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REMARKS ON THE UNIVERSAL COVERING

SPACE OF THE SPACE OF RATIONAL FUNCTIONS

YASUHIKO KAMIYAMA

1. INTRODUCTION

Let Ratk denote the space of based holomorphic maps of degree
k from the Riemannian sphere 52 to itself. The basepoint condition
we assume is that f (00) = 1. Such holomorphic maps are given by
rational functions. Thus:

(1.1 )
Ratk = {(p(z), q(z)) : p(z) and q(z) are monic, degree-k polynomials

and such that there are no roots common to p(z) and q(z)} .

The study of the topology of Ratk originates in [5]. The result is
that the inclusion ik : Ratk ---+ n~52 is a homotopy equivalence up
to dimension k, that is, i b : '7ri(Ratk) ---+ '7ri(n~52) is bijective for
i < k and surjective for i = k. In particular, we have '7rl(Ratk) rv Z.
Later the global homology of Ratk was described in [2] and [3] in
terms of the homology of Artin's braid groups. In particular, their
result tells us that i k* : H*(Ratk; K) ---+ H*(n~52; K) is injective,
where K is a field.

Let Vk denote the universal covering space of Ratk' and 025 3 de
note the universal covering space of n~52 c::::: n 253. Let Zk : Vk ---+
025 3 be a lift of i k . Thus we have the following commutative dia
gram:
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If we take the results of [2], [3] and [5] into account, we naturally
encounter the following question: Is 1,k* : H*(Vk;K) ----t H*({j253 ;K)
injective?

It is elementary to prove that jt({j253 ; C) = O. Hence if the above
question is true, then we have in particular that H*(Vk; C) = O.

In fact we have a negative answer to the above question for k > 1
by calculating the Euler characteristic X(Vk ):

Theorem A. We have X(Vk ) = k.

Theorem A tells us that H*(Vk; C) i= 0 for k > 1. Hence we have
a negative answer to the above question for k > 1 and K = C.

It is well known that Rah is homeomorphic to C x C*. Hence VI
is homeomorphic to C 2

• Thus the topology of Vk is non-trivial for
k > 1. Then about V2 and V3 , we have the following:

Theorem B. V2 is homotopically equivalent to 52.

Theorem C. For K = Zp (p: a prime> 3) or K = C, we have

Remark 1.2. As n25 3 is an H-space, we see that the Serre local
system of the fibration {j253 ----t n25 3 ----t 51 is simple. On the other
hand, Theorem A and the fact that H*(Ratk; C) :::::' H*(51

; C) (k 2:
1) (see [2] and [3]) tell us that the Serre local system of the fibration
Vk ----t Ratk ----t 51 is not simple for k > 1. However it is known
that Ratk is a nilpotent space up to dimension n [5]. In relation to
this, recall that we have a loop sum Rah x Ratl ----t Ratk+l which is
compatible with the loop sum in n2 5 3 [1].

Note that we can realize Vk as a smooth complex affine algebraic
hypersurface in C 2k . (See Proposition 2.1.) Hence our results can be
understood as the topology of such a hypersurface. In particular by a
well-known theorem about smooth complex affine algebraic varieties,
we have Hi (Vk ; Z) = 0 for i > 2k - 1. On the other hand, by the
result of [5] we have Hi(Vk ; C) = 0 for i < k.

Complete details of this paper will appear elsewhere.
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2. FILTRATION OF Vk

We explain the crucial steps for the proof of Theorem A. First
we realize Vk homotopically as a smooth complex affine algebraic
hypersurface in C 2k . We define

D k : Ratk -+ C*

by
k

Dk(P(Z), q(z)) = II (ai - {3j),
i,j=l

where p(z) = rr7=1 (z - ai) and q(z) = rr;=l (z - {3j). It is easy to

see that Dk is a fiber bundle with fiber D;;l(l). As 1l"l(Ratk) ~ Z
(see [5]), we have 1l"l(D;;l(l)) = O. Hence we can regard D;;l(l) as
the universal covering space of Ratk. So we have the following:

Proposition 2.1. Vk is homotopically equivalent to

D;;l(l) = {(p(z), q(z)) : p(z) and q(z) are monic, degree-k polynomials

and such that Dk(p(z),q(z)) = I}.

Let us filter Vk by closed subspaces:

Vk = Fk k :::) Fk k-l :::) ... :::) Fk i :::) ... :::) Fk 1 :::) Fk 0 = 0,
l) ) ) 1

where

(2.2) Fk,i = {(p(z),q(z)) E Vk : p(z) has at most i distinct zeros}.

Then we can prove that

Proposition 2.3.

{
k i = 1

X(Fk,i - Fk,i-d = 0
2 :s; i :s; k.

Then Theorem A follows from the long exact sequence of coho
mology with compact supports of the pair (Fk,i, Fk,i-l).

If we calculate the homology of Fk,i in detail, then by the same
argument as in the proof of Theorem A, we can prove Theorems B
and C.

Remark 2.4. By the same argument as in the proofs of Theorems A,
Band C, we can prove that Hq (V4 ; C) = 0 for q :s; 3 or q 2 7.
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