## 琉球大学学術リポジトリ

An elementary proof of a theorem of T．F．Havel

| メタデータ | 言語： |
| :---: | :--- |
|  | 出版者：Department of Mathematical Sciences，College |
|  | of Science，University of the Ryukyus |
|  | 公開日：2010－01－25 |
|  | キーワード（Ja）： |
|  | キーワード（En）： |
|  | 作成者：Kamiyama，Yasuhiko，神山，靖彦 |
|  | メールアドレス： |
|  | 所属： |
| URL | http：／／hdl．handle．net／20．500．12000／15048 |

# AN ELEMENTARY PROOF OF A THEOREM OF T. F. HAVEL 

Yasuhiko KAMIYAMA

## 1. Introduction

We consider the configuration space of the planar equilateral pentagon linkage. More precisely, we define $M$ by

$$
M=\left\{\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{\mathbf{2}}, \boldsymbol{x}_{\mathbf{3}}\right) \in \mathbf{R}^{\boldsymbol{b}} ;\left\|\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{x}_{\boldsymbol{i}+1}\right\|=1, i=1,2, \ldots 5\right\}
$$

,where $\boldsymbol{x}_{4}$ and $\boldsymbol{x}_{5}$ are fixed vectors in $\mathbf{R}^{2}$ and we regard $\boldsymbol{x}_{6}$ as $\boldsymbol{x}_{1}$.
Note that the freedom of independent parameters of $M$ equals to 2. Then it is natural to ask whether $M$ is a manifold and, if in this case, what kind of manifold. In [2], T. F. Havel answers this question and the result is as follows.

Theorem 1. $M$ is a compact, connected and orientable twodimensional manifold of genus 4.

In order to prove this theorem, Havel considers the following steps. (1) First prove that $M$ is a smooth manifold by showing local coordinates explicitly. (2) Next make a function $f: M \rightarrow \mathbf{R}$ by assigning a point of $M$ to its directed area. Then prove that $f$ is a Morse function and $\chi(M)=-6$ is obtained by the Morse theory, here $\chi(M)$ is the Euler number of $M$. (3) Finally prove that $M$ is orientable.

[^0]It will be natural that one hopes to prove Theorem 1 more directly without using the Morse theory. And the purpose of this paper is to execute this.

## 2. Geometric proof of Theorem 1

We write the coordinates of $x_{4}$ and $x_{5}$ by $x_{4}=(-1 / 2,0)$ and $x_{5}=(1 / 2,0)$ respectively and write the the clockwise angle from the vector $\overrightarrow{x_{5} x_{4}}$ to $\overrightarrow{x_{5} x_{1}}$ by $\alpha$ and the counterclockwise angle from the vector $\overrightarrow{x_{4} \boldsymbol{x}_{5}}$ to $\overrightarrow{x_{4} \boldsymbol{x}_{3}}$ by $\beta$ respectively. It is clear that $\boldsymbol{x}_{1}=(1 / 2-$ $\cos \alpha, \sin \alpha), x_{3}=(-1 / 2+\cos \beta, \sin \beta)$.

Fix $x_{1}$ and $x_{3}$ arbitrarily, then the freedom of $x_{2}$ will be given by the following:
(i) If $0<\left\|x_{1}-x_{3}\right\|<2$, then we can take $x_{2}$ at exactly 2 different points. In fact if $x_{2}$ is taken so that $\left\|x_{1}-x_{2}\right\|=1,\left\|x_{2}-x_{3}\right\|=1$, then the symmetric point $x_{2}^{\prime}$ of $x_{2}$ with respect to the segment $x_{1} x_{3}$ also satisfies $\left\|x_{1}-x_{2}^{\prime}\right\|=1,\left\|x_{2}^{\prime}-x_{3}\right\|=1$.
(ii) If $\left\|x_{1}-x_{3}\right\|=2$, then we can take $x_{2}$ at exactly one point. In fact in this case $x_{2}$ should be the middle point of the segment $x_{1} x_{3}$.
(iii) If $\left\|x_{1}-x_{3}\right\|=0$, then the freedom of $x_{2}$ is homeomorphic to $S^{1}$. In fact in this case $x_{2}$ can be taken at any point of the circle of radius 1 centered at $x_{1}=x_{3}$.
(iv) If $2<\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{3}\right\|$, then it is clear that we cannot take $\boldsymbol{x}_{2}$ at any point.

Note that the case (iii) occurs if and only if $\alpha=\beta=\pi / 3$ or $\alpha=\beta=5 \pi / 3$.

Let $R$ be the subspace of $M$ consisting of points of the cases (i)
or (ii) and let $D$ be the subspace of $T^{2}$ consisting of $(\alpha, \beta)$ such that $0<\left\|x_{1}-x_{3}\right\| \leq 2$, where $T^{2}$ is the 2 dimensional torus obtained from $[0,2 \pi] \times[0,2 \pi]$ by the identification $(\alpha, 0) \sim(\alpha, 2 \pi)$ and $(0, \beta) \sim$ $(2 \pi, \beta)$. Note that the boundary of $D$, which will be denoted by $\partial D$, consists of points of the case (ii).

Thus $R$ will be obtained by the following manner. Let $D^{(1)}$ and $D^{(2)}$ be two copies of $D, \partial D^{(1)}$ and $\partial D^{(2)}$ be boundary of $D^{(1)}$ and $D^{(2)}$ respectively and let $i: \partial D^{(1)} \rightarrow \partial D^{(2)}$ be the identity map. Then $R$ is homeomorphic to $D^{(1)} \amalg D^{(2)} / \sim$, where $D^{(1)} \amalg D^{(2)}$ is the disjoint union of $D^{(1)}$ and $D^{(2)}$ and the identification $\sim$ is given by $\boldsymbol{x}^{(1)} \sim \boldsymbol{x}^{(2)}$ if and only if $\boldsymbol{x}^{(1)} \in \delta D^{(1)}, \boldsymbol{x}^{(2)} \in \delta D^{(2)}$ such that $\boldsymbol{x}^{(2)}=\boldsymbol{i} \boldsymbol{x}^{(1)}$.

Because of the above observations, we first investigate the domain $\bar{D}$ which is defined by $\bar{D}=\left\{(\alpha, \beta) \in T^{2} ;\left\|x_{1}-x_{3}\right\| \leq 2\right\}$. In order to do this, we shall see $\partial \bar{D}$, which is by definition $\left\{(\alpha, \beta) \in T^{2} ; \|\right.$ $\left.x_{1}-x_{3} \|=2\right\}$.

Lemma 2.1. $\partial \bar{D}$ is homeomorphic to $S^{1}$.
Proof. This lemma seems clear from the definition of $\partial \bar{D}$. But for the completeness we shall give some details.

Note that
(2.2) $\partial \bar{D}=\left\{(\alpha, \beta) \in T^{2} ;(1-\cos \alpha-\cos \beta)^{2}+(\sin \alpha-\sin \beta)^{2}=4\right\}$.

Once $\alpha \in[0,2 \pi]$ is fixed, then $\beta$ will be given by

$$
\begin{equation*}
\beta=-\alpha / 2+\sin ^{-1}\{(1 / 2+\cos \alpha) /(-2 \sin (\alpha / 2))\} \tag{2.3}
\end{equation*}
$$

,where $\sin ^{-1} x=\{y \in(-\infty, \infty) ; \sin y=x\}$.

Note that (2.3) asserts that $-1 \leq(1 / 2+\cos \alpha) /(-2 \sin (\alpha / 2)) \leq 1$. Then we can easily show that $\alpha$ must satisfy $\pi / 3 \leq \alpha \leq 5 \pi / 3$ such that if $\alpha=\pi / 3$, then $\beta=4 \pi / 3$ and $\alpha=5 \pi / 3$, then $\beta=2 \pi / 3$.

By using these results, we can easily prove that $\partial \bar{D}$ is homeomorphic to $S^{1}$.

By using Lemma 2.1, we can show that $\bar{D}$ is homeomorphic to $T^{2}-e^{2}$, where $e^{2}$ is a small open disk contained in $T^{2}$. Hence $D$ is homeomorphic to $T^{2}-\left\{e^{2} \cup p_{1} \cup p_{2}\right\}$, where $p_{1}$ corresponds to $\alpha=\beta=\pi / 3$ and $p_{2}$ corresponds to $\alpha=\beta=5 \pi / 3$.

Recall that $R$ is homeomorphic to $D^{(1)} \amalg D^{(2)} / \sim$. Hence we have the following:

Proposition 2.4. $R$ is homeomorphic to $\Sigma_{2}-\left\{p_{1}^{(1)}, p_{1}^{(2)}, p_{2}^{(1)}, p_{2}^{(2)}\right\}$, where $\Sigma_{2}$ is the Riemannian surface of genus 2 and $\left\{p_{1}^{(1)}, p_{1}^{(2)}\right\}$ are copies of $p_{1},\left\{p_{2}^{(1)}, p_{2}^{(2)}\right\}$ copies of $p_{2}$.

Next we shall investigate the case of (iii), i.e. the situation around $p_{1}^{(1)}, p_{1}^{(2)}, p_{2}^{(1)}$ and $p_{2}^{(2)}$ in $R$. We think of a small closed neighborhood of $p_{1}^{(1)}$ as $C S^{1}-\left\{p_{1}^{(1)}\right\}$, where $C S^{1}$ is the cone of $S^{1}$ and the vertex corresponds to $p_{1}^{(1)}$. We also consider a small closed neighborhood of $p_{1}^{(2)}$ in the same manner. Then by the insights (i) and (iii), it is clear that the topology around $p_{1}^{(1)}$ and $p_{1}^{(2)}$ is given by the following: First consider $C S^{1} \vee C S^{1}$ (= one point union of two $C S^{1}$ 's attached by the verteces). Then replace the vertex by $S^{1}$.

Note that $C S^{1} \vee C S^{1}$ changes into $S^{1} \times[0,1]$ by this operation. Hence we have proved that the topology around $p_{1}^{(1)}$ and $p_{1}^{(2)}$ is $S^{1} \times$ $[0,1]$.

If we consider the situation around $p_{2}^{(1)}$ and $p_{2}^{(2)}$ in the same manner, then we have the following:

Proposition 2.5. Let $M^{\prime}$ be $\Sigma_{2}$ attached with two $S^{1} \times[0,1]$ 's in some manner. Then $M$ is homeomorphic to $M^{\prime}$.

Finally we prove that $M$ is orientable. In order to do this, we shall investigate how two $S^{1} \times[0,1]$ 's are attached to $\Sigma_{2}$.

We cut off a small open neighborhood of the vertex in $C S^{1}$ and write the remaining subspace of $C S^{1}$ by $S^{1} \times[0,1-\epsilon]$, where $\epsilon>0$ is small enough. Note that the $S^{1} \times[0,1]$ around $p_{1}^{(1)}$ and $p_{1}^{(2)}$ is obtained by $S^{1} \times[0,1-\epsilon] \coprod S^{1} \times[0,1-\epsilon] / \simeq$, where $\simeq$ is induced by a homeomorphism $g: S^{1} \times\{1-\epsilon\} \rightarrow S^{1} \times\{1-\epsilon\}$. (c.f. the identification of $R$ with $\left.D^{(1)} \coprod D^{(2)} / \sim\right)$. We think of $g$ as $g: S^{1} \rightarrow S^{1}$. Then $g$ is given by the following:

## Lemma 2.6. $g$ is homotopic to the antipodal map.

Proof. Note that $C S^{1}-\{$ vertex $\}$ is parametrized by $\alpha, \beta$, and the freedom $S^{1}$ in the case (iii) is of course parametrized by $\boldsymbol{x}_{2}$. Moreover note that $\boldsymbol{x}_{2}$ and $\boldsymbol{x}_{2}^{\prime}$ corresponds to each other in the case (i). By using these facts, it is easy to see that $g$ is homotopic to the antipodal map.

If we consider the situation around $p_{2}^{(1)}$ and $p_{2}^{(2)}$ in the same manner, then finally we have the following:

Theorem 2.7. Let $X$ be $T^{2}-\left\{e_{1}^{2}, e_{2}^{2}, e_{3}^{2}\right\}$, where $\left\{e_{1}^{2}, e_{2}^{2}, e_{3}^{2}\right\}$ are small open disks. Then $M^{\prime}$ is homeomorphic to $X \amalg X / \cong$ where $\cong$ is meant to identify the boundaries of two $X$ 's via one identity map
and two maps which are homotopic to the antipodal map.

Note that antipodal map preserves orientation. Hence it is easy to see that $M$ is orientable.

This completes the proof of Theorem 1.

## References

1. H. B. Griffiths: Surfaces, Second edition, Cambridge University Press, Cambridge, 1981.
2. T. F. Havel: The use of distances as coordinates in computer-aided proofs of theorems in Euclidean geometry, "Symbolic computations in geometry", 1988.
3. I. J. Schoenberg: Linkages and distance geometry, I. Linkages, Indag. Math. 31, 42-52, 1969.
4. I. J. Schoenberg: Linkages and distance geometry, II. On sets of $n+2$ points in $E_{n}$ that are most nearly equilateral, Indag. Math. 31, 53-63, 1969.

Department of Mathematics
College of Science
University of the Ryukyus
Nishihara-Cho, Okinawa 903-01
Japan


[^0]:    Received October 31, 1992.

