} w' \,\delta \,w' \,dz = w' \,\delta \,w \mid_{I} - \int_{I} w'' \,\delta \,w dz \,\cdots \,(A2.5)$$

を利用すると、式(A2.3)は次のように示される。

$$\int_{l} \left\{ -E_{c}A_{c}w_{c}'' + q_{s} \left(w_{c} - w_{s} \right) - q_{s}\bar{y}v' \right\} \delta w_{c}dz + \int_{l} \left\{ -E_{s}A_{s}w_{s}'' + q_{s} \left(w_{s} - w_{c} \right) + q_{s}yv' \right\} \delta w_{s}dz$$

$$+ \int_{l} \left\{ (\Sigma EI) \ v^{(4)} - q_{s}\bar{y} \left(w_{s}' - w_{c}' + \bar{y}v'' \right) - q \right\} \delta vdz + E_{c}A_{c}w_{c}' \delta w_{c} \right\}_{l} + E_{s}A_{s}w_{s}' \delta w_{s} \left\|_{l} + \Sigma EIv'' \delta v' \right\|_{l}$$

$$+ \left\{ (\Sigma EI) \ w''' + q_{s}\bar{y} \left(w_{s} - w_{c} + \bar{y}v' \right) \right\} \delta v \right\|_{l} = 0$$

$$(A2.6)$$

これより次に示すつり合い方程式が得られる。

$$-E_{c}A_{c}w_{c}''+q_{s} (w_{c}-w_{s}) -q_{y}v'=0 \cdots (A2.7)$$

$$-E_{s}A_{s}w_{s}''+q_{s} (w_{s}-w_{c}) + q_{s}\overline{y}v'=0 \cdots (A2.8)$$

$$(\Sigma EI) v^{(4)} - q_{s} \overline{y} (w_{s}' - w_{c}' - \overline{y}v'') - q = 0 \cdots (A2.9)$$

これらは軸方向変位およびたわみに関する二階および四階の微分方程式である。さらに式(A2.7)をz について微分すると、

$$-E_{c}A_{c}w_{c}'''+q_{s}(w_{c}'-w_{s}')-q_{s}v''=0$$
(A2.10)

が得られる。合成桁のコンクリートスラブおよび鋼桁に作用する軸方向力Fは次のように示される。

一方、コンクリートスラブと鋼桁に作用するモーメントを M₀ M_sとすると、モーメントのつり合い式は、

$$M = M_c + M_s + F \overline{y} \cdots (A2.12)$$

となり、また、モーメントと曲率の関係は次のように示される。

$$v'' = -\frac{M_c}{E_c I_c} = -\frac{M_s}{E_s I_s} = -\frac{M - F \overline{y}}{\Sigma E I} \dots (A2.13)$$

式 (A2.11)、(A2.13) を式(A2.10) に代入すると、

$$F'' - q_s \frac{\overline{EI}}{\overline{EA} \sum EI} F = -q_s \frac{M\overline{y}}{\sum EI} \cdots (A2.14)$$

となる。ここで、

である。式(A2.14)は Newmark の軸力に関する微分方程式と一致している。一方、式(A2.9)より たわみに関する微分方程式を誘導することができるが、それは Heiling の方程式と一致する。

付録 A-3 マトリックス [K¹crack]

連続合成桁における式 (2.34) のマトリックス $[K^1_{crack}]$ は次のように示される。

$$[K^{i}_{crack}] = \begin{bmatrix} D_{11} & D_{12} & 0 & 0 & -D_{11} & D_{14} & 0 & 0 \\ D_{22} & 0 & 0 & -D_{12} & D_{24} & 0 & 0 \\ & C_{11} & C_{12} & 0 & 0 & -C_{11} & C_{14} \\ & & C_{22} & 0 & 0 & -C_{12} & C_{21} \\ & & D_{11} & -D_{14} & 0 & 0 \\ & & & D_{44} & 0 & 0 \\ & & & & & C_{11} & -C_{14} \\ & & & & & & & C_{44} \end{bmatrix}$$
(A2.16)

ここで、	
$C_{11} = E_c A_c (7.2 \alpha^5 - 18 \alpha^4 + 12 \alpha^3) /l$	$D_{11} = E_c I_c (48 \alpha^3 - 72 \alpha^2 + 36 \alpha) / l^3$
$C_{12} = E_c A_c (3.6 \alpha^5 - 10.5 \alpha^4 + 10 \alpha^3 - 3 \alpha^2)$	$D_{12} = E_c I_c (24 \alpha^3 - 42 \alpha^2 + 24 \alpha) / l^2$
$C_{14} = E_c A_c (3.6 \alpha^5 - 7.5 \alpha^4 + 4 \alpha^3)$	$D_{14}\!=\!E_c I_c$ (24 α $^3\!-$ 30 α $^2\!+$ 12 α) /l 2
$C_{22} = E_c A_c (1.8 \alpha^5 - 6 \alpha^4 + 22 \alpha^3 / 3 - 4 \alpha^2 + \alpha) l$	$D_{22} = E_c I_c (12 \alpha^3 - 24 \alpha^2 + 16 \alpha) / l$
$C_{24} = E_c A_c \ (1.8 \ \alpha^{5} - 4.5 \ \alpha^{4} + 11 \ \alpha^{3} / 3 - \alpha^{2}) \ l$	$D_{24} = E_c I_c (12 \alpha^3 - 18 \alpha^2 + 8 \alpha) / l$
$C_{44} = E_c A_c (1.8 \alpha^5 - 3 \alpha^4 + 4 \alpha^3/3) l$	$D_{44} = E_c I_c (12 \alpha^3 - 12 \alpha^2 + 4 \alpha) / l$

付録 A-4 初期ひずみマトリックス

式 (2.45) で示されたはり要素の初期ひずみマトリックス $[K_b^*]$ および式 (2.51)、(2.57) で示さ れたひび割れによる初期ひずみマトリックス $[K^2_{crack}]$ およびずれ止めの初期ひずみマトリックス $[K_{sc}^*]$ はそれぞれ次のように与えられる。

$$\begin{bmatrix} K_{11} & K_{12} & K_{13} & K_{14} \\ K_{21} & K_{22} & K_{23} & K_{24} \\ K_{31} & K_{32} & K_{33} & K_{34} \\ K_{41} & K_{42} & K_{43} & K_{44} \\ -K_{11} & -K_{12} & -K_{13} & -K_{14} \\ K_{61} & K_{62} & K_{63} & K_{64} \\ -K_{31} & -K_{32} & -K_{33} & -K_{34} \\ K_{81} & K_{82} & K_{83} & K_{84} \end{bmatrix}$$

$$(A2.17)$$

$$\begin{split} & \mathcal{L} = \mathcal{L}, \\ & K_{11} = - (1/10) \ C_1 - (1/4) \ C_2, \\ & K_{41} = (1/180) \ C_5 - (1/36) \ C_6 - (1/6) \ C_7, \\ & K_{12} = - (3/20) \ C_1 - (1/4) \ C_2, \\ & K_{42} = - (1/30) \ C_5 + (1/36) \ C_6, \\ & K_{43} = - (1/180) \ C_8 + (1/36) \ C_9 + (1/6) \ C_{10}, \\ & K_{44} = (1/30) \ C_8 - (1/36) \ C_9, \\ & K_{44} = (1/30) \ C_8 - (1/36) \ C_9, \\ & K_{44} = (1/30) \ C_8 - (1/36) \ C_9, \\ & K_{44} = (1/30) \ C_8 - (1/36) \ C_9, \\ & K_{44} = (1/20) \ C_1 - (1/24) \ C_2, \\ & K_{61} = - (1/120) \ C_1 - (1/24) \ C_2, \\ & K_{62} = (1/20) \ C_1 - (1/24) \ C_2, \\ & K_{23} = (1/120) \ C_3 - (1/24) \ C_4, \\ & K_{63} = (1/120) \ C_3 - (1/24) \ C_4, \\ & K_{64} = - (1/20) \ C_3 - (1/24) \ C_4, \\ & K_{51} = - (1/45) \ C_5 + (1/36) \ C_6, \\ & K_{32} = - (3/201) \ C_5 + (1/61) \ C_6 + (1/61) \ C_7, \\ & K_{83} = (1/45) \ C_8 - (1/36) \ C_9, \\ & K_{34} = (3/201) \ C_8 - (1/61) \ C_9 - (1/61) \ C_{10}, \\ \end{aligned}$$

$$\begin{split} C_1 &= d_j^u - d_i^u, & C_6 &= (d_j^u - d_i^u) (3t - 2d_i^u), \\ C_2 &= d_i^u, & C_7 &= (3t - d_i^u) d_i^u, \\ C_3 &= d_j^l - d_i^l, & C_8 &= (d_j^l - d_i^l)^2, \\ C_4 &= d_i^l - 2t, & C_9 &= (d_j^l - d_i^l) (t - 2d_i^l), \\ C_5 &= (d_j^u - d_i^u)^2, & C_{10} &= 2t^2 + t d_i^l - (d_i^l)^2, \end{split}$$

であり、また、

$$\begin{bmatrix} K_{crack}^{2} \end{bmatrix} = E_{c} \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{11} & C_{16} & C_{13} & C_{18} \\ C_{22} & C_{23} & C_{24} & C_{12} & C_{26} & C_{23} & C_{28} \\ C_{33} & C_{34} & C_{13} & C_{36} & C_{33} & C_{38} \\ C_{33} & C_{44} & C_{14} & C_{46} & C_{34} & C_{48} \\ C_{11} & C_{16} & C_{13} & C_{18} \\ symmetric & C_{66} & C_{36} & C_{68} \\ C_{33} & C_{38} & C_{38} \\ C_{33} & C_{38} & C_{88} \end{bmatrix}$$

ここで、

$$\begin{split} C_{11} &= (7A_i + 7A_j)/(5l), & C_{16} &= A_i/10, & C_{46} &= -(7G_i + 8G_j)/30, \\ C_{12} &= A_j/10, & C_{18} &= (G_i + 4G_j)/(5l), & C_{48} &= (I_i + I_j)/l, \\ C_{13} &= (3G_j - 3G_i)/(5l^2), & C_{22} &= (3A_i + A_j)l/30, & C_{66} &= (A_i + 3A_j)l/30, \\ C_{14} &= -(4G_i + G_j)/(5l), & C_{23} &= (7G_i + 3G_j)/(10l), & C_{68} &= -(2G_i + 13G_j)/30, \\ C_{24} &= (13G_i + 2G_j)/30, & C_{34} &= (4I_i + 2I_j)/l^2, & C_{88} &= (I_i + 3I_j)/l. \\ C_{26} &= -(A_i + A_j)l/60, & C_{36} &= -(3G_i + 7G_j)/(10l), \\ C_{28} &= (8G_i + 7G_j)/30, & C_{38} &= (2I_i + 4I_j)/l^2, \\ C_{33} &= (6I_i + 6I_i)/l^3, & C_{44} &= (3I_i + I_i)/l. \end{split}$$

である。一方、

$$\begin{bmatrix} K_{sc}^{*} \end{bmatrix}^{T} = \frac{1}{60} \begin{bmatrix} S_{11} & S_{21} & S_{31} & S_{41} & -S_{11} & -S_{21} & S_{71} \\ S_{12} & S_{22} & S_{32} & S_{42} & -S_{12} & -S_{22} & S_{72} \\ & & & & \\ S_{81} & -S_{31} & S_{101} & -S_{71} & -S_{81} \\ S_{82} & -S_{32} & S_{102} & -S_{72} & -S_{82} \end{bmatrix} \cdots \cdots \cdots (A2. 19)$$

$$S_{11} = 16l q_{i} + 5l_{cl_{j}}, \qquad S_{42} = -l\bar{y}q_{i} - 4l\bar{y}q_{j}, \qquad S_{12} = 5l q_{i} + 4l q_{j}, \qquad S_{71} = 4lq_{i} + 5lq_{j}, \qquad S_{72} = 5lq_{i} + 16lq_{j}, \qquad S_{72} = 5lq_{i} + 16lq_{j}, \qquad S_{72} = 5lq_{i} + 16lq_{j}, \qquad S_{22} = l^{2}q_{i} + l^{2}q_{j}, \qquad S_{81} = -l^{2}q_{i} - l^{2}q_{j}, \qquad S_{82} = -l^{2}q_{i} - l^{2}q_{j}, \qquad S_{32} = -12\bar{y}q_{i} - 18\bar{y}q_{j}, \qquad S_{101} = -4l\bar{y}q_{i} - l\bar{y}q_{j}, \qquad S_{102} = -l\bar{y}q_{i} + 6l\bar{y}q_{j}, \qquad S_{10} = -d\bar{y}q_{i} + 6l\bar{y}q_{j}, \qquad S_{10} = -d\bar{y}q_$$

である。

付録 A-5 ずれ止めのカーずれ関係

本章で示した合成桁の弾塑性解析では、ずれ止めのカーずれ関係を bilinear で仮定したが、その場合 の弾性限の力 F_y および弾性限の最大ずれ量 (Δ_s^e)_{mux} は次に示すように実験結果との比較により数値 実験的に求めた。すなわち、Fig. A2.1に示すように Chapman¹³¹⁾らによって行われた1/2 in.径スタッ ドジベルの押し抜き試験の結果より5つのカーずれ曲線(No.1~No.5)を仮定し、それぞれの仮定 を用いて単純合成桁の解析を行い、実験結果との比較により最適なカーずれ曲線を選択するものとした。 なお、荷重一たわみ曲線(Fig. 2.15)についてはずれ止めのカーずれ曲線の仮定の違いによる顕著な 差は見られなかった。Fig. A2.2に荷重が40、45 tonの場合のずれ分布を示す。この図からは5つの仮 定の内No.3の仮定が実験結果の性状をよく示していると考えられる。なお、No.3の仮定を用いると 極限状態に近い荷重段階においてはよくずれ分布を把握するものの荷重段階が小さい場合はずれ止めの 剛性の評価が小さい。しかし、不完全合成桁の弾塑性挙動を調べる目的としている場合はこの仮定を用 いてもよいものと考える。一方、径の違うスタッドジベルについても1/2 in.径スタッドジベルと相似な カーずれ曲線が得られることが知られているので、他の径のスタッドジベルについてもこれと同様な仮 定を用いることができるものとした。すなわち、Fig. A2.3に示すように弾性限の力 F_y を破壊荷重の 70%に取り、弾性限の最大ずれ (Δ_s^e)_{max} を破壊荷重の70%に対応するずれの60%に取り bilinear で表 示した。

Table	2.1	Summary	of	Section	Properties.
-------	-----	---------	----	---------	-------------

	YOUNG'S	YOUNG'S	CDAN	SHEAR	CROSS SECTION		
	MODULUS FOR STEEL	FOR CONCRETE	SPAN	SPAN CONNECTOR SPACING C		STEEL BEAM	
MODEL A	2.1 x 10 ⁶ (kg/cm ²)	2.1 x 10 ⁵ (kg/cm ²)	A-1 32m A-2-1 32mx2 A-2-2 32mx2 A-3 32mx3	CONTINUOUS CONTINUOUS DISCONTINUOUS CONTINUOUS	250 x 20 (cm)	Flg.PL. 300x19 Web.PL. 1600x 9 Flg.PL. 500x28	
MODEL B	2.1 x 10 ⁶ (kg/cm ²)	2.1 x 10⁵ (kg/cm²)	5 m	CONTINUOUS	50 x 15 (cm)	F1g.PL. 150x10 Web.PL. 350x 8 F1g.PL. 250x15	
MODEL C	30 x 10 ⁶ (1b/sq.in.)	4.5 x 10 ⁶ (1b/sq.in.)	132 in. x 2	CONTINUOUS	24 x 2.365 (in.)	6in.x3in.x121b/ft.	

MODEL A : SIMPLY SUPPORTED BEAMS UNDER POSITIVE AND NEGATIVE BENDING, CONTINUOUS BEAMS. MODEL B : SIMPLY SUPPORTED BEAMS UNDER NEGATIVE BENDING. MODEL C : CONTINUOUS BEAMS.

Table 2.2 Comparison of Values obtained from the Proposed Method and the Exact Solution by Newmark with MODEL A-1.

		CONCENTRATED LOAD (P =	AT THE MID-SPAN 20 ton)	UNIFORMLY DISTRIBUTED LOAD (q = 1 t/m)		
	LOCATION	PROPOSED ANALYSIS	EXACT	PROPOSED ANALYSIS	EXACT	
DEFLECTION (cm)	MID-SPAN QUARTER-SPAN	1.5893 1.0912	1.5899 1.0917	1.5879 1.1316	1.5885 1.1321	
AXIAL FORCE ACTING ON SLAB (kg)	MID-SPAN QUARTER-SPAN	86712 44850	86851 44859	71339 53769	71774 53654	
HORIZONTAL SHEAR FORCE ACTING ON STUD (kg)	QUARTER-SPAN	474.46	474.69	379.53	379.75	

Table 2.3 Comparison of Deflection, Bending Moment between Continuous Composite Beams with MODEL A-2-1 and A-2-2 under Uniformly Distributed Load (q = 1.5 t/m).

	MODEL A-2-1	MODEL A-2-2
DEFLECTION AT THE MID-SPAN (cm)	1.1507	1.1608 ·
BENDING MOMENT AT MID-SPAN (t⋅m)	112.43	112.59
BENDING MOMENT AT THE INTERIOR SUPPORT (t·m)	159.90	160.72

[a] SECTION PROPERTIES

		CONCRETE SLAB			SHEAR CONNECTOR		
	SPAN	WIDTH	THICKNESS	STEEL BEAM	NUMBER	DIMENSION	SPACING
MODEL D	10 ft.	4.0 in.	8.0 in.	-	-	-	-
MODEL E	18 ft.	48.0 in.	6.0 in.	l2in.x6in.x44 lb/ft	100	(1/2)x2in.	CONTINUOUS
MODEL F	2x11 ft.	24.0 in.	2.375 in.	6in.x3in.xl2 lb/ft	46	(3/8)x2in.	CONTINUOUS

[b] MATERIAL PROPERTIES

	CONCRETE			STEEL		SHEAR CONNECTOR		
	YOUNG'S MODULUS	ULTIMATE COMPRESSIVE STRESS	SPLITTING TENSILE STRESS	YOUNG'S MODULUS	YIELD STRESS			
	Е _с	σcu	σct	Es	σy	Fy	(∆emax)	
MODEL D	3.0 x 10 ³ (ksi)	4.0 (ksi)	0.4 (ksi)	3.0 x 10 ⁴ (ksi)	60 (ksi)	-	-	
MODEL E	1330 (ton/sq.in.)	7250 (psi)	725 (psi)	13300 (ton/sq.in.)	17.2 (ton/sq.in.)	4.55 (ton)	0.0143 (in.)	
MODEL F	1787 (ton/sq.in.)	6900 (psi)	690 (psi)	13400 (ton/sq.in.)	19.5 (ton/sq.in.)	2.28 (ton)	0.0060 (in.)	

MODEL D : REINFORCED CONCRETE BEAMS. MODEL E : SIMPLY SUPPORTED COMPOSITE BEAMS. MODEL F : 2 SPAN CONTINUOUS COMPOSITE BEAMS.

Table 2	2.5	Summary	of	Section	and	Material	Properties.
---------	-----	---------	----	---------	-----	----------	-------------

[a] SECTION PROPERTIES

		CONCRETE SLAB			SHEAR CONNECTOR			
	SPAN	WIDTH	THICKNESS	STEEL BEAM	NUMBER	DIMENSION	SPACING	
MODEL G-1-1	32m			51 DL 40-0 5	378		CONTINUOUS	
MODEL G-1-2	32m	050	00	FIG.PL. 40x2.5	378	10×100	TRIANGULAR	
MODEL G-2-1	2x32m	250 CM	20 cm	Web.PL. 160x0.9	2x378	(mm)	CONTINUOUS	
MODEL G-2-2	2x32m			FIG.PL. 40X2.5	2x378		DISCONTINUOUS	

[b] MATERIAL PROPERTIES

	CONCRETE		STEEL		SHEAR CONNECTOR	
YOUNG'S MODULUS	ULTIMATE COMPRESSIVE	SPLITTING TENSILE STRESS	YOUNG'S MODULUS	YIELD STRESS		
Е _с	ocu areas	σct	Es	σy	Fy	(∆ ^e max)
2.1 x 10 ⁵ (kg/cm ²)	300 (kg/cm²)	30 (kg/cm²)	2.1 x 10 ⁶ (kg/cm ²)	2400 (kg/cm²)	7.5 (ton)	0.0356 (cm)

MODELS G-1-1 AND G-1-2 : SIMPLY SUPPORTED COMPOSITE BEAMS. MODELS G-2-1 AND G-2-2 : 2 SPAN CONTINUOUS COMPOSITE BEAMS.

Fig. 2.1 Nodal Displacements for Incomplete Composite Beam Element.

Fig. 2.2 Relationship between Load and Slip for Push-out Specimen 115).

Fig. 2.3 Slip Configuration between the Concrete Slab and Steel Beam.

Fig. 2.4 Strain Diagrams in the Concrete Slab.

Fig. 2.9 Assumed Stress-Strain Diagrams for Steel and Concrete, and Load-Slip Diagram for a Shear Connector.

Fig. 2.10 Typical Elastic Plastic Beam Element 127).

Fig. 2.11 Cross Section of Reinforced Concrete Beams.

Fig. 2.12 Analytical Model of the Cracked Concrete Beam Element.

Fig. 2.13 Flow Chart.

Fig. 2.14 Load - Deflection Relationships for a Reinforced Concrete Beam.

Fig. 2.15 Load - Deflection Relationships for a Simply Supported Composite Beam.

Fig. 2.16 Slip Distributions.

1500

000 500

(^{a-}01×) NIA9T2

Strains at Lower Flange Profiles $(\,P\!=\!12\,,2\,\,\text{ton,}\ P_{\,u}^{}=14\,,0\,\,\text{ton}\).$

-100 -200

DEFLECTION (inches)

0.5

132"

to 1

132"

200

--

[a] DEFLECTION

100

[b] SLIP

••• EXPERIMENT⁵¹) PROPOSED AMALYSIS

-1000

-500

Fig. 2.19 Load-Deflection Relationships for MODEL G-1-1 and G-1-2 under Concentrated Load.

Fig. 2.20 Load -Deflection Relationships for MODEL G-1-1 and G-1-2 under Uniformly Distributed Load.

Fig. 2.21 Yield Progression for Simply Supported Composite Beams under Concentrated Load and Uniformly Distributed Load.

(cu) Srib (cu)

Slip Diagrams under Uniformly

Fig. 2.25

Distributed Load.

Fig. 2.26 Moment-Curvature Relationships at the Center Support for a 2-Span Continuous Composite Beam.

Fig. 2.27 Progression of Yielded and Cracked Regions through the Depth for a 2-Span Continuous Composite Beam.

- 45 -

Fig. 2.31 Slip Diagrams.

Fig. 2.30 Axial Force Diagrams.

Fig. A 2.1 Assumed Load-Slip Diagrams for 1/2 in. Stud Shear Connector.

Fig. A 2.2 Slip Distributions.

Fig. A 2.3 Assumed Load-Slip Diagram for 3/4 in. Stud Shear Connector.