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AN ELEMENTARY PROOF OF A THEOREM

OF T. F. HAVEL

Yasuhiko KAMIYAMA

1. Introduction

We consider the configuration space of the planar equilateral pen

tagon linkage. More precisely, we define M by

,where Z4 and Z5 are fixed vectors in R 2 and we regard Z6 as Zl.

Note that the freedom of independent parameters of M equals to

2. Then it is natural to ask whether M is a manifold and, if in this

case, what kind of manifold. In [2], T. F. Havel answers this question

and the result is as follows.

Theorem 1. M i, a compact, connected and orientable two

dimen,ional manifold of genu, ./.

In order to prove this theorem, Havel considers the following steps.

(1) First prove that M is a smooth manifold by showing local coordi

nates explicitly. (2) Next make a function f : M --. R by assigning a

point of M to its directed area. Then prove that f is a Morse function

and X(M) = -6 is obtained by the Morse theory, here X(M) is the

Euler number of M. (3) Finally prove that M is orientable.
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It will be natural that one hopes to prove Theorem 1 more directly

without using the Morse theory. And the purpose of this paper is to

execute this.

2. Geometric proof of Theorem 1

We write the coordinates ofz4 and Z/i by Z4 = (-1/2,0) and

Z/i = (1/2,0) respectively and write the the clockwise angle from the

vector Z~4 to Z~l by a and the counterclockwise angle from the

vector Z~/i to Z~3 by {3 respectively. It is clear that Zl = (1/2 

cosa, sin a), Z3 = (-1/2 + cos{3, sin{3).

Fix Zl and Z3 arbitrarily, then the freedom of Z2 will be given by

the following:

(i) If°<II Zl - Z3 11< 2, then we can take Z2 at exactly 2 different

points. In fact if Z2 is taken so that II Zl - Z2 11= 1, II Z2 - Z3 11= 1,

then the symmetric point z~ of Z2 with respect to the segment Zl Z3

also satisfies II Zl - z~ 11= 1, II z~ - Z3 11= 1.

(ii) If II Zl - Z3 11= 2, then we can take Z2 at exactly one point.

In fact in this case Z2 should be the middle point of the segment Zl Z3.

(iii) If II Zl - Z3 11= 0, then the freedom of Z2 is homeomorphic

to Sl. In fact in this case Z2 can be taken at any point of the circle of

radius 1 centered at Zl = Z3'

(iv) If 2 <II Zl - Z3 II, then it is clear that we cannot take Z2 at

any point.

Note that the case (iii) occurs if and only if a = {3

a = {3 = 5~/3.

7r /3 or

Let R be the subspace of M consisting of points of the cases (i)
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or (ii) and let D be the subspace of T 2 consisting of (a,,8) such that

°<II Z1 - Z3 11:s 2, where T 2 is the 2 dimensional torus obtained

from [0,21("] x [0,21("] by the identification (a, 0) '" (a, 211") and (0,,8) '"

(21(",,8). Note that the boundary of D, which will be denoted by 8D,

consists of points of the case (ii).

Thus R will be obtained by the following manner. Let D(1) and

D(2) be two copies of D, 8D(1) and 8D(2) be boundary of D(1) and D(2)

respectively and let i : 8D(1) -+ 8D(2) be the identity map. Then R

is homeomorphic to D(1) 11 D(2) / "', where D(1) 11 D(2) is the disjoint

union of D(1) and D(2) and the identification'" is given by Z(1) '" Z(2)

if and only if z(1) E 8D(1), z(2) E 8D(2) such that z(2) = iz(1).

Because of the above observations, we first investigate the domain

D which is defined by D = {(a,,8) E T 2
; II Z1 - Z3 11:s 2}. In order

to do this, we shall see 8D, which is by definition {(a,,8) E T 2 ; II
Z1 - Z3 11= 2}.

Lenuna 2.1. 8D i, homeomorphic to S1.

Proof. This lemma seems clear from the definition of 8.D. But

for the completeness we shall give some details.

Note that

(2.2) 8D = {(a,,8) E T 2
; (1 - cosa - cos,8)2 + (sin a - sin,8)2 = 4}.

Once a E [0,21("] is fixed, then ,8 will be given by

(2.3) ,8 = -a/2 + sin-1{(1/2 + cosa)/( -2 sin(a/2))}

,where sin -1 z = {y E (-00,00); sin y = z}.
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Note that (2.3) asserts that -1 :S (1/2+cos 0:)/( -2 sin(0:/2)) :S l.

Then we can easily show that 0: must satisfy 1r/3 :S 0: :S 51r /3 such

that if 0: = 1r/3, then j3 = 41r/3 and 0: = 51r /3, then j3 = 21r /3.

By using these results, we can easily prove that {) iJ is homeomor

phic to Sl. 0

By using Lemma 2.1, we can show that iJ is homeomorphic to

T 2
- e 2

, where e2 is a small open disk contained in T 2
• Hence n

is homeomorphic to T 2 - {e2 U P1 U P2}, where P1 corresponds to

0: = j3 = 1r/3 and P2 corresponds to 0: = j3 = 51r /3.

Recall that R is homeomorphic to n(1) II n(2) / "-'. Hence we have

the following:

Proposition 2.4. R i, homeomorphic to ~2_{A1),p~2),p~1),p~2)},

where ~2 i, the Riemannian ,urlace 01 genu, 2 and {p~l),p~2)} are

. 1 {(1) (2)} . 1cop.e, 0 P1, P2 ,P2 cop.e, 0 P2'

Next we shall investigate the case of (iii), i.e. the situation around

p~1),p~2),p~1) and p~2) in R. We think ofa small closed neighborhood

of p~l) as aSl - {p~l)}, where as1 is the cone of Sl and the vertex

corresponds to p~l). We also consider a small closed neighborhood of

p~2) in the same manner. Then by the insights (i) and (iii), it is clear

that the topology around p~l) and p~2) is given by the following: First

consider aSl vaSl (= one point union of two aSl 's attached by the

verteces). Then replace the vertex by Sl.

Note that as1 vas1 changes into Sl x [0,1] by this operation.

Hence we have proved that the topology around Pi1
) and Pi2

) is Sl x

[0,1].
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If we consider the situation around p~l) and p~2) in the same man

ner, then we have the following:

Proposition 2.5. Let M' be :E 2 attached with two Sl x [0,1]'6

in 60me manner. Then M i6 homeomorphic to M'.

Finally we prove that M is orientable. In order to do this, we

shall investigate how two Sl X [O,I]'s are attached to :E 2 •

We cut off a small open neighborhood of the vertex in CS1 and

write the remaining subspace of CS1 by Sl X [0,1 - t"], where t" > °
is small enough. Note that the Sl x [0,1] around p~1) and p~2) is

obtained by Sl x [0,1- t"] 11 Sl x [0,1- t"]1 ~, where ~ is induced by a

homeomorphism 9 : Sl x {1- t"} -+ Sl x {1- t"}. (c.f. the identification

of R with n(l) 11 n(2)I ,,",). We think of 9 as 9 : Sl -+ Sl. Then 9 is

given by the following:

Lenuna 2.6. 9 i6 homotopic to the antipodal map.

Proof. Note that CS1 - {vertex} is parametrized by a,!3, and the

freedom Sl in the case (iii) is of course parametrized by Z2' Moreover

note that Z2 and z~ corresponds to each other in the case (i). By using

these facts, it is easy to see that 9 is homotopic to the antipodal map.

D

If we consider the situation around p~1) and p~2) in the same man

ner, then finally we have the following:

Theorem 2.7. Let X be T 2 - {e~,e~,en, where {e~,e~,en are

6mall open did':6. Then M' i6 homeomorphic to X II XI ~, where ""'

i6 meant to identify the boundarie6 of two X'6 via one identity map
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and two map' which are homotopic to the antipodal map.

Note that antipodal map preserves orientation. Hence it is easy

to see that M is orientable.

This completes the proof of Theorem 1.

References

1. H. B. Griffiths: Surfaces, Second edition, Cambridge University

Press, Cambridge, 1981.

2. T. F. Havel: The use of distances as coordinates in computer-aided

proofs of theorems in Euclidean geometry, "Symbolic computations in

geometry", 1988.

3. I. J. Schoenberg: Linkages and distance geometry, I. Linkages,

Indag. Math. 31, 42-52, 1969.

4. I. J. Schoenberg: Linkages and distance geometry, II. On sets of

n + 2 points in En that are most nearly equilateral, Indag. Math. 31,

53-63, 1969.

Department of Mathematics

College of Science

University of the Ryukyus

Nishihara-Cho, Okinawa 903-01

Japan

-12-


