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THE HOMFLY INVARIANT OF
CLOSED TANGLES *

Masashi Kosuda

Abstract

In the papers [3, 4], the author constructed a complete set of
irreducible representations of the Hecke category. These rep-
resentations also define invariants of oriented tangles. Since
links are special examples of the oriented tangles, their invari-
ant, which eventually coincides with the HOMFLY invariant
of links, can be calculated by the same method. In this article,
we calculate the invariant of the Hopf link, the Whitehead link
and the Borromean link by this new method.

1 Preliminaries

We recall some definitions about tangles. For details we refer the
reader to the papers [1, 3, 6, 8]. Those who are familiar with these
papers can skip this section.

Let 7 and s be non-negative integers. An oriented (r, s)-tangle T
is a finite set of disjoint oriented arcs and circles properly embedded
(up to isotopy) in R? x [0, 1] such that

0T =460, 0}i=1,2 s PP U {E B = 1,200 58k

and such that T is perpendicular to R? x {0} and R? x {1} at every
boundary point of 9T. (See Figure 1.) With each (r,s)-tangle
T, we associate two sequences, 0_T = (e;(T),e(T),...,6(T)) and
OtT = (eX(T),€eX(T), ..., (T)), consisting of £1. Here ¢(T) = +1 if
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Figure 1: An oriented tangle

the tangent vector of T" at (4,0, 0) is outward with respect to R? x [0, 1]
and ¢(T) = —1 otherwise. Similarly /(T) = —1 if the tangent vector
of T at (5,0,1) is outward and €/ (T) = +1 otherwise. If r = 0 (resp.
s = 0), then 0_T (resp. 0'T) is the empty set ). We can easily find
that there exists no (r, s)-tangle T such that 37 ;(T) # 325 €(T).

We define the category OT A of the oriented tangles. The objects
of OT A are defined as the sequences {(ej,...€.)|r = 0,1,...} with
¢; = =1 including the empty sequence and denoted by Ob(OT A).
We denote the number of ones in ¢ by Pos(¢), and the number of
minus ones in € by Neg(e). A morphism from ¢ = (e5,...,¢) to
€ = (€],...,€) is a C-linear combination of oriented (r,s)-tangles
in which each tangle T satisfies 0T = ¢ and 0TT = €. The set
of morphisms from ¢ to € is denoted by Morpra(e, €’). We define
the composition product 1717, of tangles 77 and T3 by placing 7 on
T3, gluing the corresponding boundaries and shrinking half along the
vertical axis. The composition T}75 is defined only when 0_T; = 01T,
The composition product will be extended C-linearly.

Turaev’s paper [8] assures that every oriented tangle 7' can be
presented by a composition product of special tangles as in Figure 2.
In other words, these special tangles are generators of OT A.
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Figure 2: Special tangles

2 Invariants of the special tangles

In the papers [3, 4], the author defined a complete set of irre-
ducible representations {P* = (P7, L")} of the Hecke category. These
representations are also considered as the ones of oriented tangles.
This means that each representation of the Hecke category defines an
invariant of tangles. Since OT A is generated by the special tangles,
if we get the invariants of them, we can obtain the invariant of an
arbitrary tangle. In the following, we give the invariant of the special
tangles for each irreducible representation PY = (P, £7).

The representation spaces {L£"} are defined over C. The objects
of L7 are C-vector spaces {CS2(¢)”|e € Ob(H)} and the morphisms of
L7 are linear maps between every two objects of £7. In the following
we define the set Q(e)” of tableaux. Before defining a tableau, we
introduce some terminology.

Let A = (A, Ao, ..., An) be a partition of the length [(A) = n. Let
v = [e, B] be a pair of partitions. We call this staircase. The size of
staircase is defined by |y| = |a| —|4]|. If we consider a staircase as two
sets of coordinates in matrix style, then we can define the inclusion
v C v by a C o and ' C (. Staircases {y = [«, f]} are partially
ordered with respect to this inclusion.

A tableau is a sequence of staircases which is defined as follows:
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Figure 3: The branching rule

DEFINITION 2.1.  (Stembridge [7]) Let v(¥ be the staircase
defined by the pair of the null partitions [0, 0]. A tableau & of length
r and shape 7 is a sequence (V... , v(") = 5) of staircases in which
either ¥ 5 41, [y8)] —|7E=D] = L or o € 48, |48 — |41 =
—1 for 1 <4 < 7. The tableau £ is said to be of type € = (ey,...,€),
where ¢; = [y®] — [y¢D).

For a fixed staircase v, Q(¢)” is a set of all the tableaux whose
shapes are v and whose types are e. The objects of L7 are the C-
vector spaces {CQ(e)|e € Ob(OTA)}. If Q(e)” = 0, then CQ(e)” =
0. We denote the natural basis of CQ(e)” defined by the tableaux
{]€ € Q(e)"} by {ug).

Figure 3 shows how ~7® is generated from (! according to
the signature ¢; in making a tableau. We call this generation rule
the branching rule. All the tableaux of type e are conveniently de-
scribed using the graph ['.. Figure 4 is an example of I',, where
e = (+1,—1,+1,—1,+1). In the picture, Q(c)[l’”] is a set of five paths
from the bottom vertex [0, 0] to the top vertex [1,0].

As it defined in [2, 5], each vertex of I'. has its weight. These
weights are defined by the indices {7y} which are assigned to the ver-
tices. Let

min(k,l)

Mgy = H {[e, B]; @, B partitions, |a| = k —m,|3] =1 — m}

m=0

be a set of pairs of partitions and let A be the set of all the pairs of
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Figure 4: T'(41,-1,41,-1,+1)

partitions:
[o.0] [ee]
A=UCU A= T CU A
r=0 k>0,1>0 p=—00 £>0,1>0
k+i=r k—l=p

As is well known, any partition A is expressed by a Young diagram.
We denote the coordinates of boxes in a Young diagram in matrix style.
For example, if a box is in the ¢-th row and in the j-th column of a
Young diagram A, it is denoted by (i,7) € A. Each box (i,7) € A
has its hook length hy(i,7). Let v = [\, u] be a staircase such that
A= (M, Ag,...) and p = (p1, p2,...). Then the weight s[y] of v is
defined by

; . UA) [a;5—i+A—k 3 ;
H(i,j)eu ([a;] — 1= l(/\)] Hk(:)l %1%1) H(i,j)e)\[a;] - 2]

sly] = — — ,
H(i,j)e/\[h/\(la 7)) H(i,j)eu[hu(l,])]
where
aflqm o aq-m qm _ qvm
a;m|=———and m|=|1;m| =—"—.
[a;m] = [m] = [1;m] A

The following are examples of the weights {s[vy]}.
s[0,0] = 1,



s[1,0] = s[0,1] = [a;0],

s(11,0] = 5[0, 11] = %:1_1

S =S = Ma’_l]

[2,0] = s[0, 2] e
s(1,1] = la; —1][a; 1],

[a; —1][a; 2)[a; 0]
2] ’

[a; —2][a; 1][a; 0]

2]

An object € = (€1,...,¢;) of OT A is mapped by P? to an object
P(e) = CQ(e)” of L. If either CQ(e)” or C(e')” is the 0 space,
then Morpv(e,€') = {0}. Hence if either Q(e)” = 0 or Q(¢')” = 0,
then P?(T") = 0 for any tangle 7" such that 0_T = ¢ and 07T = ¢€'.

5[2,1] =

s[11,1] =

2.1 P7([eX*€]) and P7([eX¢€])
Let z = (¢,+1,41,€) be an object on which [eX*¢'] is defined.
Suppose that Pos(z) = k, Neg(z) = [ and € = (€1,¢€2,...,€6,_1), € =

(€i+2, €ir3y- -1 €k+t)-

If v & Ag,, then define P?([eX*€]) = 0.

Otherwise, each of the generators of the form {[¢X *¢']} is mapped
to a morphism from the object CQ(x)” to itself. Let

5 = (’Y(])) et 77(1.*1)7 ’y(l)?’y(l+l)7 M | 7(k+l) = ’Y)

be a tableau of shape v and of type . Then according to the branching
rule as in Figure 3, the staircase v*1) is obtained from y¢~') one of
the following ways:

case 1.1 By adding two boxes to the same row of a1,
case 1.2 By removing two boxes from the same row of g1,
case 2.1 By adding two boxes to the same column of o=V,

case 2.2 By removing two boxes from the same column of ¢V,

case 3.1 By adding two boxes in different rows and columns of ai=1).



case 3.2 By removing two boxes from different rows and columns of

Bli-1),

case 4.1 By adding one box to a(~Y first then removing one box
from BE1.

case 4.2 By removing one box from B0~ first then adding one box
to ali=1.

In case 3.1, 3.2, 4.1 or 4.2, there exists exactly one tableau

¢ = (7(1)’ o ’,y(i—l)’ (V(i))', 7(i+1), o ’7(k+1)>7

which differs from € in its ¢-th coordinate only.

In case 3.1, if the box (1, ¢;) € ot is added first and then
(151, cig1) € &Y is added, then we define the axis distance d(€,7)
by

d(€,%) = (Cit1 — Tiy1) — (¢ — 14).

In case 3.2, if the box (r;,¢;) € B4 is removed first and then
(Ti41, Cip1) € B is removed, then we define the axis distance d(&, 1)
by

d(f,i) = (Ci - 7‘1‘) - (Ci+1 = Ti+1)~

In case 4.1 or in case 4.2, we define the axis distance d(,1) as
follows: Suppose that (14, ce) € a1\ o~V and (rg,c5) € FE1\
A0+ Then d(&,1) is defined by

d=d(&,1) = (ca —Ta) + (cg — T5).

Using this axis distance d, we define P?([eX"¢€']) and P7([eX ¢€])as
follows:

P7([€<X+6’])U€ = @- aﬁ(i)vf +a - b{(i)vf’
G4l case 1.1, 1.2,
—a-q v case 2.1, 2.2,
= 4" [gdi]vf ta- ud[;]l 3 case 3.1, 3.2,
q =M. i
a- [ailll;d—d] Ve +a- [(I[(IJl—ﬁlegl case 4.1,
—q a;d—1
L & a[a;d] vgt+a- [leg' case 4.2,
and

PY([eX"¢]) = a"P7([eXFe]) —a (g —q 7).



For the definition of [a; m| and [m], see the one of the weight s[7].
We note that

Pr([eX™€Dve = a ' agyve —a - beyve

= a_l{(lg(i) = (q = (]*1)}1}6 = (li1 $ bﬁ(i)lU,f’-

REMARK 2.2.  The above ag), be;) and a’f(i) are defined by the
triple y¢=D, v and 4¢+D . We sometimes use AyGi=1) ) i)y (TESD.
b(,\,,(i—l)1,y(i)1,y(i+1)), azv(iq)ﬁ(i)ﬂ(iﬂ))), instead of Qg (4) (resp. bf(i)a (Lé(i)).

2.2 P ([ezt€]) and P7([eZ¢€])

Let z = (¢,—1,—1,€¢) be an object on which [eZ €] is defined.
4

Suppose that Pos(z) = k, Neg(z) = [ and € = (¢1,¢€9,...,6.1), € =

(€i+2, €43y - - s €kAL)-

If v & Ay, then define P7([eZ1€]) = 0.

Otherwise, each of the generators of the form {[eZ €]} is mapped
to a morphism from the object CQ(z)" to itself. Let

£= (U, ..,y A0 A0 D) — )

be a tableau of shape v and of type z. Then according to the branching
rule as in Figure 3, the staircase (1) is obtained from v~ one of
the following ways:

case 1.1 By removing two boxes from the same row of o=,
case 1.2 By adding two boxes to the same row of f¢~1.

case 2.1 By removing two boxes from the same column of o~ 1.
case 2.2 By adding two boxes to the same column of g1,

case 3.1 By removing two boxes from different rows and columns of
e
ali=b),

case 3.2 By adding two boxes from different rows and columns of

B



case 4.1 By removing one box from a(*~! first then adding one box
to A1,

case 4.2 By adding one box to S~ first then removing one box
from ali=Y,

In case 3.1, 3.2, 4.1 or 4.2, there exists exactly one tableau

El - (,Y(I)v s By 7(1.71)9 (V(i))la 7(i+1)a Lo afy(k'+l))

which differs from £ in its i-th coordinate only.

In case 3.1, if the box (r;,¢;) € a1 is removed first and then
(7341, Cip1) € a7 is removed, then we define the axis distance d(¢, )
by

d(&,79) = (cip1 — i) = (€ — 73).

In case 3.2, if the box (rj,¢;) € U+ is added first and then
(Tig1, cig1) € Y is added, then we define the axis distance d(€,7)
by

d(€,1) = (& — i) — (Cip1 — Tit1)-

In case 4.1 or in case 4.2, we define the axis distance d(¢,17) as
follows: Suppose that (rq,cq) € @D\ oD and (rg,c5) € SO\
pE=D. Then d(£,1) is defined by

d=d(& 1) = (ca —Ta) + (cg — 7).

Using this axis distance d, we define P?([eZ"¢]) and P7([eZ~¢']) as
follows:

a - qug case 1.1, 1.2,
—a-q e case 2.1, 2.2,
& d+1
Pzt v = {0 fve+a- e case 3.1, 3.2,
—lzd &
G+ a[a'd] Ve +a- a[f.;r]l Ve case 4.1,
—d e
| o pr—gue +a- [a[a_’l—;ﬁ]llvgf case 4.2,

and
PY([eZ7¢€]) = a*P7([eZ¥€]) —a (g —g7").



2.3 P(l;e]) and PY([elie])

Let z = (€), z» = (6, +1,—1,€) z; = (¢, —1,+1,€) be objects
such that [eU,.€'] : ¢ — z, and [eUi€'] : © — x; are defined. Suppose
that Pos(z) = k,Neg(z) = [ and that

= (€1, €2,...,6€)
and
€ = (€i+1, €42, -+, €k+z)-
If v & Ay, then define PY([eU,€']) = 0 and P ([eU;€']) = 0.
A generator [eU,€'] (resp. [eU€']) is mapped by P7 to a morphism

from the object CQ(z)" to the object CQ(xz, )7 (resp. CQ(x;)7). For
each tableau

£ T BT g O =)

of shape 7 and of type x, we define the tableau £(7) (resp. £'(j')) of
shape v and of type z, (resp. z;) as follows:

£G) = (M, AT A, Y, B = ),
(resp. £'(5") = (Y., (i), e, 7““ Y =),
where {A(j)} (J = 1,2,...,p(n)) (resp. {v(5)} (b' =L, 2,...,p'(1))
are all the staircases such that A(j) D p and |A(j)| — |/1,| = 1 (resp
v(j') € pand |v(jy')| — |¢| = —1). See the branching rule pictured

in Figure 3. Under these notation P7([eU,€']) (resp. P7Y([eUie'])) is
defined as follows:

PY([eU,€])ve =

(resp. PY([eUie)ve =

p(1)
G
(Z “5’(] )
2.4  P7([eU,.€]) and P([eU])

Let z, :*(6, ~1,+1,¢€), & = (6, +1,—1,€), £ = (¢,€') be objects
such that [eU,€'] : z, — & and [eU€'] : z; — & are defined. Suppose
that Pos(z,) = Pos(z;) = k, Neg(z,) = Neg(z;) = [ and that

€= (€1,€2,...,6-1)



and
£ = (AT T ,€k+1)-
If v & Ap_1, 1, then define P7([eU,€]) = 0 and P?([eU€']) = 0.
A generator [¢Uq¢'] (resp. [eUe']) is mapped by P7 to a morphism
from the object CQ(z, )Y (resp. CS2(z;)7) to the object CQ(z)?. For
each tableau

G+ (kD)

E=(, AT =ua = gy A =9)

of shape v and of type z, (resp. z;), we define
0, if yliml) o 4lith),
Ué’ lf v(igl) — ,Y(i+1),

- 0. if A1) £ A1),
¥ e = - ;
<resp. PY([eUi€))ve = { (sl /sl]vg, i A1) = )

P7([€Urf'])'z)§ = {

where § is a tableau of shape v and of type & which is obtained from
the tableau & by removing the i-th coordinate ) = p and the (i+1)-st
coordinate y(+1).

2.5 [eV+e], [Y~¢] and [T+e], [eT~¢]
Suppose that € = (€1, €,...,6,_1) and € = (€49, €43, -+, €x11)-
For a tableau

f = (7(1)a sy ”7(1.72)7/L07 )‘Oalu‘lv’y(i+2)7 s Y

I

(k+l))

of shape v and of type (¢, 41, —1,¢), we define tableaux

{g(.]’) . (7(])7 LR | 7(1;2)’ Ho, V(.j/>> Ho, /\03 1, 7(i+2)7 Y
| j’:1721"'ap’(,u'0)}

(k+l))

of shape 7 and of type (¢, —1,41,+1, —1,€) by duplicating the (i—1)-
st coordinate po of € and then inserting v(j') between them, where
{v(j)} are all the staircases such that v(j') C po and |v(5")| — |uo| =
—1. If py # p, then there exists an index jj such that py D v(jj)
and p; D v(j). We put vy = v(jy). For £(j') we define £'(j') by
replacing the (7 + 1)-st coordinate pg of £(j") with po(j') such that
v(7') C po(5") € Ao and po(5'") # po (if it exists).



Similarly, for a tableau

L -2) (i+2)

y Mo, Vo, 1, 7Y 7"’)7(k+l))

n=1(y T
of shape v and of type (¢, —1,41,¢'), we define tableaux

(i-2) (i+2) (k+l))

a.u()wu()hula/\(j)?“h’y yeeen Y
| ]:172’,[)(/1,1)}

of shape v and of type (¢, —1,+1, 41, —1, ¢) by duplicating the (i+1)-
st coordinate p; of n and then inserting A(j) between them, where
{A(j)} are all the staircases such that A(j) D i and |A(j)| — || = 1.
For n(j) we define 7'(j) by replacing the (i + 1)-st coordinate p; of
n(j) with py(y) such that vy C p(j) € A(j) and pi(y) # py (if it
exists). If po # ju1, then there exists an index jy such that A(jo) D s
and A(jo) D p1. We put Ag = A(Jo).

We note that if pg # pq, then for the tableau £, the tableau 7 is
uniquely determined by replacing the i-th coordinate Ao = o U piy
with vy = o N gy and vice versa. In case py = puy, we set &, (j =
L,2,...,p()) and 0y (5" = 1,2,...,9 (1)) as follows:

(i-2)
—2)

{n() =", .

a,u()a/\(j)v,ula/y(i*z ,~--7'7

s Hos l/(.jl)altlv7(1{2)a sioe afy

gj = (7(1)7"'7’7 (k+l))

o= (Y

Then we obtain

(k+1) )

s[v(3”)]s[ Ao .
Pyl = | 057 S S, (6 o = ),
a - b o, ,\0);[:2]39[2?] (otherwise),
a ! Z], A s[wa sl Ao] vy, (if o = ),
D(vo.110,00) 5[jc)slas] U (otherwise),

a5 G AV (1 po = ),
a- b (vo ,“,,\O)Ug (otherwise).

PN, =

Uo Ji1,7(5)) Y (lf Ho = /LI),
(uo,,“ o)) Ve (otherwise).

Pr([eT ¢ v, =

PW([GY‘a])Ug = { ' ";0[”’(\)0]2[)\09[/‘0]

3 Examples

According to the definition in the previous section, we calculate
the invariant of some famous links. Since oriented links can be con-
sidered as (0,0)-tangles, and since Agp = {(0,0)}, the only non zero
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Figure 5: Closed Tangle

Figure 6: Hopf Link

representation of links is one dimensional. This means the invariant
of a link L is given by a scalar P(L).

Moreover, suppose that a link L is given by a closed tangle T as in
Figure 5. In this case, it is easily checked that the invariant is given
by the formula

- 1
P(T) = > shitr(®P7(1),

[a'; O] ’YEAkJ

where k = Pos(0_T') and [ = Neg(0_T).
Using this formula, we calculate the invariant of the Hopf link, the
Whitehead link and the Borromean link.

3.1 The Hopf link

The easiest non trivial example is the Hopf link, Ly,, which is
pictured in Figure 6.

This link is obtained from the tangle [X*][X ] by closing the cor-
responding boundaries. Since the type of [X T][X*] is (+1,+1), there



ap

Figure 7: Whitehead Link

are only two non zero representations, v = [2,0] and ' = [11, 0], and
these are both one dimensional. The special tangle [X*] acts on these
spaces by scalar multiples aq and —aq ! respectively. Hence we obtain

syltr(PY(XF][X ) + sly'Jer (PY ([X (X))
[a; 0]

R S B 11700 P S U (it Pty
[a;m{ 2] Tt (”)}

1 ’
= —([a; 1]a*q® + [a; —1]a’q™?)

2]

= alg—q¢ ') +a

P(LHO) =

-1
o@ = — &

q—q '

3.2 The Whitehead link

The next example is the Whitehead link, Ly, which is pictured
in Figure 7. Put

(Whi] = [(+1)U(-DI[X (=1L, =DI[(+1,+1) Z ) *[(+1)Ur (- 1)]
and
(Wh2] = [(+DU(-D]X (=1, =D)[(+1, +1) Z7)[(+ 1)U (- 1))
The Whitehead link is obtained from the tangle

(Wh] = [Wh1][Wh]



Figure 8: Representation spaces to calculate the Whitehead link

by closing the corresponding boundaries.

Since the type of the tangle [Wh| is (+1, —1), there are only two
possible representations, v = [0,0] and 4 = [1, 1] and these are both
one dimensional spaces. We denote the bases by vg, and vg, respec-
tively. However, unlike the case of the Hopf link, to calculate the
invariant, we need two more spaces, a two dimensional space and a
four dimensional space. (See Figure 8.)  We denote the standard
bases of these spaces by {vy,,v,,} and {v¢,, v, ve,, v, } respectively.
From the definition of previous section, we have the following:

PY([(+1)Ur(=1D)])ve, = vy, + vy,
PY ([(+ 1)U (~1)])ve, = vg, + v,
PY([(+1,+1) Z vy, = —aq vy,
PY([(+1, +1) Z*))vy, = aquy,,

- ala; —
P’YI([(+1,+1)Z+])U<1 = —[a;a_ql]’u(l + [L;’_f]] Ugas
P ([(+1,+1)Z*))v,, = [‘;[;“;_q]] ve, + [a(;’_l]ucz,

ala; 2]

P ([(+1, +1) Z*])vg, = ——vg, +

[a; 1]

[a; 1] UC4’



PT([(+1,+1)Z v, = @1 % ]
P7([(X* (=1, =1)])vy, = —ag ™'y,
PY([XF(=1, =1)])vy, = aquy,
PY([XH(=1,-1)])o, = —agq v,
P”I([XJ”(—L —1))vg, = —agq v,

P (Xt (=1, -1)))vg, = aqug,,

P ([X*(=1,=1)))v, = aqug,,

PY([X™ (=1, =1y, = _ag]qvnn
P'([X7(=1,-1)vy, = a ]q~1U112

PY([X (=1, —1))v, = —a'qu,

PY (X (=1, -1)]))vg, = —a”quy,

PY (X (=1, —1)])vg, = a”'q gy,

P (X7 (=1, -1))vg, = a”'q vy,

P T Do = Sl =
P (T, = gt = il

P ()T, = S, =
— Cs[2,00 0 a3 1)

Uy = S[l,O]’U& - [2] Uty s

Hence we have

T e N WL

= [%](q*?[a; —1] + ¢*[a; 1)),
PY(Whi])o, = %aa; 1] + a3 1)
- [a’;o]vfl’



WV - ag™? la;—1]  ag* [a;1]
P = (g )”&
1 ) 2
= —(—aq™*+ aq®)vg,

2]

= alg—q "ve,
P (Whi])vg, = lo; —1] ({ o | ¢l 0][a;—2}) v

2] a; —1]? [a; 1]
la;1] [ a2 q*[a; 0][a; 2]
+ [2] ([a, 1]2 [CL; 1]2 ) Ve,
2o —1] [2][e; 1] ¢

= [a;0)(¢* — 1+ ¢*)vg,.
Hence

a?[a; 0]
2]

PY([Wh])vg, = PY([Wh1|[Wh2])Jve, = (la; =1]g™* + [a; 1]g*)vg,

and
P ((Wh))ve, = P7 ((Wh1][Wh2))ve, = [a;0)(¢*~1+q *)alg—q " ve,.

Finally, we obtain the invariant of the Whitehead link as follows:

PLwn) = i (sl (BT (W D) + sl ler(BY (WD)}

1 a?*[a; 0] . )
~ o 1 e e )
gy Lo =i 1] 06 =1+ 4 Pala — o))
@ ([a; —1)g~* + [a; 1))
2
+a; —1[a; 1](¢* = 1+ ¢ Halg —q ")
a(-a’¢ +q' — >+ 1)

q(¢* — 1)
" (a®¢* — 1)(a® — ¢*)(¢" — ¢* + 1)
ag(q? — 1)



NaY

Figure 9: Borromean Link

(¢° — 24" +¢*)a’
ag®(¢* — 1)
+(—qg +2¢°-3¢"+2¢° - 1)a® +¢° — ¢" + ¢*
ag®(¢* — 1) '

3.3 Borromean link

Finally, we calculate the invariant of the Borromean link Lpg,,,
which is pictured in Figure 9. This link is obtained from the tangle

[Bor] = [Y ™ (+D)[(+1)Y X (= DJ[(+ DT T (+D][(-1)X 7]

by closing the corresponding boundaries.

Since the type of the above tangle is (=1, 41, +1), there are three
non zero representations, v = [1,0], 4" = [2,1] and 4" = [11,1]. The
natural bases of these spaces are defined in I'igure 10.  According
to the formula in Section 2, the special tangles which are involved in
[Bor] are mapped as follows:

PY((-DX Doy, = ogron +a7' e
O



" 1 " 1 " !
Y 4 7 Y 7 Y 7 Y Y

(=) [B7) =] [o¢] BP] [B9] O] [04] =9

%)
RIS NG ta $1 [,

[+ +¢] [0D

Figure 10: Representation spaces to calculate Borromean Link

P (+1)oe, = o gl
P (T () o, = o o,
P () oy = o gl

P ([(+1)T ), = agug, — g™ g,
-1

PWmemzﬁ%%+ﬁjww

P ()T o, = o,
[a; 0]
[a; —1]1)4‘“
(X" (=D]ve, = aqug,,
PY([X*(=D)])ve, = —ag™ v,
P7([X*(=1)])ve, = aqug,
PY ([X*(-1)])ve, = —aq™ v,
PY([(+1)Y "),
s[0,0]s[2,0 a"lqs[1,1]s[2,0
[3[1], 0[12 Lo+ Y] [3[1], 0[]2 b

PV ([(+1)T" oy, =
P




agla; 1] gla; —1][a; 1]

TRl w0l
PY([(+1)Y g,
_1,8[0,0]s[11, 0] a”'q ' s[1,1]s[11,0]
R e R ] Prosy e T R
—aq a; —1] N q a; —1][a ]]v
2][a;0] ™ 2][a;0] "
eyt w020 ala)
p ([(+1)Y ]) € [ ]5[ ]9[ ] Uny [a;2] n3)
N )y a[a —2] 51, 1]s[11, 0] B a[a;—l]v
p ([(+1)Y ]) Ca — [a _1] 5[ ] {11 1] [a;()] N4

o, a s[0,1]s(1, 0]

P7([YA(+1)])'U771 =a [{1 O] [0 0] Ve = [a; 0]”51’
N o las 1) s[0,1]s[1,0]  aa; 0]
P ([Y (+1)])Un2 =a [(L;O] [0 0] [1 1]U€2 - [a 1] Uy
. _ e —1]s[0,1]s[1,0] a”[a; 0]
p ([Y (+1)])Un3 =a [(L; O] [O 0] [1 1] Vgg = [(L 1]
1 la; 1] 8[0,1]s[1,0] @ '[a;0]

P (Y~ (+1)])vg, =

@ 0] 5[0, 0,1 %%~ [a;1] e
Hence we have

P7([Bor])ve,
_ @(@lai1] — ¢ 1)) + [os Ufas ~1)(¢* +97°)
[a; 0]%(2] o
o =1 (¢les —1] — g e 1)) +ale® +q7°)}
[a; 0]2[2] @

PY([Bor])ve,
_ [ 1{e*(@la; 1] = e 1)) —a" (g’ +¢7)}
[a; 0]2[2] o
a (¢ %a; 1] = ¢*la; =1]) + [a; 1][a; —1](¢* + ¢ ®) )
[a; 0]2[2] o

+

and
pP7 ({BOT])U&, = Ugs) P ([BOT])U&: = Vgy-



Using the formula for a closed tangle, we finally obtain

P(Luw) = [‘;[7(}] - tr(P"([Bor))
-+ F(I[ZY;)]] -tr(P” ([Bor])) + [S(EI’Y(/;} (P ([Bor]))
= 1-tr(P"([Bor])) + la; —1][a; 2] 14 la; —2][a; 1] i

2] 2]

= tr(P"([Bor])) + [a;1][a; —1] — 1

(—¢" +4¢* =5¢° +4¢" = ¢*)(a" + 1)
a2(q? — 1)24°
+(q12 —4¢094+7¢4-10¢%+7q* — 44¢% + 1)a?
a2(g? — 1)2¢" :
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