A note on monomorphisms of irrational rotation $C^{*}$－algebras into their matrix algebras

| メタデータ | 言語： |
| :---: | :--- |
|  | 出版者：Department of Mathematical Sciences，Faculty |
| of Science，University of the Ryukyus |  |
|  | 公開日：2010－01－22 |
|  | キーワード（Ja）： <br>  <br>  <br>  <br>  <br>  <br>  <br> キーワート成者：Kodaka，Kazunori，小高，一則 <br> メールアドレス： <br> 所属： <br> http：／／hdl．handle．net／20．500．12000／15033 ： |

## A NOTE ON MONOMORPHISMS

## OF IRRATIONAL ROTATION C*-ALGEBRAS

## INTO THEIR MATRIX ALGEBRAS

Kazunori KODAKA

## 1. Introduction

In this note we will show that there is a difference between the irrational rotation $\mathrm{C}^{*}$-algebras corresponding to quadratic irrational numbers and the irrational rotation $\mathrm{C}^{*}$-algebras corresponding to nonquadratic ones by studying monomorphisms of them into their matrix algebras.

Throughout this note we will say monomorphism when we mean unital monomorphism.

$$
\text { 2. Monomorphisms of } A_{\theta} \text { into } M_{n}\left(A_{\theta}\right)
$$

Let $\theta$ be an irrational number and $A_{\theta}$ the corresponding irrational rotation $\mathrm{C}^{*}$-algebra. Let $\tau$ be the unique tracial state on $A_{\theta}$ and for any $n \in \mathrm{~N}$ let $M_{n}\left(A_{\theta}\right)$ be the $n \times n$-matrix algebra over $A_{\theta}$. We extend the unique tracial state $\tau$ to the unnormalized finite trace on $M_{n}\left(A_{\theta}\right)$. We also denote it by $\tau$. Let $\phi$ be a monomorphism of $A_{\theta}$ into $M_{n}\left(A_{\theta}\right)$ and $E$ a conditional expectation of $M_{n}\left(A_{\theta}\right)$ onto $\phi\left(A_{\theta}\right)$. We suppose that $E$ is of index-finite type. Since $A_{\theta}$ is simple, by Watatani [8, Proposition 2.7.3] $\phi\left(A_{\theta}\right)^{\prime} \cap M_{n}\left(A_{\theta}\right)$ is finite dimensional where

$$
\phi\left(A_{\theta}\right)^{\prime} \cap M_{n}\left(A_{\theta}\right)=\left\{x \in M_{n}\left(A_{\theta}\right) \mid x \phi(a)=\phi(a) x \quad \text { for any } \quad a \in A_{\theta}\right\} .
$$

Proposition 1. With the above assumptions we suppose that $\theta$ is non-quadratic. Then for any non-zero projection $q \in \phi\left(A_{\theta}\right)^{\prime} \cap M_{n}\left(A_{\theta}\right)$, $\tau(q)$ is a positive integer.

Proof: Since $q \in \phi\left(A_{\theta}\right)^{\prime} \cap M_{n}\left(A_{\theta}\right)$, there are integers $k, l$ such that $\tau(q)=k+l \theta>0$. Let $\psi$ be the monomorphism of $A_{\theta}$ to $q M_{n}\left(A_{\theta}\right) q$

Received October 31, 1991.
defined for any $\boldsymbol{x} \in A_{\boldsymbol{\theta}}$ by $\psi(\boldsymbol{x})=q \phi(\boldsymbol{x})$. Let $\tau_{1}$ be a tracial state on $A_{\theta}$ defined for any $\boldsymbol{x} \in A_{\theta}$ by

$$
\tau_{1}(x)=\frac{1}{k+l \theta} \tau \circ \psi(x) .
$$

By the uniqueness of the tracial state on $A_{\theta}$, we can see that $\tau_{1}=\tau$. Let $p$ be a projection in $A_{\theta}$ with $\tau(p)=\theta$. Then

$$
\tau_{1}(p)=\frac{1}{k+l \theta} \tau \circ \psi(p) .
$$

Since $\psi(p) \in q M_{n}\left(A_{\theta}\right) q \subset M_{n}\left(A_{\theta}\right)$, there are integers $s, t$ such that $\tau(\psi(p))=s+t \theta$. Thus $\tau_{1}(p)=\frac{s+t \theta}{k+l \theta}$. Hence since $\tau_{1}(p)=\tau(p)=\theta$,

$$
l \theta^{2}+(k-t) \theta-s=0 .
$$

Since $\theta$ is non-quadratic, $l=0$. Therefore $\tau(q)=k>0$. Hence we obtain the conclusion. Q.E.D.

For any quadratic irrational number $\theta$ we will show that there are a positive integer $n$ and a monomorphism $\phi$ of $A_{\theta}$ into $M_{n}\left(A_{\theta}\right)$ satisfying the following properties:
(1) There is a conditional expectation $E$ of index-finite type of $M_{n}\left(A_{\theta}\right)$ onto $\phi\left(A_{\theta}\right)$,
(2) There is a non-zero projection $q \in \phi\left(A_{\theta}\right)^{\prime} \cap M_{n}\left(A_{\theta}\right)$ such that $\tau(q) \notin \mathbf{N}$.

First we will give definitions and well-known facts on quadratic irrational numbers (see Lang [5]).

Let $G L(2, \mathbf{Z})$ be the group of all $2 \times 2$-matrices over $\mathbf{Z}$ with determinant $\pm 1$ and $S L(2, \mathbf{Z})$ the group of all $2 \times 2$-matrices over $\mathbf{Z}$ with determinant 1. Let $g=\left[\begin{array}{cc}k & l \\ m & n\end{array}\right] \in G L(2, \mathbf{Z})$ and $\theta$ an irrational number. We define $g \theta=\frac{m+n \theta}{k+l \theta}$ and we call $g$ a fractional transformation. Furthermore if $g \neq\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$, then we say that $g$ is non-trivial.

From now on we suppose that $\theta$ is a quadratic irrational number. By Lang [5, Chap. I, §1, Theorems 1, 2, Corollary 1, and Chap.

IV, $\S 1$, Theorems 2, 3] there is a non-trivial fractional transformation $h=\left[\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right] \in G L(2, \mathbf{Z})$ such that

$$
\theta=\frac{c_{1}+d_{1} \theta}{a_{1}+b_{1} \theta}, \quad 0<a_{1}+b_{1} \theta<1 .
$$

If we consider $h^{2} \in S L(2, \mathbf{Z})$, by [4, Lemma 3] we can see that there is a non-trivial fractional transformation $g=h^{2}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in S L(2, \mathbf{Z})$ such that

$$
\theta=\frac{c+d \theta}{a+b \theta}, \quad 0<a+b \theta<1 .
$$

The quadratic equation for $\theta$ can be written in the form

$$
k \theta^{2}+l \theta+m=0
$$

where $k, l, m$ are relatively prime integers and $k>0$. Let $D=l^{2}-$ $4 k m>0$ be the discriminant of $\theta$. Let $g=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in S L(2, \mathbf{Z})$ be a non-trivial fractional transformation such that

$$
\theta=\frac{c+d \theta}{a+b \theta}, \quad 0<a+b \theta<1 .
$$

Then $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ can be written in the following form:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
\frac{t+l s}{2} & k s \\
-m s & \frac{t-l s}{2}
\end{array}\right]
$$

where $s, t$ are integers satisfying $t^{2}-D_{s^{2}}=4$ since $a d-b c=1$.
Lemma 2. With the above notations let $r=a+b \theta$. Then there is a positive integer $n$ such that $r+r^{-1}=n$.

Proof: Since $k \theta^{2}+l \theta+m=0$ and $D$ is the discriminant of $\theta, \theta=$ $\frac{-l \pm \sqrt{D}}{2 k}$. And since $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{cc}\frac{t+l s}{2} & k s \\ -m s & \frac{t-l_{s}}{2}\end{array}\right]$,

$$
r=a+b \theta=\frac{t+l s}{2}+k s \theta=\frac{t+l s}{2}+\frac{-l s \pm s \sqrt{D}}{2}=\frac{t \pm s \sqrt{D}}{2} .
$$

Hence $s^{2} D=4 r^{2}-4 t r+t^{2}$. Since $t^{2}-D s^{2}=4$, we obtain that $r^{2}-t r+1=0$. Thus $r^{2}+1=t r$. Since $r>0, t>0$. Let $n=t$. Then $r^{2}+1=n r$. Therefore we obtain that $r+r^{-1}=n$. Q.E.D.

Let $q_{1}$ be a projection in $M_{n}\left(A_{\theta}\right)$ with $\tau\left(q_{1}\right)=r=a+b \theta$ and $q_{2}=I_{n}-q_{1}$ where $I_{n}$ is the unit element in $M_{n}\left(A_{\theta}\right)$.

Lemma 3. With the above notations for $j=1,2 q_{j} M_{n}\left(A_{\theta}\right) q_{j}$ is isomorphic to $A_{\theta}$.

Proof: Since $g \theta=\frac{c+d \theta}{a+b \theta}=\theta$ and $\tau\left(q_{1}\right)=a+b \theta$, in the same way as in [3, Lemma 7] (see also [2, the proof of Theorem 5]) we see that $q_{1} M_{n}\left(A_{\theta}\right) q_{1} \cong A_{\theta}$. Next we will show that $q_{2} M_{n}\left(A_{\theta}\right) q_{2} \cong A_{\theta}$. Since $q_{2}=I_{n}-q_{1}, \tau\left(q_{2}\right)=n-(a+b \theta)=n-r$. Hence by Lemma $2 \tau\left(q_{2}\right)=$ $\boldsymbol{r}^{-1}$. Since $\theta=\frac{c+d \theta}{a+b \theta}, r^{-1}=d-b \theta$. Thus $g^{-1} \theta=\frac{-c+a \theta}{d-b \theta}=\theta$. Therefore in the same way as above $q_{2} M_{n}\left(A_{\theta}\right) q_{2} \cong A_{\theta}$. Q.E.D.

For $j=1,2$ let $\phi_{j}$ be an isomorphism of $A_{\theta}$ onto $q_{j} M_{n}\left(A_{\theta}\right) q_{j}$. Let $\phi$ be a monomorphism of $A_{\theta}$ into $M_{n}\left(A_{\theta}\right)$ defined by $\phi=\phi_{1}+\phi_{2}$. Let $E_{1}$ be the linear map of $M_{n}\left(A_{\theta}\right)$ onto $\phi\left(A_{\theta}\right)$ defined by

$$
E_{1}(x)=q_{1} x q_{1}+\phi_{2}\left(\phi_{1}^{-1}\left(q_{1} x q_{1}\right)\right)
$$

for any $x \in A_{\theta}$ and let $E_{2}$ be the linear map of $M_{n}\left(A_{\theta}\right)$ onto $\phi\left(A_{\theta}\right)$ defined by

$$
E_{2}(x)=q_{2} x q_{2}+\phi_{1}\left(\phi_{2}^{-1}\left(q_{2} x q_{2}\right)\right)
$$

for any $\boldsymbol{x} \in A_{\theta}$. By easy computation we can see that $E_{1}$ and $E_{2}$ are conditional expectations of $M_{n}\left(A_{\theta}\right)$ onto $\phi\left(A_{\theta}\right)$. Furthermore let $E=\frac{1}{2}\left(E_{1}+E_{2}\right)$. Then by easy computation we see that $E$ is a faithful conditional expectation of $M_{n}\left(A_{\theta}\right)$ onto $\phi\left(A_{\theta}\right)$.

We will find a quasi-basis for $E$ in order to show that $E$ is of index-finite type.

Let $k$ be a positive integer such that $r^{-1}-k r>0$ and $r^{-1}-(k+$ $1) r<0$. We will find an orthogonal family $\left\{\tilde{q}_{1 j}\right\}_{j=1}^{k}$ of projections in $M_{n}\left(A_{\theta}\right)$ and a family $\left\{w_{j}\right\}_{j=1}^{k}$ of unitary elements in $M_{n}\left(A_{\theta}\right)$ such that $\tilde{q}_{1 j} \leq q_{2}$ and $\tilde{q}_{1 j}=w_{j}^{*} q_{1} w_{j}$ for $j=1,2, \ldots, k$.

For any unital C*-algebra $B$ we denote by $\operatorname{Proj}(B)$ the set of all projections in $B$.

Lemma 4. For $j=0,1,2, \ldots, k-1$ let $f_{j}$ be a projection in $M_{n}\left(A_{\theta}\right)$ with $\tau\left(f_{j}\right)=r^{-1}-j r$. Then there is a projection $\tilde{f}_{j}$ in $f_{j} M_{n}\left(A_{\theta}\right) f_{j}$ such that $\tau\left(\tilde{f}_{j}\right)=r$.

Proof: Since $f_{j} M_{n}\left(A_{\theta}\right) f_{j}$ is strongly Morita equivalent to $A_{\theta}$, by Rieffel [7, Corollary 2.6] there are a positive integer $h$, a real number $\eta$ and $\left[\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right] \in S L(2, \mathbf{Z})$ such that

$$
f_{j} M_{n}\left(A_{\theta}\right) f_{j} \cong M_{h}\left(A_{\eta}\right), \quad r^{-1}-j r=h\left(a_{1}+b_{1} \theta\right), \quad \eta=\frac{c_{1}+d_{1} \theta}{a_{1}+b_{1} \theta} .
$$

Hence by Rieffel [6, Proposition 1.3] we see that

$$
\tau\left(f_{j}\right)^{-1} \tau\left(\operatorname{Proj}\left(f_{j} M_{n}\left(A_{\theta}\right) f_{j}\right)\right)=h^{-1} \mathbf{Z}+h^{-1} \mathbf{Z} \eta \cap[0, \quad 1] .
$$

Thus in order to see that there is a projection $\tilde{f}_{j}$ in $f_{j} M_{n}\left(A_{\theta}\right) f_{j}$ it suffices to show that there are integers $l, m$ such that

$$
h^{-1}(l+m \eta)\left(r^{-1}-j r\right)=r, \quad 0<l+m \eta<h .
$$

However since $r^{-1}-j r=h\left(a_{1}+b_{1} \theta\right), \eta=\frac{c_{1}+d_{1} \theta}{a_{1}+d_{1} \theta}$ and $r=a+b \theta$, it is sufficient to show that there are integers $l, m$ such that

$$
\left(a_{1} l+c_{1} m\right)+\left(b_{1} l+d_{1} m\right) \theta=a+b \theta, \quad 0<m \frac{c_{1}+d_{1} \theta}{a_{1}+b_{1} \theta}<h .
$$

Let $l=a d_{1}+b c_{1}$ and $m=-a b_{1}+b a_{1}$. Then by direct calculation $l$ and $m$ satisfy the above relations. Therefore we obtain the conclusion. Q.E.D.

Lemma 5. There are an orthogonal family $\left\{\tilde{q}_{1 j}\right\}_{j=1}^{k}$ of projections in $M_{n}\left(A_{\theta}\right)$ and a family $\left\{w_{j}\right\}_{j=1}^{k}$ of unitary elements in $M_{n}\left(A_{\theta}\right)$ such that for $j=1,2, \ldots, k$

$$
\tilde{q}_{1 j} \leq q_{2}, \quad \tilde{q}_{1 j}=w_{j}^{*} q_{1} w_{j}
$$

Proof: By Lemma 4 for a projection $q_{2}$ there is a projection $\tilde{q}_{11}$ in $q_{2} M_{n}\left(A_{\theta}\right) q_{2}$ such that $\tau\left(\tilde{q}_{11}\right)=r$. We suppose that there is an orthogonal family $\left\{\tilde{q}_{1 j}\right\}_{j=1}^{m}(1 \leq m \leq k-1)$ of projections in $q_{2} M_{n}\left(A_{\theta}\right) q_{2}$
such that $\tau\left(\tilde{q}_{1 j}\right)=r$ for $j=1,2, \ldots, m$. Let $f_{m}=q_{2}-\sum_{j=1}^{m} \tilde{q}_{1 j}$. Then $\tau\left(f_{m}\right)=r^{-1}-m r$. Hence by Lemma 4 there is a projection $\tilde{q}_{1 m+1}$ in $f_{m} M_{n}\left(A_{\theta}\right) f_{m}$ such that $\tau\left(q_{1 m+1}\right)=r$. Thus by induction we can see that there is an orthogonal family $\left\{\tilde{q}_{1 j}\right\}_{j=1}^{k}$ of projections in $M_{n}\left(A_{\theta}\right)$ such that $\tilde{q}_{1 j} \leq q_{2}, \tau\left(\tilde{q}_{1 j}\right)=r$ for $j=1,2, \ldots, k$. Since $M_{n}\left(A_{\theta}\right)$ has cancellation property, for $j=1,2, \ldots, k$ there is a unitary element $w_{j}$ in $M_{n}\left(A_{\theta}\right)$ such that $\tilde{q}_{1 j}=w_{j}^{*} q_{1} w_{j}$. Therefore we obtain the conclusion. Q.E.D.

$$
\text { Let } \tilde{q}=\sum_{j=1}^{k} \tilde{q}_{1 j} \text {. We note that } \tilde{q} \leq q_{2} \text {. }
$$

Lemma 6. With the above notations there are a projection $\bar{q}$ and a unitary element $z$ in $M_{n}\left(A_{\theta}\right)$ such that

$$
\bar{q} \leq q_{1}, \quad z \bar{q} z^{*}=q_{2}-\tilde{q} .
$$

Proof: Since $q_{1} M_{n}\left(A_{\theta}\right) q_{1}$ is isomorphic to $A_{\theta}$, by Rieffel [6, Theorem 1] we see that

$$
\tau\left(\operatorname{Proj}\left(q_{1} M_{n}\left(A_{\theta}\right) q_{1}\right)\right)=r(\mathbf{Z}+\mathbf{Z} \theta) \cap[0, \quad r] .
$$

In order to see that there is a projection $\bar{q}$ in $q_{1} M_{n}\left(A_{\theta}\right) q_{1}$ such that $\tau(\bar{q})=\tau\left(q_{2}\right)-\tau(\tilde{q})$ it suffices to show that there are integers $l, m$ such that

$$
r(l+m \theta)=n-r-k r, \quad 0<l+m \theta<1 .
$$

Since $r=a+b \theta$ and $r+r^{-1}=n$, we obtain that

$$
l+m \theta=\left(n^{2}-a n-k-1\right)-b n \theta, \quad 0<l+m \theta<1 .
$$

Let $l=n^{2}-a n-k-1, m=-b n$. Then by direct calculation we see that $l$ and $m$ satisfy the above relations. Therefore we obtain the conclusion. Q.E.D.

Proposition 7. With the above notations a family

$$
\left\{\begin{array}{ll}
\left(2 q_{1},\right. & \left.q_{1}\right), \\
\left(2 w_{j}^{*} q_{1},\right. & \left.q_{1} w_{j} q_{2}, \quad q_{2} w_{1}^{*}\right) \\
(2 z \bar{q}, & \left.q_{1} z^{*}\right)
\end{array}\right\}
$$

is a quasi-basis for a conditional expectation $E$ defined in this section.
Proof: We will show that for any $\boldsymbol{x} \in M_{n}\left(A_{\theta}\right)$

$$
\begin{aligned}
x=2 q_{1} E\left(q_{1} x\right)+2 q_{2} E\left(q_{2} x\right) & +2 q_{1} w_{1} q_{2} E\left(q_{2} w_{1}^{*} x\right) \\
& +2 \sum_{j=1}^{k} w_{j}^{*} q_{1} E\left(q_{1} w_{j} x\right)+2 z \bar{q} E\left(q_{1} z^{*} x\right)
\end{aligned}
$$

By easy computation $2 q_{j} E\left(q_{j} x\right)=q_{j} x q_{j}$ for $j=1,2$ and since $q_{2} \geq$ $w_{1}^{*} q_{1} w_{1}$ by Lemma $5,2 q_{1} w_{1} q_{2} E\left(q_{2} w_{1}^{*} x\right)=q_{1} w_{1} q_{2} w_{1}^{*} x q_{2}=q_{1} x q_{2}$. Since $\sum_{j=1}^{k} w_{j}^{*} q_{1} w_{j}=\sum_{j=1}^{k} \tilde{q}_{1 j}=\tilde{q}$ by Lemma 5 ,

$$
2 \sum_{j=1}^{k} w_{j}^{*} q_{1} E\left(q_{1} w_{j} x\right)=\sum_{j=1}^{k} w_{j}^{*} q_{1} w_{j} x q_{1}=\tilde{q} x q_{1}
$$

Furthermore since $\bar{q} \leq q_{1}$ and $z \bar{q} z^{*}=q_{2}-\tilde{q}$ by Lemma 6,

$$
2 z \bar{q} E\left(q_{1} z^{*} x\right)=z \bar{q} z^{*} x q_{1}=\left(q_{2}-\tilde{q}\right) x q_{1}
$$

Hence

$$
\begin{aligned}
& 2 q_{1} E\left(q_{1} x\right)+2 q_{2} E\left(q_{2} x\right)+2 q_{1} w_{1} q_{2} E\left(q_{2} w_{1}^{*} x\right) \\
& \\
& +2 \sum_{j=1}^{k} w_{j}^{*} q_{1} E\left(q_{1} w_{j} x\right)+2 z \bar{q} E\left(q_{1} z^{*} x\right) \\
& \quad=q_{1} x q_{1}+q_{2} x q_{2}+q_{1} x q_{2}+\tilde{q} x q_{1}+\left(q_{2}-\tilde{q}\right) x q_{1}=x
\end{aligned}
$$

Similarly we see that

$$
\begin{aligned}
x=2 E\left(x q_{1}\right) q_{1}+2 E\left(x q_{2}\right) q_{2} & +2 E\left(x q_{1} w_{1} q_{2}\right) q_{2} w_{j}^{*} \\
& +2 \sum_{j=1}^{n} E\left(x w_{j}^{*} q_{1}\right) q_{1} w_{j}+2 E(x z \bar{q}) q_{1} z^{*}
\end{aligned}
$$

Therefore we obtain the conclusion. Q.E.D.

Remark. By the above proposition $E$ is of index-finite type. And by direct computation we can see that Index $E=4 I_{n}$. Furthermore by the definition of $\phi$ projections $q_{1}$ and $q_{2}$ are in $\phi\left(A_{\theta}\right)^{\prime} \cap M_{n}\left(A_{\theta}\right)$ and $\tau\left(q_{1}\right)=a+b \theta, \tau\left(q_{2}\right)=\frac{1}{a+b \theta}$.

Theorem 8. If $\theta$ is a quadratic irrational number, there are a positive integer $n$ and a monomorphism $\phi$ of $A_{\theta}$ into $M_{n}\left(A_{\theta}\right)$ satisfying the following properties:
(1) There is a conditional expectation $E$ of index-finite type of $M_{n}\left(A_{\theta}\right)$ onto $\phi\left(A_{\theta}\right)$,
(2) There is a non-zero projection $q \in \phi\left(A_{\theta}\right)^{\prime} \cap M_{n}\left(A_{\theta}\right)$ such that $\tau(q) \notin \mathbf{N}$.

Proof: This is immediate by Proposition 7 and the above remark. Q.E.D.

## References

[1] B. Blackadar, K-theory for Operator Algebras, M. S. R. I. Publication, Springer-Verlag, 1986.
[2] K. Kodaka, Automorphisms of tensor products of irrational rotation $C^{*}$-algebras and the $C^{*}$-algebra of all compact operators II, J. Operator Theory, to appear.
[3] K. Kodaka, Endomorphisms of certain irrational rotation $C^{*}$ algebras, Illinois Journal of Math., to appear.
[4] K. Kodaka, Endomorphisms of certain irrational rotation $C^{*}$ algebras II, preprint.
[5] S. Lang, Introduction to Diophantine Approximation, AddisonWesley, 1966.
[6] M. A. Rieffel, $C^{*}$-algebras associated with irrational rotations, Pacific J. Math., 93 (1981), 415-429.
[7] M. A. Rieffel, The cancellation theorem for projective modules over irrational rotation $C^{*}$-algebras, Proc. London Math. Soc., 47 (1983), 285-302.
[8] Y. Watatani, Index for $C^{*}$-subalgebras, Mem. Amer. Math. Soc., 424 (1990).

Department of Mathematics College of Science
University of the Ryukyus
Nishihara-cho, Okinawa 903-01
JAPAN

